Abstract

We present a novel wavelength-swept laser source for optical coherence tomography (OCT) which is based on the conventional laser diode technology of the vertical-cavity surface-emitting laser (VCSEL). In our self-heating sweep VCSEL (SS-VCSEL), a VCSEL device is simply driven by ramped pulses of currents in direct intensity modulation. The intrinsic property of VCSEL produces a frequency-swept output through the self-heating effect. By the injected current, the temperature of the active region is gradually increased in this effect. Consequently, it changes the wavelength of the laser output by itself. In this study, various characteristics of our SS-VCSEL were experimentally investigated for low-cost instrumentation of a swept source OCT system. A low-cost SS-VCSEL-based OCT system was demonstrated in this research that provided an axial resolution of 135 μm in air, sensitivity of −91 dB and a maximum imaging range longer than 10 cm when our source was operated at a sweep repetition rate of 5 kHz with an output power of 0.41 mW. Based on the experimental observations, we believe that our SS-VCSEL swept source can be an economic alternative in some of low-cost or long-range applications of OCT.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
1550 nm high contrast grating VCSEL

Christopher Chase, Yi Rao, Werner Hofmann, and Connie J. Chang-Hasnain
Opt. Express 18(15) 15461-15466 (2010)

Widely tunable 1060-nm VCSEL with high-contrast grating mirror

Kun Li, Chris Chase, Pengfei Qiao, and Connie J. Chang-Hasnain
Opt. Express 25(10) 11844-11854 (2017)

Vertical-cavity surface-emitting lasers for data communication and sensing

Anjin Liu, Philip Wolf, James A. Lott, and Dieter Bimberg
Photon. Res. 7(2) 121-136 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
    [Crossref] [PubMed]
  2. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [Crossref] [PubMed]
  3. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [Crossref] [PubMed]
  4. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006).
    [Crossref] [PubMed]
  5. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14(24), 11575–11584 (2006).
    [Crossref] [PubMed]
  6. J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Wong, and K. K. Tsia, “High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch,” Biomed. Opt. Express 6(4), 1340–1350 (2015).
    [Crossref] [PubMed]
  7. W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35(17), 2919–2921 (2010).
    [Crossref] [PubMed]
  8. V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
    [Crossref] [PubMed]
  9. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
    [Crossref] [PubMed]
  10. M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, “High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs,” Opt. Express 16(4), 2547–2554 (2008).
    [Crossref] [PubMed]
  11. H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Express 14(13), 5937–5944 (2006).
    [Crossref] [PubMed]
  12. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14(10), 4403–4411 (2006).
    [Crossref] [PubMed]
  13. U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 microm for enhanced imaging depth,” Opt. Express 16(24), 19712–19723 (2008).
    [Crossref] [PubMed]
  14. S. K. Vashist, E. M. Schneider, and J. H. T. Luong, “Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management,” Diagnostics (Basel) 4(3), 104–128 (2014).
    [Crossref] [PubMed]
  15. G. P. Agrawal, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, 1993), Chap. 7.
  16. L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “10.1 nm range continuous wavelength-tunable vertical-cavity surface-emitting lasers,” Electron. Lett. 30(17), 1409–1410 (1994).
    [Crossref]
  17. S.-S. Yang, J.-K. Son, Y.-K. Hong, Y.-H. Song, H.-J. Jang, S.-J. Bae, Y.-H. Lee, G.-M. Yang, H.-S. Ko, and G.-Y. Sung, “Wavelength tuning of vertical-cavity surface-emitting lasers by an internal device heater,” IEEE Photonics Technol. Lett. 20(20), 1679–1681 (2008).
    [Crossref]
  18. S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
    [Crossref]
  19. E. Kapon and A. Sirbu, “Long-wavelength VCSELs: Power-efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
    [Crossref]
  20. Y. Liu, W. C. Ng, K. D. Choquette, and K. Hess, “Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41(1), 15–25 (2005).
    [Crossref]
  21. K. H. Rhew, S. C. Jeon, D. H. Lee, B.-S. Yoo, and I. Yun, “Reliability assessment of 1.55-μm vertical cavity surface emitting lasers with tunnel junction using high-temperature aging tests,” Microelectron. Reliab. 49(1), 42–50 (2009).
    [Crossref]
  22. J. Armstrong, M. Leigh, I. Walton, A. Zvyagin, S. Alexandrov, S. Schwer, D. Sampson, D. Hillman, and P. Eastwood, “In vivo size and shape measurement of the human upper airway using endoscopic longrange optical coherence tomography,” Opt. Express 11(15), 1817–1826 (2003).
    [Crossref] [PubMed]
  23. A. C. Loy, J. Jing, J. Zhang, Y. Wang, S. Elghobashi, Z. Chen, and B. J. F. Wong, “Anatomic optical coherence tomography of upper airways,” in Optical Coherence Tomography, W. Drexler, J. G. Fujimoto, eds. (Springer, 2015).
  24. R. Chityala, C. Vidal, and R. Jones, “Utilizing optical coherence tomography for CAD/CAM of indirect dental restorations,” Proc. SPIE 8566, 85660A (2013).
    [Crossref]

2015 (1)

2014 (1)

S. K. Vashist, E. M. Schneider, and J. H. T. Luong, “Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management,” Diagnostics (Basel) 4(3), 104–128 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (1)

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
[Crossref] [PubMed]

2010 (1)

2009 (2)

K. H. Rhew, S. C. Jeon, D. H. Lee, B.-S. Yoo, and I. Yun, “Reliability assessment of 1.55-μm vertical cavity surface emitting lasers with tunnel junction using high-temperature aging tests,” Microelectron. Reliab. 49(1), 42–50 (2009).
[Crossref]

E. Kapon and A. Sirbu, “Long-wavelength VCSELs: Power-efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
[Crossref]

2008 (3)

S.-S. Yang, J.-K. Son, Y.-K. Hong, Y.-H. Song, H.-J. Jang, S.-J. Bae, Y.-H. Lee, G.-M. Yang, H.-S. Ko, and G.-Y. Sung, “Wavelength tuning of vertical-cavity surface-emitting lasers by an internal device heater,” IEEE Photonics Technol. Lett. 20(20), 1679–1681 (2008).
[Crossref]

M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, “High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs,” Opt. Express 16(4), 2547–2554 (2008).
[Crossref] [PubMed]

U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 microm for enhanced imaging depth,” Opt. Express 16(24), 19712–19723 (2008).
[Crossref] [PubMed]

2006 (5)

2005 (1)

Y. Liu, W. C. Ng, K. D. Choquette, and K. Hess, “Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41(1), 15–25 (2005).
[Crossref]

2003 (2)

1997 (1)

1994 (1)

L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “10.1 nm range continuous wavelength-tunable vertical-cavity surface-emitting lasers,” Electron. Lett. 30(17), 1409–1410 (1994).
[Crossref]

1992 (1)

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
[Crossref]

Adler, D. C.

Alexandrov, S.

Armstrong, J.

Bae, S.-J.

S.-S. Yang, J.-K. Son, Y.-K. Hong, Y.-H. Song, H.-J. Jang, S.-J. Bae, Y.-H. Lee, G.-M. Yang, H.-S. Ko, and G.-Y. Sung, “Wavelength tuning of vertical-cavity surface-emitting lasers by an internal device heater,” IEEE Photonics Technol. Lett. 20(20), 1679–1681 (2008).
[Crossref]

Bouma, B.

Bouma, B. E.

Cable, A.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
[Crossref] [PubMed]

Cable, A. E.

Chang, E. W.

Chen, Z.

Chinn, S. R.

Chinone, N.

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
[Crossref]

Chityala, R.

R. Chityala, C. Vidal, and R. Jones, “Utilizing optical coherence tomography for CAD/CAM of indirect dental restorations,” Proc. SPIE 8566, 85660A (2013).
[Crossref]

Choquette, K. D.

Y. Liu, W. C. Ng, K. D. Choquette, and K. Hess, “Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41(1), 15–25 (2005).
[Crossref]

Cole, G. D.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
[Crossref] [PubMed]

de Boer, J.

de Boer, J. F.

Eastwood, P.

Fan, L.

L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “10.1 nm range continuous wavelength-tunable vertical-cavity surface-emitting lasers,” Electron. Lett. 30(17), 1409–1410 (1994).
[Crossref]

Fujimoto, J. G.

Grodzinski, P.

L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “10.1 nm range continuous wavelength-tunable vertical-cavity surface-emitting lasers,” Electron. Lett. 30(17), 1409–1410 (1994).
[Crossref]

Grulkowski, I.

Hess, K.

Y. Liu, W. C. Ng, K. D. Choquette, and K. Hess, “Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41(1), 15–25 (2005).
[Crossref]

Hillman, D.

Hong, Y.-K.

S.-S. Yang, J.-K. Son, Y.-K. Hong, Y.-H. Song, H.-J. Jang, S.-J. Bae, Y.-H. Lee, G.-M. Yang, H.-S. Ko, and G.-Y. Sung, “Wavelength tuning of vertical-cavity surface-emitting lasers by an internal device heater,” IEEE Photonics Technol. Lett. 20(20), 1679–1681 (2008).
[Crossref]

Huber, R.

Iftimia, N.

Jang, H.-J.

S.-S. Yang, J.-K. Son, Y.-K. Hong, Y.-H. Song, H.-J. Jang, S.-J. Bae, Y.-H. Lee, G.-M. Yang, H.-S. Ko, and G.-Y. Sung, “Wavelength tuning of vertical-cavity surface-emitting lasers by an internal device heater,” IEEE Photonics Technol. Lett. 20(20), 1679–1681 (2008).
[Crossref]

Jayaraman, V.

Jeon, M. Y.

Jeon, S. C.

K. H. Rhew, S. C. Jeon, D. H. Lee, B.-S. Yoo, and I. Yun, “Reliability assessment of 1.55-μm vertical cavity surface emitting lasers with tunnel junction using high-temperature aging tests,” Microelectron. Reliab. 49(1), 42–50 (2009).
[Crossref]

Jiang, J.

Jones, R.

R. Chityala, C. Vidal, and R. Jones, “Utilizing optical coherence tomography for CAD/CAM of indirect dental restorations,” Proc. SPIE 8566, 85660A (2013).
[Crossref]

Kapon, E.

E. Kapon and A. Sirbu, “Long-wavelength VCSELs: Power-efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
[Crossref]

Kim, D. Y.

Kitajima, S.

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
[Crossref]

Ko, H.-S.

S.-S. Yang, J.-K. Son, Y.-K. Hong, Y.-H. Song, H.-J. Jang, S.-J. Bae, Y.-H. Lee, G.-M. Yang, H.-S. Ko, and G.-Y. Sung, “Wavelength tuning of vertical-cavity surface-emitting lasers by an internal device heater,” IEEE Photonics Technol. Lett. 20(20), 1679–1681 (2008).
[Crossref]

Lee, D. H.

K. H. Rhew, S. C. Jeon, D. H. Lee, B.-S. Yoo, and I. Yun, “Reliability assessment of 1.55-μm vertical cavity surface emitting lasers with tunnel junction using high-temperature aging tests,” Microelectron. Reliab. 49(1), 42–50 (2009).
[Crossref]

Lee, E. C.

Lee, H. C.

L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “10.1 nm range continuous wavelength-tunable vertical-cavity surface-emitting lasers,” Electron. Lett. 30(17), 1409–1410 (1994).
[Crossref]

Lee, Y.-H.

S.-S. Yang, J.-K. Son, Y.-K. Hong, Y.-H. Song, H.-J. Jang, S.-J. Bae, Y.-H. Lee, G.-M. Yang, H.-S. Ko, and G.-Y. Sung, “Wavelength tuning of vertical-cavity surface-emitting lasers by an internal device heater,” IEEE Photonics Technol. Lett. 20(20), 1679–1681 (2008).
[Crossref]

Leigh, M.

Lim, H.

Liu, J. J.

Liu, Y.

Y. Liu, W. C. Ng, K. D. Choquette, and K. Hess, “Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41(1), 15–25 (2005).
[Crossref]

Luong, J. H. T.

S. K. Vashist, E. M. Schneider, and J. H. T. Luong, “Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management,” Diagnostics (Basel) 4(3), 104–128 (2014).
[Crossref] [PubMed]

Moon, S.

Mujat, M.

Ng, W. C.

Y. Liu, W. C. Ng, K. D. Choquette, and K. Hess, “Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41(1), 15–25 (2005).
[Crossref]

Oh, W.-Y.

Park, B. H.

Potsaid, B.

Rhew, K. H.

K. H. Rhew, S. C. Jeon, D. H. Lee, B.-S. Yoo, and I. Yun, “Reliability assessment of 1.55-μm vertical cavity surface emitting lasers with tunnel junction using high-temperature aging tests,” Microelectron. Reliab. 49(1), 42–50 (2009).
[Crossref]

Robertson, M.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
[Crossref] [PubMed]

Sakano, S.

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
[Crossref]

Sampson, D.

Schneider, E. M.

S. K. Vashist, E. M. Schneider, and J. H. T. Luong, “Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management,” Diagnostics (Basel) 4(3), 104–128 (2014).
[Crossref] [PubMed]

Schwer, S.

Sharma, U.

Shishkov, M.

Sirbu, A.

E. Kapon and A. Sirbu, “Long-wavelength VCSELs: Power-efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
[Crossref]

Son, J.-K.

S.-S. Yang, J.-K. Son, Y.-K. Hong, Y.-H. Song, H.-J. Jang, S.-J. Bae, Y.-H. Lee, G.-M. Yang, H.-S. Ko, and G.-Y. Sung, “Wavelength tuning of vertical-cavity surface-emitting lasers by an internal device heater,” IEEE Photonics Technol. Lett. 20(20), 1679–1681 (2008).
[Crossref]

Song, Y.-H.

S.-S. Yang, J.-K. Son, Y.-K. Hong, Y.-H. Song, H.-J. Jang, S.-J. Bae, Y.-H. Lee, G.-M. Yang, H.-S. Ko, and G.-Y. Sung, “Wavelength tuning of vertical-cavity surface-emitting lasers by an internal device heater,” IEEE Photonics Technol. Lett. 20(20), 1679–1681 (2008).
[Crossref]

Sung, G.-Y.

S.-S. Yang, J.-K. Son, Y.-K. Hong, Y.-H. Song, H.-J. Jang, S.-J. Bae, Y.-H. Lee, G.-M. Yang, H.-S. Ko, and G.-Y. Sung, “Wavelength tuning of vertical-cavity surface-emitting lasers by an internal device heater,” IEEE Photonics Technol. Lett. 20(20), 1679–1681 (2008).
[Crossref]

Suzuki, M.

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
[Crossref]

Swanson, E. A.

Tearney, G.

Tearney, G. J.

Tsia, K. K.

Tsuchiya, T.

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
[Crossref]

Uddin, A.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
[Crossref] [PubMed]

Vakoc, B. J.

Vashist, S. K.

S. K. Vashist, E. M. Schneider, and J. H. T. Luong, “Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management,” Diagnostics (Basel) 4(3), 104–128 (2014).
[Crossref] [PubMed]

Vidal, C.

R. Chityala, C. Vidal, and R. Jones, “Utilizing optical coherence tomography for CAD/CAM of indirect dental restorations,” Proc. SPIE 8566, 85660A (2013).
[Crossref]

Walton, I.

Wang, Q.

Wei, X.

Wojtkowski, M.

Wong, K. K.

Wu, M. C.

L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “10.1 nm range continuous wavelength-tunable vertical-cavity surface-emitting lasers,” Electron. Lett. 30(17), 1409–1410 (1994).
[Crossref]

Xu, J.

Yang, G.-M.

S.-S. Yang, J.-K. Son, Y.-K. Hong, Y.-H. Song, H.-J. Jang, S.-J. Bae, Y.-H. Lee, G.-M. Yang, H.-S. Ko, and G.-Y. Sung, “Wavelength tuning of vertical-cavity surface-emitting lasers by an internal device heater,” IEEE Photonics Technol. Lett. 20(20), 1679–1681 (2008).
[Crossref]

Yang, S.-S.

S.-S. Yang, J.-K. Son, Y.-K. Hong, Y.-H. Song, H.-J. Jang, S.-J. Bae, Y.-H. Lee, G.-M. Yang, H.-S. Ko, and G.-Y. Sung, “Wavelength tuning of vertical-cavity surface-emitting lasers by an internal device heater,” IEEE Photonics Technol. Lett. 20(20), 1679–1681 (2008).
[Crossref]

Yelin, R.

Yoo, B.-S.

K. H. Rhew, S. C. Jeon, D. H. Lee, B.-S. Yoo, and I. Yun, “Reliability assessment of 1.55-μm vertical cavity surface emitting lasers with tunnel junction using high-temperature aging tests,” Microelectron. Reliab. 49(1), 42–50 (2009).
[Crossref]

Yu, L.

Yun, I.

K. H. Rhew, S. C. Jeon, D. H. Lee, B.-S. Yoo, and I. Yun, “Reliability assessment of 1.55-μm vertical cavity surface emitting lasers with tunnel junction using high-temperature aging tests,” Microelectron. Reliab. 49(1), 42–50 (2009).
[Crossref]

Yun, S.

Yun, S. H.

Zhang, C.

Zhang, J.

Zvyagin, A.

Biomed. Opt. Express (1)

Diagnostics (Basel) (1)

S. K. Vashist, E. M. Schneider, and J. H. T. Luong, “Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management,” Diagnostics (Basel) 4(3), 104–128 (2014).
[Crossref] [PubMed]

Electron. Lett. (2)

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
[Crossref] [PubMed]

L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “10.1 nm range continuous wavelength-tunable vertical-cavity surface-emitting lasers,” Electron. Lett. 30(17), 1409–1410 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. Liu, W. C. Ng, K. D. Choquette, and K. Hess, “Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41(1), 15–25 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (2)

S.-S. Yang, J.-K. Son, Y.-K. Hong, Y.-H. Song, H.-J. Jang, S.-J. Bae, Y.-H. Lee, G.-M. Yang, H.-S. Ko, and G.-Y. Sung, “Wavelength tuning of vertical-cavity surface-emitting lasers by an internal device heater,” IEEE Photonics Technol. Lett. 20(20), 1679–1681 (2008).
[Crossref]

S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, “Tunable DFB laser with a striped thin-film heater,” IEEE Photonics Technol. Lett. 4(4), 321–323 (1992).
[Crossref]

Microelectron. Reliab. (1)

K. H. Rhew, S. C. Jeon, D. H. Lee, B.-S. Yoo, and I. Yun, “Reliability assessment of 1.55-μm vertical cavity surface emitting lasers with tunnel junction using high-temperature aging tests,” Microelectron. Reliab. 49(1), 42–50 (2009).
[Crossref]

Nat. Photonics (1)

E. Kapon and A. Sirbu, “Long-wavelength VCSELs: Power-efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
[Crossref]

Opt. Express (8)

M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, “High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs,” Opt. Express 16(4), 2547–2554 (2008).
[Crossref] [PubMed]

H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Express 14(13), 5937–5944 (2006).
[Crossref] [PubMed]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14(10), 4403–4411 (2006).
[Crossref] [PubMed]

U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 microm for enhanced imaging depth,” Opt. Express 16(24), 19712–19723 (2008).
[Crossref] [PubMed]

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

J. Armstrong, M. Leigh, I. Walton, A. Zvyagin, S. Alexandrov, S. Schwer, D. Sampson, D. Hillman, and P. Eastwood, “In vivo size and shape measurement of the human upper airway using endoscopic longrange optical coherence tomography,” Opt. Express 11(15), 1817–1826 (2003).
[Crossref] [PubMed]

S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14(24), 11575–11584 (2006).
[Crossref] [PubMed]

Opt. Lett. (4)

Proc. SPIE (1)

R. Chityala, C. Vidal, and R. Jones, “Utilizing optical coherence tomography for CAD/CAM of indirect dental restorations,” Proc. SPIE 8566, 85660A (2013).
[Crossref]

Other (2)

G. P. Agrawal, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, 1993), Chap. 7.

A. C. Loy, J. Jing, J. Zhang, Y. Wang, S. Elghobashi, Z. Chen, and B. J. F. Wong, “Anatomic optical coherence tomography of upper airways,” in Optical Coherence Tomography, W. Drexler, J. G. Fujimoto, eds. (Springer, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Structure of the VCSEL device (a), and its response under pulse driving. Here, V(t), P(t) and λ(t) are the driving voltage, the optical output power and the output’s wavelength in time, respectively.
Fig. 2
Fig. 2 Spectra of the VCSEL’s output in CW operation with various currents: IV = 2, 4, 6, 8, 10 and 12 mA from the left.
Fig. 3
Fig. 3 Spectra of the VCSEL’s output when driven by rectangular current pulses of different driving frequencies (a), and the wavelength separation of the spectral peaks, Δλ, which was obtained in each spectrum as a function of driving frequency, f (b). In Fig. 3(b), the blue line is the curve fit of the measured values denoted by square dots.
Fig. 4
Fig. 4 Schematic diagram of the simple SS-OCT system with our SS-VCSEL source.
Fig. 5
Fig. 5 Optical power of the SS-VCSEL’s output when driven at f = 5 kHz (a), and f = 40 kHz, respectively.
Fig. 6
Fig. 6 Output spectra of the SS-VCSEL driven at f = 5 kHz (dots) and f = 40 kHz (line), respectively.
Fig. 7
Fig. 7 Raw time-domain interferogram (a), the t-k conversion map (b), and the resampled k-domain interferogram (c), respectively, obtained with our SS-VCSEL driven at f = 5 kHz.
Fig. 8
Fig. 8 Raw time-domain interferogram (a), the t-k conversion map (b), and the resampled k-domain interferogram (c), respectively, obtained with our SS-VCSEL driven at f = 40 kHz.
Fig. 9
Fig. 9 Axial PSFs of the system for the cases of f = 5 kHz (a) and f = 40 kHz (b), respectively.
Fig. 10
Fig. 10 Peak power and the resolution of the PSF as functions of the axial position for the cases of f = 5 kHz (a) and f = 40 kHz (b), respectively.
Fig. 11
Fig. 11 Measured dynamic range of the system as a function of the axial position for the case of f = 5 kHz.
Fig. 12
Fig. 12 OCT images of a human fingertip (a) and a 150-μm thick glass plate (b), respectively, acquired in 0.4 second. The full depth of the vertical dimension was 5 mm in air.
Fig. 13
Fig. 13 Output power variation of the SS-VCSEL running at f = 5 kHz. Notice that no significant decay was observed within 230 hours of continuous operation.

Metrics