Abstract

The high-throughput 3D visualisation of biological specimens is essential for studying diseases and developmental disorders. It requires imaging methods that deliver high-contrast, high-resolution volumetric information at short sample preparation and acquisition times. Here we show that X-ray phase-contrast tomography using a single grating can provide a powerful alternative to commonly employed techniques, such as high-resolution episcopic microscopy (HREM). We present the phase tomography of a mouse embryo in paraffin obtained with an X-ray single-grating interferometer at I13-2 Beamline at Diamond Light Source and discuss the results in comparison with HREM measurements. The excellent contrast and quantitative density information achieved non-destructively and without staining using a simple, robust setup make X-ray single-grating interferometry an optimum candidate for high-throughput imaging of biological specimens as an alternative for existing methods like HREM.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Applicability, usability, and limitations of murine embryonic imaging with optical coherence tomography and optical projection tomography

Manmohan Singh, Raksha Raghunathan, Victor Piazza, Anjul M. Davis-Loiacono, Alex Cable, Tegy J. Vedakkan, Trevor Janecek, Michael V. Frazier, Achuth Nair, Chen Wu, Irina V. Larina, Mary E. Dickinson, and Kirill V. Larin
Biomed. Opt. Express 7(6) 2295-2310 (2016)

Comparison and combination of rotational imaging optical coherence tomography and selective plane illumination microscopy for embryonic study

Chen Wu, Henry Le, Shihao Ran, Manmohan Singh, Irina V. Larina, David Mayerich, Mary E. Dickinson, and Kirill V. Larin
Biomed. Opt. Express 8(10) 4629-4639 (2017)

High dynamic range optical projection tomography (HDR-OPT)

Peng Fei, Zhilong Yu, Xu Wang, Peter J. Lu, Yusi Fu, Zi He, Jingwei Xiong, and Yanyi Huang
Opt. Express 20(8) 8824-8836 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. Baldock, J. Bard, D. R. Davidson, and G. Morriss-Kay, eds., Kaufman’s Atlas of Mouse Development Supplement (Academic, 2016).
  2. E. Graham, J. Moss, N. Burton, C. Armit, L. Richardson, and R. Baldock, “The atlas of mouse development eHistology resource,” Development 142, 1909–1911 (2015).
    [Crossref] [PubMed]
  3. B. D. Metscher, “MicroCT for developmental biology: A versatile tool for high-contrast 3D imaging at histological resolutions,” Dev. Dynam. 238, 632–640 (2009).
    [Crossref]
  4. M. D. Wong, A. E. Dorr, J. R. Walls, J. P. Lerch, and R. M. Henkelman, “A novel 3D mouse embryo atlas based on micro-CT,” Development 139, 3248–3256 (2012).
    [Crossref] [PubMed]
  5. J. E. Schneider and S. Bhattacharya, “Making the mouse embryo transparent: Identifying developmental malformations using magnetic resonance imaging,” Birth Defects Res. C Embryo Today 72, 241–249 (2004).
    [Crossref] [PubMed]
  6. M. Zamyadi, L. Baghdadi, J. P. Lerch, S. Bhattacharya, J. E. Schneider, R. M. Henkelman, and J. G. Sled, “Mouse embryonic phenotyping by morphometric analysis of MR images,” Physiol. Genomics 42A, 89–95 (2010).
    [Crossref] [PubMed]
  7. J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202, 175–181 (2003).
    [Crossref] [PubMed]
  8. G. A. Anderson, M. D. Wong, J. Yang, and R. M. Henkelman, “3D imaging, registration, and analysis of the early mouse embryonic vasculature,” Dev. Dynam. 242, 527–538 (2013).
    [Crossref]
  9. T. Tschernig, L. Thrane, T. Jørgensen, J. Thommes, R. Pabst, and T. M. Yelbuz, “An elegant technique for ex vivo imaging in experimental research - Optical coherence tomography (OCT),” Ann. Anat. 195, 25–27 (2013).
    [Crossref]
  10. W. J. Weninger, S. H. Geyer, T. J. Mohun, D. Rasskin-Gutman, T. Matsui, I. Ribeiro, L. da F. Costa, J. C. Izpisúa-Belmonte, and G. B. Müller, “High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology,” Anat. Embryol. (Berl) 211, 213–221 (2006).
    [Crossref]
  11. L. Dunlevy, M. Bennett, A. Slender, E. Lana-Elola, V. L. Tybulewicz, E. M. Fisher, and T. Mohun, “Down’s syndrome-like cardiac developmental defects in embryos of the transchromosomic Tc1 mouse,” Cardiovasc. Res. 88, 287–295 (2010).
    [Crossref] [PubMed]
  12. T. J. Mohun and W. J. Weninger, “Imaging heart development using high-resolution episcopic microscopy,” Curr. Opin. Genet. Dev. 21, 573–578 (2011).
    [Crossref] [PubMed]
  13. S. H. Geyer, B. Maurer, L. Pötz, J. Singh, and W. J. Weninger, “High-Resolution Episcopic Microscopy Data-Based Measurements of the Arteries of Mouse Embryos: Evaluation of Significance and Reproducibility under Routine Conditions,” Cells Tissues Organs 195, 524–534 (2012).
    [Crossref]
  14. R. Fitzgerald, “Phase-Sensitive X-Ray Imaging,” Phys. Today 7, 23–26 (2000).
    [Crossref]
  15. A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
    [Crossref] [PubMed]
  16. D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University, 1999).
    [Crossref]
  17. C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81, 3287–3290 (2002).
    [Crossref]
  18. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-Ray Talbot Interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003).
    [Crossref]
  19. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005).
    [Crossref] [PubMed]
  20. A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase Tomography by X-ray Talbot Interferometry for Biological Imaging,” Jpn. J. Appl. Phys. 45, 5254 (2006).
    [Crossref]
  21. F. Pfeiffer, O. Bunk, C. David, M. Bech, G. L. Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52, 6923 (2007).
    [Crossref] [PubMed]
  22. P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107, 13576–13581 (2010).
    [Crossref] [PubMed]
  23. M. Hoshino, K. Uesugi, and N. Yagi, “Phase-contrast X-ray microtomography of mouse fetus,” Biol. Open 1, 269–274 (2012).
    [Crossref] [PubMed]
  24. G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
    [Crossref] [PubMed]
  25. K. Scherer, K. Willer, L. Gromann, L. Birnbacher, E. Braig, S. Grandl, A. Sztrókay-Gaul, J. Herzen, D. Mayr, K. Hellerhoff, and F. Pfeiffer, “Toward Clinically Compatible Phase-Contrast Mammography,” PLoS ONE 10, 95 (2015).
    [Crossref]
  26. G. Schulz, C. Waschkies, F. Pfeiffer, I. Zanette, T. Weitkamp, C. David, and B. Müller, “Multimodal imaging of human cerebellum – merging X-ray phase microtomography, magnetic resonance microscopy and histology,” Sci. Rep. 2, 826 (2012).
    [Crossref]
  27. I. Zanette, T. Weitkamp, G. L. Duc, and F. Pfeiffer, “X-ray grating-based phase tomography for 3D histology,” RSC Adv. 3, 19816–19819 (2013).
    [Crossref]
  28. A. Tapfer, M. Bech, I. Zanette, P. Symvoulidis, S. Stangl, G. Multhoff, M. Molls, V. Ntziachristos, and F. Pfeiffer, “Three-dimensional imaging of whole mouse models: comparing nondestructive X-ray phase-contrast micro-CT with cryotome-based planar epi-illumination imaging,” J. Microsc. 253, 24–30 (2013).
    [Crossref] [PubMed]
  29. K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “Quantitative x-ray phase-contrast imaging using a single grating of comparable pitch to sample feature size,” Opt. Lett. 36, 55–57 (2011).
    [Crossref] [PubMed]
  30. J. Rizzi, P. Mercère, M. Idir, P. D. Silva, G. Vincent, and J. Primot, “X-ray phase contrast imaging and noise evaluation using a single phase grating interferometer,” Opt. Express 21, 17340–17351 (2013).
    [Crossref] [PubMed]
  31. A. Balles, C. Fella, J. Dittmann, W. Wiest, S. Zabler, and R. Hanke, “X-ray grating interferometry for 9.25 keV design energy at a liquid-metal-jet source,” AIP Conference Proceedings1696 (2016).
    [Crossref]
  32. A. Hipp, J. Herzen, J. U. Hammel, P. Lytaev, A. Schreyer, and F. Beckmann, “Single-grating interferometer for high-resolution phase-contrast imaging at synchrotron radiation sources,” Proc. SPIE 9967, 996718 (2016).
    [Crossref]
  33. T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
    [Crossref]
  34. C. Rau, U. Wagner, Z. Pesic, and A. D. Fanis, “Coherent imaging at the Diamond beamline I13,” Phys. Status Solidi A 208, 2522–2525 (2011).
    [Crossref]
  35. E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P. J. Jakobs, “Soft X-ray lithography of high aspect ratio SU8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
    [Crossref]
  36. G. Merlo, F. Altruda, and V. Poli, Mice as Experimental Organisms (John Wiley & Sons, 2001).
  37. E. Bier and W. Mcginnis, Model Organisms in the Study of Development and Disease (Oxford University, 2016).
  38. T. Mohun, D. J. Adams, R. Baldock, S. Bhattacharya, A. J. Copp, M. Hemberger, C. Houart, M. E. Hurles, E. Robertson, J. C. Smith, T. Weaver, and W. Weninger, “Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice,” Dis. Model. Mech. 6, 562–566 (2013).
    [Crossref] [PubMed]
  39. R. Wilson, C. McGuire, T. Mohun, and the DMDD project, “Deciphering the mechanisms of developmental disorders: phenotype analysis of embryos from mutant mouse lines,” Nucleic Acids Res. 44, D855–D861 (2016).
    [Crossref]
  40. Deciphering the Mechanisms of Developmental Disorders (2016). http://dmdd.org.uk/ .
  41. D. Nguyen and T. Xu, “The expanding role of mouse genetics for understanding human biology and disease,” Dis. Model. Mech. 1, 56–66 (2008).
    [Crossref] [PubMed]
  42. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
    [Crossref] [PubMed]
  43. F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard X-Ray Phase Tomography with Low-Brilliance Sources,” Phys. Rev. Lett. 98, 108105 (2007).
    [Crossref] [PubMed]
  44. A. Guinier, X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies (Dover Publications, 1994).
  45. A. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001).
    [Crossref]
  46. P. Cloetens, J. P. Guigay, C. De Martino, J. Baruchel, and M. Schlenker, “Fractional Talbot imaging of phase gratings with hard x rays,” Opt. Lett. 22, 1059–1061 (1997).
    [Crossref] [PubMed]
  47. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50–30,000 eV, Z = 1–92,” Atomic Data and Nuclear Data Tables 54, 181–342 (1993).
    [Crossref]
  48. I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-Dimensional X-Ray Grating Interferometer,” Phys. Rev. Lett. 105, 248102 (2010).
    [Crossref]
  49. I. Zanette, M. Bech, A. Rack, G. Le Duc, P. Tafforeau, C. David, J. Mohr, F. Pfeiffer, and T. Weitkamp, “Trimodal low-dose X-ray tomography,” Proc. Natl. Acad. Sci. U.S.A. 109, 10199–10204 (2012).
    [Crossref] [PubMed]

2016 (2)

A. Hipp, J. Herzen, J. U. Hammel, P. Lytaev, A. Schreyer, and F. Beckmann, “Single-grating interferometer for high-resolution phase-contrast imaging at synchrotron radiation sources,” Proc. SPIE 9967, 996718 (2016).
[Crossref]

R. Wilson, C. McGuire, T. Mohun, and the DMDD project, “Deciphering the mechanisms of developmental disorders: phenotype analysis of embryos from mutant mouse lines,” Nucleic Acids Res. 44, D855–D861 (2016).
[Crossref]

2015 (2)

K. Scherer, K. Willer, L. Gromann, L. Birnbacher, E. Braig, S. Grandl, A. Sztrókay-Gaul, J. Herzen, D. Mayr, K. Hellerhoff, and F. Pfeiffer, “Toward Clinically Compatible Phase-Contrast Mammography,” PLoS ONE 10, 95 (2015).
[Crossref]

E. Graham, J. Moss, N. Burton, C. Armit, L. Richardson, and R. Baldock, “The atlas of mouse development eHistology resource,” Development 142, 1909–1911 (2015).
[Crossref] [PubMed]

2013 (6)

G. A. Anderson, M. D. Wong, J. Yang, and R. M. Henkelman, “3D imaging, registration, and analysis of the early mouse embryonic vasculature,” Dev. Dynam. 242, 527–538 (2013).
[Crossref]

T. Tschernig, L. Thrane, T. Jørgensen, J. Thommes, R. Pabst, and T. M. Yelbuz, “An elegant technique for ex vivo imaging in experimental research - Optical coherence tomography (OCT),” Ann. Anat. 195, 25–27 (2013).
[Crossref]

I. Zanette, T. Weitkamp, G. L. Duc, and F. Pfeiffer, “X-ray grating-based phase tomography for 3D histology,” RSC Adv. 3, 19816–19819 (2013).
[Crossref]

A. Tapfer, M. Bech, I. Zanette, P. Symvoulidis, S. Stangl, G. Multhoff, M. Molls, V. Ntziachristos, and F. Pfeiffer, “Three-dimensional imaging of whole mouse models: comparing nondestructive X-ray phase-contrast micro-CT with cryotome-based planar epi-illumination imaging,” J. Microsc. 253, 24–30 (2013).
[Crossref] [PubMed]

J. Rizzi, P. Mercère, M. Idir, P. D. Silva, G. Vincent, and J. Primot, “X-ray phase contrast imaging and noise evaluation using a single phase grating interferometer,” Opt. Express 21, 17340–17351 (2013).
[Crossref] [PubMed]

T. Mohun, D. J. Adams, R. Baldock, S. Bhattacharya, A. J. Copp, M. Hemberger, C. Houart, M. E. Hurles, E. Robertson, J. C. Smith, T. Weaver, and W. Weninger, “Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice,” Dis. Model. Mech. 6, 562–566 (2013).
[Crossref] [PubMed]

2012 (5)

I. Zanette, M. Bech, A. Rack, G. Le Duc, P. Tafforeau, C. David, J. Mohr, F. Pfeiffer, and T. Weitkamp, “Trimodal low-dose X-ray tomography,” Proc. Natl. Acad. Sci. U.S.A. 109, 10199–10204 (2012).
[Crossref] [PubMed]

G. Schulz, C. Waschkies, F. Pfeiffer, I. Zanette, T. Weitkamp, C. David, and B. Müller, “Multimodal imaging of human cerebellum – merging X-ray phase microtomography, magnetic resonance microscopy and histology,” Sci. Rep. 2, 826 (2012).
[Crossref]

M. Hoshino, K. Uesugi, and N. Yagi, “Phase-contrast X-ray microtomography of mouse fetus,” Biol. Open 1, 269–274 (2012).
[Crossref] [PubMed]

M. D. Wong, A. E. Dorr, J. R. Walls, J. P. Lerch, and R. M. Henkelman, “A novel 3D mouse embryo atlas based on micro-CT,” Development 139, 3248–3256 (2012).
[Crossref] [PubMed]

S. H. Geyer, B. Maurer, L. Pötz, J. Singh, and W. J. Weninger, “High-Resolution Episcopic Microscopy Data-Based Measurements of the Arteries of Mouse Embryos: Evaluation of Significance and Reproducibility under Routine Conditions,” Cells Tissues Organs 195, 524–534 (2012).
[Crossref]

2011 (3)

T. J. Mohun and W. J. Weninger, “Imaging heart development using high-resolution episcopic microscopy,” Curr. Opin. Genet. Dev. 21, 573–578 (2011).
[Crossref] [PubMed]

K. S. Morgan, D. M. Paganin, and K. K. W. Siu, “Quantitative x-ray phase-contrast imaging using a single grating of comparable pitch to sample feature size,” Opt. Lett. 36, 55–57 (2011).
[Crossref] [PubMed]

C. Rau, U. Wagner, Z. Pesic, and A. D. Fanis, “Coherent imaging at the Diamond beamline I13,” Phys. Status Solidi A 208, 2522–2525 (2011).
[Crossref]

2010 (5)

G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
[Crossref] [PubMed]

P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107, 13576–13581 (2010).
[Crossref] [PubMed]

L. Dunlevy, M. Bennett, A. Slender, E. Lana-Elola, V. L. Tybulewicz, E. M. Fisher, and T. Mohun, “Down’s syndrome-like cardiac developmental defects in embryos of the transchromosomic Tc1 mouse,” Cardiovasc. Res. 88, 287–295 (2010).
[Crossref] [PubMed]

M. Zamyadi, L. Baghdadi, J. P. Lerch, S. Bhattacharya, J. E. Schneider, R. M. Henkelman, and J. G. Sled, “Mouse embryonic phenotyping by morphometric analysis of MR images,” Physiol. Genomics 42A, 89–95 (2010).
[Crossref] [PubMed]

I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-Dimensional X-Ray Grating Interferometer,” Phys. Rev. Lett. 105, 248102 (2010).
[Crossref]

2009 (2)

B. D. Metscher, “MicroCT for developmental biology: A versatile tool for high-contrast 3D imaging at histological resolutions,” Dev. Dynam. 238, 632–640 (2009).
[Crossref]

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

2008 (3)

E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P. J. Jakobs, “Soft X-ray lithography of high aspect ratio SU8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
[Crossref]

D. Nguyen and T. Xu, “The expanding role of mouse genetics for understanding human biology and disease,” Dis. Model. Mech. 1, 56–66 (2008).
[Crossref] [PubMed]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[Crossref] [PubMed]

2007 (2)

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard X-Ray Phase Tomography with Low-Brilliance Sources,” Phys. Rev. Lett. 98, 108105 (2007).
[Crossref] [PubMed]

F. Pfeiffer, O. Bunk, C. David, M. Bech, G. L. Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52, 6923 (2007).
[Crossref] [PubMed]

2006 (2)

W. J. Weninger, S. H. Geyer, T. J. Mohun, D. Rasskin-Gutman, T. Matsui, I. Ribeiro, L. da F. Costa, J. C. Izpisúa-Belmonte, and G. B. Müller, “High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology,” Anat. Embryol. (Berl) 211, 213–221 (2006).
[Crossref]

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase Tomography by X-ray Talbot Interferometry for Biological Imaging,” Jpn. J. Appl. Phys. 45, 5254 (2006).
[Crossref]

2005 (1)

2004 (1)

J. E. Schneider and S. Bhattacharya, “Making the mouse embryo transparent: Identifying developmental malformations using magnetic resonance imaging,” Birth Defects Res. C Embryo Today 72, 241–249 (2004).
[Crossref] [PubMed]

2003 (2)

J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202, 175–181 (2003).
[Crossref] [PubMed]

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-Ray Talbot Interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003).
[Crossref]

2002 (1)

C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81, 3287–3290 (2002).
[Crossref]

2000 (1)

R. Fitzgerald, “Phase-Sensitive X-Ray Imaging,” Phys. Today 7, 23–26 (2000).
[Crossref]

1997 (1)

1996 (1)

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[Crossref] [PubMed]

1993 (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50–30,000 eV, Z = 1–92,” Atomic Data and Nuclear Data Tables 54, 181–342 (1993).
[Crossref]

Adams, D. J.

T. Mohun, D. J. Adams, R. Baldock, S. Bhattacharya, A. J. Copp, M. Hemberger, C. Houart, M. E. Hurles, E. Robertson, J. C. Smith, T. Weaver, and W. Weninger, “Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice,” Dis. Model. Mech. 6, 562–566 (2013).
[Crossref] [PubMed]

Altruda, F.

G. Merlo, F. Altruda, and V. Poli, Mice as Experimental Organisms (John Wiley & Sons, 2001).

Anderson, G. A.

G. A. Anderson, M. D. Wong, J. Yang, and R. M. Henkelman, “3D imaging, registration, and analysis of the early mouse embryonic vasculature,” Dev. Dynam. 242, 527–538 (2013).
[Crossref]

Armit, C.

E. Graham, J. Moss, N. Burton, C. Armit, L. Richardson, and R. Baldock, “The atlas of mouse development eHistology resource,” Development 142, 1909–1911 (2015).
[Crossref] [PubMed]

Attwood, D.

D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University, 1999).
[Crossref]

Baghdadi, L.

M. Zamyadi, L. Baghdadi, J. P. Lerch, S. Bhattacharya, J. E. Schneider, R. M. Henkelman, and J. G. Sled, “Mouse embryonic phenotyping by morphometric analysis of MR images,” Physiol. Genomics 42A, 89–95 (2010).
[Crossref] [PubMed]

Baldock, R.

E. Graham, J. Moss, N. Burton, C. Armit, L. Richardson, and R. Baldock, “The atlas of mouse development eHistology resource,” Development 142, 1909–1911 (2015).
[Crossref] [PubMed]

T. Mohun, D. J. Adams, R. Baldock, S. Bhattacharya, A. J. Copp, M. Hemberger, C. Houart, M. E. Hurles, E. Robertson, J. C. Smith, T. Weaver, and W. Weninger, “Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice,” Dis. Model. Mech. 6, 562–566 (2013).
[Crossref] [PubMed]

Balles, A.

A. Balles, C. Fella, J. Dittmann, W. Wiest, S. Zabler, and R. Hanke, “X-ray grating interferometry for 9.25 keV design energy at a liquid-metal-jet source,” AIP Conference Proceedings1696 (2016).
[Crossref]

Baruchel, J.

Baumann, J.

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

Bech, M.

A. Tapfer, M. Bech, I. Zanette, P. Symvoulidis, S. Stangl, G. Multhoff, M. Molls, V. Ntziachristos, and F. Pfeiffer, “Three-dimensional imaging of whole mouse models: comparing nondestructive X-ray phase-contrast micro-CT with cryotome-based planar epi-illumination imaging,” J. Microsc. 253, 24–30 (2013).
[Crossref] [PubMed]

I. Zanette, M. Bech, A. Rack, G. Le Duc, P. Tafforeau, C. David, J. Mohr, F. Pfeiffer, and T. Weitkamp, “Trimodal low-dose X-ray tomography,” Proc. Natl. Acad. Sci. U.S.A. 109, 10199–10204 (2012).
[Crossref] [PubMed]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[Crossref] [PubMed]

F. Pfeiffer, O. Bunk, C. David, M. Bech, G. L. Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52, 6923 (2007).
[Crossref] [PubMed]

Beckmann, F.

A. Hipp, J. Herzen, J. U. Hammel, P. Lytaev, A. Schreyer, and F. Beckmann, “Single-grating interferometer for high-resolution phase-contrast imaging at synchrotron radiation sources,” Proc. SPIE 9967, 996718 (2016).
[Crossref]

G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
[Crossref] [PubMed]

Bennett, M.

L. Dunlevy, M. Bennett, A. Slender, E. Lana-Elola, V. L. Tybulewicz, E. M. Fisher, and T. Mohun, “Down’s syndrome-like cardiac developmental defects in embryos of the transchromosomic Tc1 mouse,” Cardiovasc. Res. 88, 287–295 (2010).
[Crossref] [PubMed]

Bhattacharya, S.

T. Mohun, D. J. Adams, R. Baldock, S. Bhattacharya, A. J. Copp, M. Hemberger, C. Houart, M. E. Hurles, E. Robertson, J. C. Smith, T. Weaver, and W. Weninger, “Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice,” Dis. Model. Mech. 6, 562–566 (2013).
[Crossref] [PubMed]

M. Zamyadi, L. Baghdadi, J. P. Lerch, S. Bhattacharya, J. E. Schneider, R. M. Henkelman, and J. G. Sled, “Mouse embryonic phenotyping by morphometric analysis of MR images,” Physiol. Genomics 42A, 89–95 (2010).
[Crossref] [PubMed]

J. E. Schneider and S. Bhattacharya, “Making the mouse embryo transparent: Identifying developmental malformations using magnetic resonance imaging,” Birth Defects Res. C Embryo Today 72, 241–249 (2004).
[Crossref] [PubMed]

Bier, E.

E. Bier and W. Mcginnis, Model Organisms in the Study of Development and Disease (Oxford University, 2016).

Birnbacher, L.

K. Scherer, K. Willer, L. Gromann, L. Birnbacher, E. Braig, S. Grandl, A. Sztrókay-Gaul, J. Herzen, D. Mayr, K. Hellerhoff, and F. Pfeiffer, “Toward Clinically Compatible Phase-Contrast Mammography,” PLoS ONE 10, 95 (2015).
[Crossref]

Boerner, M.

E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P. J. Jakobs, “Soft X-ray lithography of high aspect ratio SU8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
[Crossref]

Braig, E.

K. Scherer, K. Willer, L. Gromann, L. Birnbacher, E. Braig, S. Grandl, A. Sztrókay-Gaul, J. Herzen, D. Mayr, K. Hellerhoff, and F. Pfeiffer, “Toward Clinically Compatible Phase-Contrast Mammography,” PLoS ONE 10, 95 (2015).
[Crossref]

Bravin, A.

F. Pfeiffer, O. Bunk, C. David, M. Bech, G. L. Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52, 6923 (2007).
[Crossref] [PubMed]

Brönnimann, C.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[Crossref] [PubMed]

Bunk, O.

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[Crossref] [PubMed]

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard X-Ray Phase Tomography with Low-Brilliance Sources,” Phys. Rev. Lett. 98, 108105 (2007).
[Crossref] [PubMed]

F. Pfeiffer, O. Bunk, C. David, M. Bech, G. L. Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52, 6923 (2007).
[Crossref] [PubMed]

Burton, N.

E. Graham, J. Moss, N. Burton, C. Armit, L. Richardson, and R. Baldock, “The atlas of mouse development eHistology resource,” Development 142, 1909–1911 (2015).
[Crossref] [PubMed]

Chabior, M.

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

Cloetens, P.

Copp, A. J.

T. Mohun, D. J. Adams, R. Baldock, S. Bhattacharya, A. J. Copp, M. Hemberger, C. Houart, M. E. Hurles, E. Robertson, J. C. Smith, T. Weaver, and W. Weninger, “Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice,” Dis. Model. Mech. 6, 562–566 (2013).
[Crossref] [PubMed]

Costa, L. da F.

W. J. Weninger, S. H. Geyer, T. J. Mohun, D. Rasskin-Gutman, T. Matsui, I. Ribeiro, L. da F. Costa, J. C. Izpisúa-Belmonte, and G. B. Müller, “High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology,” Anat. Embryol. (Berl) 211, 213–221 (2006).
[Crossref]

David, C.

G. Schulz, C. Waschkies, F. Pfeiffer, I. Zanette, T. Weitkamp, C. David, and B. Müller, “Multimodal imaging of human cerebellum – merging X-ray phase microtomography, magnetic resonance microscopy and histology,” Sci. Rep. 2, 826 (2012).
[Crossref]

I. Zanette, M. Bech, A. Rack, G. Le Duc, P. Tafforeau, C. David, J. Mohr, F. Pfeiffer, and T. Weitkamp, “Trimodal low-dose X-ray tomography,” Proc. Natl. Acad. Sci. U.S.A. 109, 10199–10204 (2012).
[Crossref] [PubMed]

I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-Dimensional X-Ray Grating Interferometer,” Phys. Rev. Lett. 105, 248102 (2010).
[Crossref]

G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
[Crossref] [PubMed]

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[Crossref] [PubMed]

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard X-Ray Phase Tomography with Low-Brilliance Sources,” Phys. Rev. Lett. 98, 108105 (2007).
[Crossref] [PubMed]

F. Pfeiffer, O. Bunk, C. David, M. Bech, G. L. Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52, 6923 (2007).
[Crossref] [PubMed]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005).
[Crossref] [PubMed]

C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81, 3287–3290 (2002).
[Crossref]

Davis, J. C.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50–30,000 eV, Z = 1–92,” Atomic Data and Nuclear Data Tables 54, 181–342 (1993).
[Crossref]

De Martino, C.

Diaz, A.

Dittmann, J.

A. Balles, C. Fella, J. Dittmann, W. Wiest, S. Zabler, and R. Hanke, “X-ray grating interferometry for 9.25 keV design energy at a liquid-metal-jet source,” AIP Conference Proceedings1696 (2016).
[Crossref]

Donath, T.

I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-Dimensional X-Ray Grating Interferometer,” Phys. Rev. Lett. 105, 248102 (2010).
[Crossref]

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

Dorr, A. E.

M. D. Wong, A. E. Dorr, J. R. Walls, J. P. Lerch, and R. M. Henkelman, “A novel 3D mouse embryo atlas based on micro-CT,” Development 139, 3248–3256 (2012).
[Crossref] [PubMed]

Duc, G. L.

I. Zanette, T. Weitkamp, G. L. Duc, and F. Pfeiffer, “X-ray grating-based phase tomography for 3D histology,” RSC Adv. 3, 19816–19819 (2013).
[Crossref]

F. Pfeiffer, O. Bunk, C. David, M. Bech, G. L. Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52, 6923 (2007).
[Crossref] [PubMed]

Dunlevy, L.

L. Dunlevy, M. Bennett, A. Slender, E. Lana-Elola, V. L. Tybulewicz, E. M. Fisher, and T. Mohun, “Down’s syndrome-like cardiac developmental defects in embryos of the transchromosomic Tc1 mouse,” Cardiovasc. Res. 88, 287–295 (2010).
[Crossref] [PubMed]

Eikenberry, E. F.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[Crossref] [PubMed]

Fanis, A. D.

C. Rau, U. Wagner, Z. Pesic, and A. D. Fanis, “Coherent imaging at the Diamond beamline I13,” Phys. Status Solidi A 208, 2522–2525 (2011).
[Crossref]

Fella, C.

A. Balles, C. Fella, J. Dittmann, W. Wiest, S. Zabler, and R. Hanke, “X-ray grating interferometry for 9.25 keV design energy at a liquid-metal-jet source,” AIP Conference Proceedings1696 (2016).
[Crossref]

Fisher, E. M.

L. Dunlevy, M. Bennett, A. Slender, E. Lana-Elola, V. L. Tybulewicz, E. M. Fisher, and T. Mohun, “Down’s syndrome-like cardiac developmental defects in embryos of the transchromosomic Tc1 mouse,” Cardiovasc. Res. 88, 287–295 (2010).
[Crossref] [PubMed]

Fitzgerald, R.

R. Fitzgerald, “Phase-Sensitive X-Ray Imaging,” Phys. Today 7, 23–26 (2000).
[Crossref]

Geyer, S. H.

S. H. Geyer, B. Maurer, L. Pötz, J. Singh, and W. J. Weninger, “High-Resolution Episcopic Microscopy Data-Based Measurements of the Arteries of Mouse Embryos: Evaluation of Significance and Reproducibility under Routine Conditions,” Cells Tissues Organs 195, 524–534 (2012).
[Crossref]

W. J. Weninger, S. H. Geyer, T. J. Mohun, D. Rasskin-Gutman, T. Matsui, I. Ribeiro, L. da F. Costa, J. C. Izpisúa-Belmonte, and G. B. Müller, “High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology,” Anat. Embryol. (Berl) 211, 213–221 (2006).
[Crossref]

Graham, E.

E. Graham, J. Moss, N. Burton, C. Armit, L. Richardson, and R. Baldock, “The atlas of mouse development eHistology resource,” Development 142, 1909–1911 (2015).
[Crossref] [PubMed]

Grandl, S.

K. Scherer, K. Willer, L. Gromann, L. Birnbacher, E. Braig, S. Grandl, A. Sztrókay-Gaul, J. Herzen, D. Mayr, K. Hellerhoff, and F. Pfeiffer, “Toward Clinically Compatible Phase-Contrast Mammography,” PLoS ONE 10, 95 (2015).
[Crossref]

Gromann, L.

K. Scherer, K. Willer, L. Gromann, L. Birnbacher, E. Braig, S. Grandl, A. Sztrókay-Gaul, J. Herzen, D. Mayr, K. Hellerhoff, and F. Pfeiffer, “Toward Clinically Compatible Phase-Contrast Mammography,” PLoS ONE 10, 95 (2015).
[Crossref]

Grünzweig, C.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[Crossref] [PubMed]

Guigay, J. P.

Guinier, A.

A. Guinier, X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies (Dover Publications, 1994).

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50–30,000 eV, Z = 1–92,” Atomic Data and Nuclear Data Tables 54, 181–342 (1993).
[Crossref]

Hamaishi, Y.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-Ray Talbot Interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003).
[Crossref]

Hammel, J. U.

A. Hipp, J. Herzen, J. U. Hammel, P. Lytaev, A. Schreyer, and F. Beckmann, “Single-grating interferometer for high-resolution phase-contrast imaging at synchrotron radiation sources,” Proc. SPIE 9967, 996718 (2016).
[Crossref]

Hanke, R.

A. Balles, C. Fella, J. Dittmann, W. Wiest, S. Zabler, and R. Hanke, “X-ray grating interferometry for 9.25 keV design energy at a liquid-metal-jet source,” AIP Conference Proceedings1696 (2016).
[Crossref]

Hattori, T.

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase Tomography by X-ray Talbot Interferometry for Biological Imaging,” Jpn. J. Appl. Phys. 45, 5254 (2006).
[Crossref]

Hellerhoff, K.

K. Scherer, K. Willer, L. Gromann, L. Birnbacher, E. Braig, S. Grandl, A. Sztrókay-Gaul, J. Herzen, D. Mayr, K. Hellerhoff, and F. Pfeiffer, “Toward Clinically Compatible Phase-Contrast Mammography,” PLoS ONE 10, 95 (2015).
[Crossref]

Hemberger, M.

T. Mohun, D. J. Adams, R. Baldock, S. Bhattacharya, A. J. Copp, M. Hemberger, C. Houart, M. E. Hurles, E. Robertson, J. C. Smith, T. Weaver, and W. Weninger, “Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice,” Dis. Model. Mech. 6, 562–566 (2013).
[Crossref] [PubMed]

Hempel, E.

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

Henke, B. L.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50–30,000 eV, Z = 1–92,” Atomic Data and Nuclear Data Tables 54, 181–342 (1993).
[Crossref]

Henkelman, R. M.

G. A. Anderson, M. D. Wong, J. Yang, and R. M. Henkelman, “3D imaging, registration, and analysis of the early mouse embryonic vasculature,” Dev. Dynam. 242, 527–538 (2013).
[Crossref]

M. D. Wong, A. E. Dorr, J. R. Walls, J. P. Lerch, and R. M. Henkelman, “A novel 3D mouse embryo atlas based on micro-CT,” Development 139, 3248–3256 (2012).
[Crossref] [PubMed]

M. Zamyadi, L. Baghdadi, J. P. Lerch, S. Bhattacharya, J. E. Schneider, R. M. Henkelman, and J. G. Sled, “Mouse embryonic phenotyping by morphometric analysis of MR images,” Physiol. Genomics 42A, 89–95 (2010).
[Crossref] [PubMed]

Herzen, J.

A. Hipp, J. Herzen, J. U. Hammel, P. Lytaev, A. Schreyer, and F. Beckmann, “Single-grating interferometer for high-resolution phase-contrast imaging at synchrotron radiation sources,” Proc. SPIE 9967, 996718 (2016).
[Crossref]

K. Scherer, K. Willer, L. Gromann, L. Birnbacher, E. Braig, S. Grandl, A. Sztrókay-Gaul, J. Herzen, D. Mayr, K. Hellerhoff, and F. Pfeiffer, “Toward Clinically Compatible Phase-Contrast Mammography,” PLoS ONE 10, 95 (2015).
[Crossref]

Hipp, A.

A. Hipp, J. Herzen, J. U. Hammel, P. Lytaev, A. Schreyer, and F. Beckmann, “Single-grating interferometer for high-resolution phase-contrast imaging at synchrotron radiation sources,” Proc. SPIE 9967, 996718 (2016).
[Crossref]

Hirano, K.

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[Crossref] [PubMed]

Hoheisel, M.

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

Hoshino, M.

M. Hoshino, K. Uesugi, and N. Yagi, “Phase-contrast X-ray microtomography of mouse fetus,” Biol. Open 1, 269–274 (2012).
[Crossref] [PubMed]

Houart, C.

T. Mohun, D. J. Adams, R. Baldock, S. Bhattacharya, A. J. Copp, M. Hemberger, C. Houart, M. E. Hurles, E. Robertson, J. C. Smith, T. Weaver, and W. Weninger, “Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice,” Dis. Model. Mech. 6, 562–566 (2013).
[Crossref] [PubMed]

Hurles, M. E.

T. Mohun, D. J. Adams, R. Baldock, S. Bhattacharya, A. J. Copp, M. Hemberger, C. Houart, M. E. Hurles, E. Robertson, J. C. Smith, T. Weaver, and W. Weninger, “Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice,” Dis. Model. Mech. 6, 562–566 (2013).
[Crossref] [PubMed]

Idir, M.

Itai, Y.

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[Crossref] [PubMed]

Izpisúa-Belmonte, J. C.

W. J. Weninger, S. H. Geyer, T. J. Mohun, D. Rasskin-Gutman, T. Matsui, I. Ribeiro, L. da F. Costa, J. C. Izpisúa-Belmonte, and G. B. Müller, “High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology,” Anat. Embryol. (Berl) 211, 213–221 (2006).
[Crossref]

Jakobs, P. J.

E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P. J. Jakobs, “Soft X-ray lithography of high aspect ratio SU8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
[Crossref]

Jørgensen, T.

T. Tschernig, L. Thrane, T. Jørgensen, J. Thommes, R. Pabst, and T. M. Yelbuz, “An elegant technique for ex vivo imaging in experimental research - Optical coherence tomography (OCT),” Ann. Anat. 195, 25–27 (2013).
[Crossref]

Kak, A.

A. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001).
[Crossref]

Kawamoto, S.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-Ray Talbot Interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003).
[Crossref]

Kottler, C.

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard X-Ray Phase Tomography with Low-Brilliance Sources,” Phys. Rev. Lett. 98, 108105 (2007).
[Crossref] [PubMed]

Koyama, I.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-Ray Talbot Interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003).
[Crossref]

Kraft, P.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[Crossref] [PubMed]

Lana-Elola, E.

L. Dunlevy, M. Bennett, A. Slender, E. Lana-Elola, V. L. Tybulewicz, E. M. Fisher, and T. Mohun, “Down’s syndrome-like cardiac developmental defects in embryos of the transchromosomic Tc1 mouse,” Cardiovasc. Res. 88, 287–295 (2010).
[Crossref] [PubMed]

Le Duc, G.

I. Zanette, M. Bech, A. Rack, G. Le Duc, P. Tafforeau, C. David, J. Mohr, F. Pfeiffer, and T. Weitkamp, “Trimodal low-dose X-ray tomography,” Proc. Natl. Acad. Sci. U.S.A. 109, 10199–10204 (2012).
[Crossref] [PubMed]

Lerch, J. P.

M. D. Wong, A. E. Dorr, J. R. Walls, J. P. Lerch, and R. M. Henkelman, “A novel 3D mouse embryo atlas based on micro-CT,” Development 139, 3248–3256 (2012).
[Crossref] [PubMed]

M. Zamyadi, L. Baghdadi, J. P. Lerch, S. Bhattacharya, J. E. Schneider, R. M. Henkelman, and J. G. Sled, “Mouse embryonic phenotyping by morphometric analysis of MR images,” Physiol. Genomics 42A, 89–95 (2010).
[Crossref] [PubMed]

Liu, X.

P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107, 13576–13581 (2010).
[Crossref] [PubMed]

Liu, Y.

P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107, 13576–13581 (2010).
[Crossref] [PubMed]

Lytaev, P.

A. Hipp, J. Herzen, J. U. Hammel, P. Lytaev, A. Schreyer, and F. Beckmann, “Single-grating interferometer for high-resolution phase-contrast imaging at synchrotron radiation sources,” Proc. SPIE 9967, 996718 (2016).
[Crossref]

Marone, F.

P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107, 13576–13581 (2010).
[Crossref] [PubMed]

Matsui, T.

W. J. Weninger, S. H. Geyer, T. J. Mohun, D. Rasskin-Gutman, T. Matsui, I. Ribeiro, L. da F. Costa, J. C. Izpisúa-Belmonte, and G. B. Müller, “High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology,” Anat. Embryol. (Berl) 211, 213–221 (2006).
[Crossref]

Maurer, B.

S. H. Geyer, B. Maurer, L. Pötz, J. Singh, and W. J. Weninger, “High-Resolution Episcopic Microscopy Data-Based Measurements of the Arteries of Mouse Embryos: Evaluation of Significance and Reproducibility under Routine Conditions,” Cells Tissues Organs 195, 524–534 (2012).
[Crossref]

Mayr, D.

K. Scherer, K. Willer, L. Gromann, L. Birnbacher, E. Braig, S. Grandl, A. Sztrókay-Gaul, J. Herzen, D. Mayr, K. Hellerhoff, and F. Pfeiffer, “Toward Clinically Compatible Phase-Contrast Mammography,” PLoS ONE 10, 95 (2015).
[Crossref]

McDonald, S. A.

P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107, 13576–13581 (2010).
[Crossref] [PubMed]

Mcginnis, W.

E. Bier and W. Mcginnis, Model Organisms in the Study of Development and Disease (Oxford University, 2016).

McGuire, C.

R. Wilson, C. McGuire, T. Mohun, and the DMDD project, “Deciphering the mechanisms of developmental disorders: phenotype analysis of embryos from mutant mouse lines,” Nucleic Acids Res. 44, D855–D861 (2016).
[Crossref]

Mercère, P.

Merlo, G.

G. Merlo, F. Altruda, and V. Poli, Mice as Experimental Organisms (John Wiley & Sons, 2001).

Metscher, B. D.

B. D. Metscher, “MicroCT for developmental biology: A versatile tool for high-contrast 3D imaging at histological resolutions,” Dev. Dynam. 238, 632–640 (2009).
[Crossref]

Mohr, J.

I. Zanette, M. Bech, A. Rack, G. Le Duc, P. Tafforeau, C. David, J. Mohr, F. Pfeiffer, and T. Weitkamp, “Trimodal low-dose X-ray tomography,” Proc. Natl. Acad. Sci. U.S.A. 109, 10199–10204 (2012).
[Crossref] [PubMed]

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P. J. Jakobs, “Soft X-ray lithography of high aspect ratio SU8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
[Crossref]

Mohun, T.

R. Wilson, C. McGuire, T. Mohun, and the DMDD project, “Deciphering the mechanisms of developmental disorders: phenotype analysis of embryos from mutant mouse lines,” Nucleic Acids Res. 44, D855–D861 (2016).
[Crossref]

T. Mohun, D. J. Adams, R. Baldock, S. Bhattacharya, A. J. Copp, M. Hemberger, C. Houart, M. E. Hurles, E. Robertson, J. C. Smith, T. Weaver, and W. Weninger, “Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice,” Dis. Model. Mech. 6, 562–566 (2013).
[Crossref] [PubMed]

L. Dunlevy, M. Bennett, A. Slender, E. Lana-Elola, V. L. Tybulewicz, E. M. Fisher, and T. Mohun, “Down’s syndrome-like cardiac developmental defects in embryos of the transchromosomic Tc1 mouse,” Cardiovasc. Res. 88, 287–295 (2010).
[Crossref] [PubMed]

Mohun, T. J.

T. J. Mohun and W. J. Weninger, “Imaging heart development using high-resolution episcopic microscopy,” Curr. Opin. Genet. Dev. 21, 573–578 (2011).
[Crossref] [PubMed]

W. J. Weninger, S. H. Geyer, T. J. Mohun, D. Rasskin-Gutman, T. Matsui, I. Ribeiro, L. da F. Costa, J. C. Izpisúa-Belmonte, and G. B. Müller, “High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology,” Anat. Embryol. (Berl) 211, 213–221 (2006).
[Crossref]

Molls, M.

A. Tapfer, M. Bech, I. Zanette, P. Symvoulidis, S. Stangl, G. Multhoff, M. Molls, V. Ntziachristos, and F. Pfeiffer, “Three-dimensional imaging of whole mouse models: comparing nondestructive X-ray phase-contrast micro-CT with cryotome-based planar epi-illumination imaging,” J. Microsc. 253, 24–30 (2013).
[Crossref] [PubMed]

Momose, A.

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase Tomography by X-ray Talbot Interferometry for Biological Imaging,” Jpn. J. Appl. Phys. 45, 5254 (2006).
[Crossref]

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-Ray Talbot Interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003).
[Crossref]

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[Crossref] [PubMed]

Morgan, K. S.

Moss, J.

E. Graham, J. Moss, N. Burton, C. Armit, L. Richardson, and R. Baldock, “The atlas of mouse development eHistology resource,” Development 142, 1909–1911 (2015).
[Crossref] [PubMed]

Müller, B.

G. Schulz, C. Waschkies, F. Pfeiffer, I. Zanette, T. Weitkamp, C. David, and B. Müller, “Multimodal imaging of human cerebellum – merging X-ray phase microtomography, magnetic resonance microscopy and histology,” Sci. Rep. 2, 826 (2012).
[Crossref]

G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
[Crossref] [PubMed]

Müller, G. B.

W. J. Weninger, S. H. Geyer, T. J. Mohun, D. Rasskin-Gutman, T. Matsui, I. Ribeiro, L. da F. Costa, J. C. Izpisúa-Belmonte, and G. B. Müller, “High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology,” Anat. Embryol. (Berl) 211, 213–221 (2006).
[Crossref]

Multhoff, G.

A. Tapfer, M. Bech, I. Zanette, P. Symvoulidis, S. Stangl, G. Multhoff, M. Molls, V. Ntziachristos, and F. Pfeiffer, “Three-dimensional imaging of whole mouse models: comparing nondestructive X-ray phase-contrast micro-CT with cryotome-based planar epi-illumination imaging,” J. Microsc. 253, 24–30 (2013).
[Crossref] [PubMed]

Nazmov, V.

E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P. J. Jakobs, “Soft X-ray lithography of high aspect ratio SU8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
[Crossref]

Nguyen, D.

D. Nguyen and T. Xu, “The expanding role of mouse genetics for understanding human biology and disease,” Dis. Model. Mech. 1, 56–66 (2008).
[Crossref] [PubMed]

Nöhammer, B.

C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81, 3287–3290 (2002).
[Crossref]

Ntziachristos, V.

A. Tapfer, M. Bech, I. Zanette, P. Symvoulidis, S. Stangl, G. Multhoff, M. Molls, V. Ntziachristos, and F. Pfeiffer, “Three-dimensional imaging of whole mouse models: comparing nondestructive X-ray phase-contrast micro-CT with cryotome-based planar epi-illumination imaging,” J. Microsc. 253, 24–30 (2013).
[Crossref] [PubMed]

Pabst, R.

T. Tschernig, L. Thrane, T. Jørgensen, J. Thommes, R. Pabst, and T. M. Yelbuz, “An elegant technique for ex vivo imaging in experimental research - Optical coherence tomography (OCT),” Ann. Anat. 195, 25–27 (2013).
[Crossref]

Paganin, D. M.

Pesic, Z.

C. Rau, U. Wagner, Z. Pesic, and A. D. Fanis, “Coherent imaging at the Diamond beamline I13,” Phys. Status Solidi A 208, 2522–2525 (2011).
[Crossref]

Pfeiffer, F.

K. Scherer, K. Willer, L. Gromann, L. Birnbacher, E. Braig, S. Grandl, A. Sztrókay-Gaul, J. Herzen, D. Mayr, K. Hellerhoff, and F. Pfeiffer, “Toward Clinically Compatible Phase-Contrast Mammography,” PLoS ONE 10, 95 (2015).
[Crossref]

I. Zanette, T. Weitkamp, G. L. Duc, and F. Pfeiffer, “X-ray grating-based phase tomography for 3D histology,” RSC Adv. 3, 19816–19819 (2013).
[Crossref]

A. Tapfer, M. Bech, I. Zanette, P. Symvoulidis, S. Stangl, G. Multhoff, M. Molls, V. Ntziachristos, and F. Pfeiffer, “Three-dimensional imaging of whole mouse models: comparing nondestructive X-ray phase-contrast micro-CT with cryotome-based planar epi-illumination imaging,” J. Microsc. 253, 24–30 (2013).
[Crossref] [PubMed]

G. Schulz, C. Waschkies, F. Pfeiffer, I. Zanette, T. Weitkamp, C. David, and B. Müller, “Multimodal imaging of human cerebellum – merging X-ray phase microtomography, magnetic resonance microscopy and histology,” Sci. Rep. 2, 826 (2012).
[Crossref]

I. Zanette, M. Bech, A. Rack, G. Le Duc, P. Tafforeau, C. David, J. Mohr, F. Pfeiffer, and T. Weitkamp, “Trimodal low-dose X-ray tomography,” Proc. Natl. Acad. Sci. U.S.A. 109, 10199–10204 (2012).
[Crossref] [PubMed]

G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
[Crossref] [PubMed]

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[Crossref] [PubMed]

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard X-Ray Phase Tomography with Low-Brilliance Sources,” Phys. Rev. Lett. 98, 108105 (2007).
[Crossref] [PubMed]

F. Pfeiffer, O. Bunk, C. David, M. Bech, G. L. Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52, 6923 (2007).
[Crossref] [PubMed]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005).
[Crossref] [PubMed]

Poli, V.

G. Merlo, F. Altruda, and V. Poli, Mice as Experimental Organisms (John Wiley & Sons, 2001).

Popescu, S.

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

Pötz, L.

S. H. Geyer, B. Maurer, L. Pötz, J. Singh, and W. J. Weninger, “High-Resolution Episcopic Microscopy Data-Based Measurements of the Arteries of Mouse Embryos: Evaluation of Significance and Reproducibility under Routine Conditions,” Cells Tissues Organs 195, 524–534 (2012).
[Crossref]

Primot, J.

Rack, A.

I. Zanette, M. Bech, A. Rack, G. Le Duc, P. Tafforeau, C. David, J. Mohr, F. Pfeiffer, and T. Weitkamp, “Trimodal low-dose X-ray tomography,” Proc. Natl. Acad. Sci. U.S.A. 109, 10199–10204 (2012).
[Crossref] [PubMed]

Rasskin-Gutman, D.

W. J. Weninger, S. H. Geyer, T. J. Mohun, D. Rasskin-Gutman, T. Matsui, I. Ribeiro, L. da F. Costa, J. C. Izpisúa-Belmonte, and G. B. Müller, “High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology,” Anat. Embryol. (Berl) 211, 213–221 (2006).
[Crossref]

Rau, C.

C. Rau, U. Wagner, Z. Pesic, and A. D. Fanis, “Coherent imaging at the Diamond beamline I13,” Phys. Status Solidi A 208, 2522–2525 (2011).
[Crossref]

Reznikova, E.

G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
[Crossref] [PubMed]

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P. J. Jakobs, “Soft X-ray lithography of high aspect ratio SU8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
[Crossref]

Ribeiro, I.

W. J. Weninger, S. H. Geyer, T. J. Mohun, D. Rasskin-Gutman, T. Matsui, I. Ribeiro, L. da F. Costa, J. C. Izpisúa-Belmonte, and G. B. Müller, “High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology,” Anat. Embryol. (Berl) 211, 213–221 (2006).
[Crossref]

Richardson, L.

E. Graham, J. Moss, N. Burton, C. Armit, L. Richardson, and R. Baldock, “The atlas of mouse development eHistology resource,” Development 142, 1909–1911 (2015).
[Crossref] [PubMed]

Rizzi, J.

Robertson, E.

T. Mohun, D. J. Adams, R. Baldock, S. Bhattacharya, A. J. Copp, M. Hemberger, C. Houart, M. E. Hurles, E. Robertson, J. C. Smith, T. Weaver, and W. Weninger, “Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice,” Dis. Model. Mech. 6, 562–566 (2013).
[Crossref] [PubMed]

Rutishauser, S.

I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-Dimensional X-Ray Grating Interferometer,” Phys. Rev. Lett. 105, 248102 (2010).
[Crossref]

G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
[Crossref] [PubMed]

Scherer, K.

K. Scherer, K. Willer, L. Gromann, L. Birnbacher, E. Braig, S. Grandl, A. Sztrókay-Gaul, J. Herzen, D. Mayr, K. Hellerhoff, and F. Pfeiffer, “Toward Clinically Compatible Phase-Contrast Mammography,” PLoS ONE 10, 95 (2015).
[Crossref]

Schlenker, M.

Schneider, J. E.

M. Zamyadi, L. Baghdadi, J. P. Lerch, S. Bhattacharya, J. E. Schneider, R. M. Henkelman, and J. G. Sled, “Mouse embryonic phenotyping by morphometric analysis of MR images,” Physiol. Genomics 42A, 89–95 (2010).
[Crossref] [PubMed]

J. E. Schneider and S. Bhattacharya, “Making the mouse embryo transparent: Identifying developmental malformations using magnetic resonance imaging,” Birth Defects Res. C Embryo Today 72, 241–249 (2004).
[Crossref] [PubMed]

Schreyer, A.

A. Hipp, J. Herzen, J. U. Hammel, P. Lytaev, A. Schreyer, and F. Beckmann, “Single-grating interferometer for high-resolution phase-contrast imaging at synchrotron radiation sources,” Proc. SPIE 9967, 996718 (2016).
[Crossref]

Schulz, G.

G. Schulz, C. Waschkies, F. Pfeiffer, I. Zanette, T. Weitkamp, C. David, and B. Müller, “Multimodal imaging of human cerebellum – merging X-ray phase microtomography, magnetic resonance microscopy and histology,” Sci. Rep. 2, 826 (2012).
[Crossref]

G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
[Crossref] [PubMed]

Schuster, M.

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

Sharpe, J.

J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202, 175–181 (2003).
[Crossref] [PubMed]

Silva, P. D.

Singh, J.

S. H. Geyer, B. Maurer, L. Pötz, J. Singh, and W. J. Weninger, “High-Resolution Episcopic Microscopy Data-Based Measurements of the Arteries of Mouse Embryos: Evaluation of Significance and Reproducibility under Routine Conditions,” Cells Tissues Organs 195, 524–534 (2012).
[Crossref]

Siu, K. K. W.

Slaney, M.

A. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001).
[Crossref]

Sled, J. G.

M. Zamyadi, L. Baghdadi, J. P. Lerch, S. Bhattacharya, J. E. Schneider, R. M. Henkelman, and J. G. Sled, “Mouse embryonic phenotyping by morphometric analysis of MR images,” Physiol. Genomics 42A, 89–95 (2010).
[Crossref] [PubMed]

Slender, A.

L. Dunlevy, M. Bennett, A. Slender, E. Lana-Elola, V. L. Tybulewicz, E. M. Fisher, and T. Mohun, “Down’s syndrome-like cardiac developmental defects in embryos of the transchromosomic Tc1 mouse,” Cardiovasc. Res. 88, 287–295 (2010).
[Crossref] [PubMed]

Smith, J. C.

T. Mohun, D. J. Adams, R. Baldock, S. Bhattacharya, A. J. Copp, M. Hemberger, C. Houart, M. E. Hurles, E. Robertson, J. C. Smith, T. Weaver, and W. Weninger, “Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice,” Dis. Model. Mech. 6, 562–566 (2013).
[Crossref] [PubMed]

Solak, H. H.

C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81, 3287–3290 (2002).
[Crossref]

Stampanoni, M.

P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107, 13576–13581 (2010).
[Crossref] [PubMed]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005).
[Crossref] [PubMed]

Stangl, S.

A. Tapfer, M. Bech, I. Zanette, P. Symvoulidis, S. Stangl, G. Multhoff, M. Molls, V. Ntziachristos, and F. Pfeiffer, “Three-dimensional imaging of whole mouse models: comparing nondestructive X-ray phase-contrast micro-CT with cryotome-based planar epi-illumination imaging,” J. Microsc. 253, 24–30 (2013).
[Crossref] [PubMed]

Suzuki, Y.

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase Tomography by X-ray Talbot Interferometry for Biological Imaging,” Jpn. J. Appl. Phys. 45, 5254 (2006).
[Crossref]

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-Ray Talbot Interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003).
[Crossref]

Symvoulidis, P.

A. Tapfer, M. Bech, I. Zanette, P. Symvoulidis, S. Stangl, G. Multhoff, M. Molls, V. Ntziachristos, and F. Pfeiffer, “Three-dimensional imaging of whole mouse models: comparing nondestructive X-ray phase-contrast micro-CT with cryotome-based planar epi-illumination imaging,” J. Microsc. 253, 24–30 (2013).
[Crossref] [PubMed]

Sztrókay-Gaul, A.

K. Scherer, K. Willer, L. Gromann, L. Birnbacher, E. Braig, S. Grandl, A. Sztrókay-Gaul, J. Herzen, D. Mayr, K. Hellerhoff, and F. Pfeiffer, “Toward Clinically Compatible Phase-Contrast Mammography,” PLoS ONE 10, 95 (2015).
[Crossref]

Tafforeau, P.

I. Zanette, M. Bech, A. Rack, G. Le Duc, P. Tafforeau, C. David, J. Mohr, F. Pfeiffer, and T. Weitkamp, “Trimodal low-dose X-ray tomography,” Proc. Natl. Acad. Sci. U.S.A. 109, 10199–10204 (2012).
[Crossref] [PubMed]

Takai, K.

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-Ray Talbot Interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003).
[Crossref]

Takeda, T.

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[Crossref] [PubMed]

Takeda, Y.

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase Tomography by X-ray Talbot Interferometry for Biological Imaging,” Jpn. J. Appl. Phys. 45, 5254 (2006).
[Crossref]

Tapfer, A.

A. Tapfer, M. Bech, I. Zanette, P. Symvoulidis, S. Stangl, G. Multhoff, M. Molls, V. Ntziachristos, and F. Pfeiffer, “Three-dimensional imaging of whole mouse models: comparing nondestructive X-ray phase-contrast micro-CT with cryotome-based planar epi-illumination imaging,” J. Microsc. 253, 24–30 (2013).
[Crossref] [PubMed]

Thommes, J.

T. Tschernig, L. Thrane, T. Jørgensen, J. Thommes, R. Pabst, and T. M. Yelbuz, “An elegant technique for ex vivo imaging in experimental research - Optical coherence tomography (OCT),” Ann. Anat. 195, 25–27 (2013).
[Crossref]

Thrane, L.

T. Tschernig, L. Thrane, T. Jørgensen, J. Thommes, R. Pabst, and T. M. Yelbuz, “An elegant technique for ex vivo imaging in experimental research - Optical coherence tomography (OCT),” Ann. Anat. 195, 25–27 (2013).
[Crossref]

Tschernig, T.

T. Tschernig, L. Thrane, T. Jørgensen, J. Thommes, R. Pabst, and T. M. Yelbuz, “An elegant technique for ex vivo imaging in experimental research - Optical coherence tomography (OCT),” Ann. Anat. 195, 25–27 (2013).
[Crossref]

Tybulewicz, V. L.

L. Dunlevy, M. Bennett, A. Slender, E. Lana-Elola, V. L. Tybulewicz, E. M. Fisher, and T. Mohun, “Down’s syndrome-like cardiac developmental defects in embryos of the transchromosomic Tc1 mouse,” Cardiovasc. Res. 88, 287–295 (2010).
[Crossref] [PubMed]

Uesugi, K.

M. Hoshino, K. Uesugi, and N. Yagi, “Phase-contrast X-ray microtomography of mouse fetus,” Biol. Open 1, 269–274 (2012).
[Crossref] [PubMed]

Vincent, G.

Wagner, U.

C. Rau, U. Wagner, Z. Pesic, and A. D. Fanis, “Coherent imaging at the Diamond beamline I13,” Phys. Status Solidi A 208, 2522–2525 (2011).
[Crossref]

Walls, J. R.

M. D. Wong, A. E. Dorr, J. R. Walls, J. P. Lerch, and R. M. Henkelman, “A novel 3D mouse embryo atlas based on micro-CT,” Development 139, 3248–3256 (2012).
[Crossref] [PubMed]

Wang, Z.

P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107, 13576–13581 (2010).
[Crossref] [PubMed]

Waschkies, C.

G. Schulz, C. Waschkies, F. Pfeiffer, I. Zanette, T. Weitkamp, C. David, and B. Müller, “Multimodal imaging of human cerebellum – merging X-ray phase microtomography, magnetic resonance microscopy and histology,” Sci. Rep. 2, 826 (2012).
[Crossref]

Weaver, T.

T. Mohun, D. J. Adams, R. Baldock, S. Bhattacharya, A. J. Copp, M. Hemberger, C. Houart, M. E. Hurles, E. Robertson, J. C. Smith, T. Weaver, and W. Weninger, “Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice,” Dis. Model. Mech. 6, 562–566 (2013).
[Crossref] [PubMed]

Weitkamp, T.

I. Zanette, T. Weitkamp, G. L. Duc, and F. Pfeiffer, “X-ray grating-based phase tomography for 3D histology,” RSC Adv. 3, 19816–19819 (2013).
[Crossref]

G. Schulz, C. Waschkies, F. Pfeiffer, I. Zanette, T. Weitkamp, C. David, and B. Müller, “Multimodal imaging of human cerebellum – merging X-ray phase microtomography, magnetic resonance microscopy and histology,” Sci. Rep. 2, 826 (2012).
[Crossref]

I. Zanette, M. Bech, A. Rack, G. Le Duc, P. Tafforeau, C. David, J. Mohr, F. Pfeiffer, and T. Weitkamp, “Trimodal low-dose X-ray tomography,” Proc. Natl. Acad. Sci. U.S.A. 109, 10199–10204 (2012).
[Crossref] [PubMed]

I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-Dimensional X-Ray Grating Interferometer,” Phys. Rev. Lett. 105, 248102 (2010).
[Crossref]

G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
[Crossref] [PubMed]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005).
[Crossref] [PubMed]

Weninger, W.

T. Mohun, D. J. Adams, R. Baldock, S. Bhattacharya, A. J. Copp, M. Hemberger, C. Houart, M. E. Hurles, E. Robertson, J. C. Smith, T. Weaver, and W. Weninger, “Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice,” Dis. Model. Mech. 6, 562–566 (2013).
[Crossref] [PubMed]

Weninger, W. J.

S. H. Geyer, B. Maurer, L. Pötz, J. Singh, and W. J. Weninger, “High-Resolution Episcopic Microscopy Data-Based Measurements of the Arteries of Mouse Embryos: Evaluation of Significance and Reproducibility under Routine Conditions,” Cells Tissues Organs 195, 524–534 (2012).
[Crossref]

T. J. Mohun and W. J. Weninger, “Imaging heart development using high-resolution episcopic microscopy,” Curr. Opin. Genet. Dev. 21, 573–578 (2011).
[Crossref] [PubMed]

W. J. Weninger, S. H. Geyer, T. J. Mohun, D. Rasskin-Gutman, T. Matsui, I. Ribeiro, L. da F. Costa, J. C. Izpisúa-Belmonte, and G. B. Müller, “High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology,” Anat. Embryol. (Berl) 211, 213–221 (2006).
[Crossref]

Wiest, W.

A. Balles, C. Fella, J. Dittmann, W. Wiest, S. Zabler, and R. Hanke, “X-ray grating interferometry for 9.25 keV design energy at a liquid-metal-jet source,” AIP Conference Proceedings1696 (2016).
[Crossref]

Willer, K.

K. Scherer, K. Willer, L. Gromann, L. Birnbacher, E. Braig, S. Grandl, A. Sztrókay-Gaul, J. Herzen, D. Mayr, K. Hellerhoff, and F. Pfeiffer, “Toward Clinically Compatible Phase-Contrast Mammography,” PLoS ONE 10, 95 (2015).
[Crossref]

Wilson, R.

R. Wilson, C. McGuire, T. Mohun, and the DMDD project, “Deciphering the mechanisms of developmental disorders: phenotype analysis of embryos from mutant mouse lines,” Nucleic Acids Res. 44, D855–D861 (2016).
[Crossref]

Wong, M. D.

G. A. Anderson, M. D. Wong, J. Yang, and R. M. Henkelman, “3D imaging, registration, and analysis of the early mouse embryonic vasculature,” Dev. Dynam. 242, 527–538 (2013).
[Crossref]

M. D. Wong, A. E. Dorr, J. R. Walls, J. P. Lerch, and R. M. Henkelman, “A novel 3D mouse embryo atlas based on micro-CT,” Development 139, 3248–3256 (2012).
[Crossref] [PubMed]

Wu, Z.

P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107, 13576–13581 (2010).
[Crossref] [PubMed]

Xu, T.

D. Nguyen and T. Xu, “The expanding role of mouse genetics for understanding human biology and disease,” Dis. Model. Mech. 1, 56–66 (2008).
[Crossref] [PubMed]

Yagi, N.

M. Hoshino, K. Uesugi, and N. Yagi, “Phase-contrast X-ray microtomography of mouse fetus,” Biol. Open 1, 269–274 (2012).
[Crossref] [PubMed]

Yang, J.

G. A. Anderson, M. D. Wong, J. Yang, and R. M. Henkelman, “3D imaging, registration, and analysis of the early mouse embryonic vasculature,” Dev. Dynam. 242, 527–538 (2013).
[Crossref]

Yashiro, W.

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase Tomography by X-ray Talbot Interferometry for Biological Imaging,” Jpn. J. Appl. Phys. 45, 5254 (2006).
[Crossref]

Yelbuz, T. M.

T. Tschernig, L. Thrane, T. Jørgensen, J. Thommes, R. Pabst, and T. M. Yelbuz, “An elegant technique for ex vivo imaging in experimental research - Optical coherence tomography (OCT),” Ann. Anat. 195, 25–27 (2013).
[Crossref]

Zabler, S.

A. Balles, C. Fella, J. Dittmann, W. Wiest, S. Zabler, and R. Hanke, “X-ray grating interferometry for 9.25 keV design energy at a liquid-metal-jet source,” AIP Conference Proceedings1696 (2016).
[Crossref]

Zamyadi, M.

M. Zamyadi, L. Baghdadi, J. P. Lerch, S. Bhattacharya, J. E. Schneider, R. M. Henkelman, and J. G. Sled, “Mouse embryonic phenotyping by morphometric analysis of MR images,” Physiol. Genomics 42A, 89–95 (2010).
[Crossref] [PubMed]

Zanette, I.

A. Tapfer, M. Bech, I. Zanette, P. Symvoulidis, S. Stangl, G. Multhoff, M. Molls, V. Ntziachristos, and F. Pfeiffer, “Three-dimensional imaging of whole mouse models: comparing nondestructive X-ray phase-contrast micro-CT with cryotome-based planar epi-illumination imaging,” J. Microsc. 253, 24–30 (2013).
[Crossref] [PubMed]

I. Zanette, T. Weitkamp, G. L. Duc, and F. Pfeiffer, “X-ray grating-based phase tomography for 3D histology,” RSC Adv. 3, 19816–19819 (2013).
[Crossref]

G. Schulz, C. Waschkies, F. Pfeiffer, I. Zanette, T. Weitkamp, C. David, and B. Müller, “Multimodal imaging of human cerebellum – merging X-ray phase microtomography, magnetic resonance microscopy and histology,” Sci. Rep. 2, 826 (2012).
[Crossref]

I. Zanette, M. Bech, A. Rack, G. Le Duc, P. Tafforeau, C. David, J. Mohr, F. Pfeiffer, and T. Weitkamp, “Trimodal low-dose X-ray tomography,” Proc. Natl. Acad. Sci. U.S.A. 109, 10199–10204 (2012).
[Crossref] [PubMed]

I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-Dimensional X-Ray Grating Interferometer,” Phys. Rev. Lett. 105, 248102 (2010).
[Crossref]

G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
[Crossref] [PubMed]

Zhang, K.

P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107, 13576–13581 (2010).
[Crossref] [PubMed]

Zhu, P.

P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107, 13576–13581 (2010).
[Crossref] [PubMed]

Ziegler, E.

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005).
[Crossref] [PubMed]

C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81, 3287–3290 (2002).
[Crossref]

Anat. Embryol. (Berl) (1)

W. J. Weninger, S. H. Geyer, T. J. Mohun, D. Rasskin-Gutman, T. Matsui, I. Ribeiro, L. da F. Costa, J. C. Izpisúa-Belmonte, and G. B. Müller, “High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology,” Anat. Embryol. (Berl) 211, 213–221 (2006).
[Crossref]

Ann. Anat. (1)

T. Tschernig, L. Thrane, T. Jørgensen, J. Thommes, R. Pabst, and T. M. Yelbuz, “An elegant technique for ex vivo imaging in experimental research - Optical coherence tomography (OCT),” Ann. Anat. 195, 25–27 (2013).
[Crossref]

Appl. Phys. Lett. (1)

C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, “Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81, 3287–3290 (2002).
[Crossref]

Atomic Data and Nuclear Data Tables (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50–30,000 eV, Z = 1–92,” Atomic Data and Nuclear Data Tables 54, 181–342 (1993).
[Crossref]

Biol. Open (1)

M. Hoshino, K. Uesugi, and N. Yagi, “Phase-contrast X-ray microtomography of mouse fetus,” Biol. Open 1, 269–274 (2012).
[Crossref] [PubMed]

Birth Defects Res. C Embryo Today (1)

J. E. Schneider and S. Bhattacharya, “Making the mouse embryo transparent: Identifying developmental malformations using magnetic resonance imaging,” Birth Defects Res. C Embryo Today 72, 241–249 (2004).
[Crossref] [PubMed]

Cardiovasc. Res. (1)

L. Dunlevy, M. Bennett, A. Slender, E. Lana-Elola, V. L. Tybulewicz, E. M. Fisher, and T. Mohun, “Down’s syndrome-like cardiac developmental defects in embryos of the transchromosomic Tc1 mouse,” Cardiovasc. Res. 88, 287–295 (2010).
[Crossref] [PubMed]

Cells Tissues Organs (1)

S. H. Geyer, B. Maurer, L. Pötz, J. Singh, and W. J. Weninger, “High-Resolution Episcopic Microscopy Data-Based Measurements of the Arteries of Mouse Embryos: Evaluation of Significance and Reproducibility under Routine Conditions,” Cells Tissues Organs 195, 524–534 (2012).
[Crossref]

Curr. Opin. Genet. Dev. (1)

T. J. Mohun and W. J. Weninger, “Imaging heart development using high-resolution episcopic microscopy,” Curr. Opin. Genet. Dev. 21, 573–578 (2011).
[Crossref] [PubMed]

Dev. Dynam. (2)

G. A. Anderson, M. D. Wong, J. Yang, and R. M. Henkelman, “3D imaging, registration, and analysis of the early mouse embryonic vasculature,” Dev. Dynam. 242, 527–538 (2013).
[Crossref]

B. D. Metscher, “MicroCT for developmental biology: A versatile tool for high-contrast 3D imaging at histological resolutions,” Dev. Dynam. 238, 632–640 (2009).
[Crossref]

Development (2)

M. D. Wong, A. E. Dorr, J. R. Walls, J. P. Lerch, and R. M. Henkelman, “A novel 3D mouse embryo atlas based on micro-CT,” Development 139, 3248–3256 (2012).
[Crossref] [PubMed]

E. Graham, J. Moss, N. Burton, C. Armit, L. Richardson, and R. Baldock, “The atlas of mouse development eHistology resource,” Development 142, 1909–1911 (2015).
[Crossref] [PubMed]

Dis. Model. Mech. (2)

D. Nguyen and T. Xu, “The expanding role of mouse genetics for understanding human biology and disease,” Dis. Model. Mech. 1, 56–66 (2008).
[Crossref] [PubMed]

T. Mohun, D. J. Adams, R. Baldock, S. Bhattacharya, A. J. Copp, M. Hemberger, C. Houart, M. E. Hurles, E. Robertson, J. C. Smith, T. Weaver, and W. Weninger, “Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice,” Dis. Model. Mech. 6, 562–566 (2013).
[Crossref] [PubMed]

J. Anat. (1)

J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202, 175–181 (2003).
[Crossref] [PubMed]

J. Appl. Phys. (1)

T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106, 054703 (2009).
[Crossref]

J. Microsc. (1)

A. Tapfer, M. Bech, I. Zanette, P. Symvoulidis, S. Stangl, G. Multhoff, M. Molls, V. Ntziachristos, and F. Pfeiffer, “Three-dimensional imaging of whole mouse models: comparing nondestructive X-ray phase-contrast micro-CT with cryotome-based planar epi-illumination imaging,” J. Microsc. 253, 24–30 (2013).
[Crossref] [PubMed]

J. R. Soc. Interface (1)

G. Schulz, T. Weitkamp, I. Zanette, F. Pfeiffer, F. Beckmann, C. David, S. Rutishauser, E. Reznikova, and B. Müller, “High-resolution tomographic imaging of a human cerebellum: comparison of absorption and grating-based phase contrast,” J. R. Soc. Interface 7, 1665–1676 (2010).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (2)

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase Tomography by X-ray Talbot Interferometry for Biological Imaging,” Jpn. J. Appl. Phys. 45, 5254 (2006).
[Crossref]

A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-Ray Talbot Interferometry,” Jpn. J. Appl. Phys. 42, L866–L868 (2003).
[Crossref]

Microsyst. Technol. (1)

E. Reznikova, J. Mohr, M. Boerner, V. Nazmov, and P. J. Jakobs, “Soft X-ray lithography of high aspect ratio SU8 submicron structures,” Microsyst. Technol. 14, 1683–1688 (2008).
[Crossref]

Nat. Mater. (1)

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134–137 (2008).
[Crossref] [PubMed]

Nat. Med. (1)

A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nat. Med. 2, 473–475 (1996).
[Crossref] [PubMed]

Nucleic Acids Res. (1)

R. Wilson, C. McGuire, T. Mohun, and the DMDD project, “Deciphering the mechanisms of developmental disorders: phenotype analysis of embryos from mutant mouse lines,” Nucleic Acids Res. 44, D855–D861 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Med. Biol. (1)

F. Pfeiffer, O. Bunk, C. David, M. Bech, G. L. Duc, A. Bravin, and P. Cloetens, “High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography,” Phys. Med. Biol. 52, 6923 (2007).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard X-Ray Phase Tomography with Low-Brilliance Sources,” Phys. Rev. Lett. 98, 108105 (2007).
[Crossref] [PubMed]

I. Zanette, T. Weitkamp, T. Donath, S. Rutishauser, and C. David, “Two-Dimensional X-Ray Grating Interferometer,” Phys. Rev. Lett. 105, 248102 (2010).
[Crossref]

Phys. Status Solidi A (1)

C. Rau, U. Wagner, Z. Pesic, and A. D. Fanis, “Coherent imaging at the Diamond beamline I13,” Phys. Status Solidi A 208, 2522–2525 (2011).
[Crossref]

Phys. Today (1)

R. Fitzgerald, “Phase-Sensitive X-Ray Imaging,” Phys. Today 7, 23–26 (2000).
[Crossref]

Physiol. Genomics (1)

M. Zamyadi, L. Baghdadi, J. P. Lerch, S. Bhattacharya, J. E. Schneider, R. M. Henkelman, and J. G. Sled, “Mouse embryonic phenotyping by morphometric analysis of MR images,” Physiol. Genomics 42A, 89–95 (2010).
[Crossref] [PubMed]

PLoS ONE (1)

K. Scherer, K. Willer, L. Gromann, L. Birnbacher, E. Braig, S. Grandl, A. Sztrókay-Gaul, J. Herzen, D. Mayr, K. Hellerhoff, and F. Pfeiffer, “Toward Clinically Compatible Phase-Contrast Mammography,” PLoS ONE 10, 95 (2015).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

P. Zhu, K. Zhang, Z. Wang, Y. Liu, X. Liu, Z. Wu, S. A. McDonald, F. Marone, and M. Stampanoni, “Low-dose, simple, and fast grating-based X-ray phase-contrast imaging,” Proc. Natl. Acad. Sci. U.S.A. 107, 13576–13581 (2010).
[Crossref] [PubMed]

I. Zanette, M. Bech, A. Rack, G. Le Duc, P. Tafforeau, C. David, J. Mohr, F. Pfeiffer, and T. Weitkamp, “Trimodal low-dose X-ray tomography,” Proc. Natl. Acad. Sci. U.S.A. 109, 10199–10204 (2012).
[Crossref] [PubMed]

Proc. SPIE (1)

A. Hipp, J. Herzen, J. U. Hammel, P. Lytaev, A. Schreyer, and F. Beckmann, “Single-grating interferometer for high-resolution phase-contrast imaging at synchrotron radiation sources,” Proc. SPIE 9967, 996718 (2016).
[Crossref]

RSC Adv. (1)

I. Zanette, T. Weitkamp, G. L. Duc, and F. Pfeiffer, “X-ray grating-based phase tomography for 3D histology,” RSC Adv. 3, 19816–19819 (2013).
[Crossref]

Sci. Rep. (1)

G. Schulz, C. Waschkies, F. Pfeiffer, I. Zanette, T. Weitkamp, C. David, and B. Müller, “Multimodal imaging of human cerebellum – merging X-ray phase microtomography, magnetic resonance microscopy and histology,” Sci. Rep. 2, 826 (2012).
[Crossref]

Other (8)

G. Merlo, F. Altruda, and V. Poli, Mice as Experimental Organisms (John Wiley & Sons, 2001).

E. Bier and W. Mcginnis, Model Organisms in the Study of Development and Disease (Oxford University, 2016).

A. Balles, C. Fella, J. Dittmann, W. Wiest, S. Zabler, and R. Hanke, “X-ray grating interferometry for 9.25 keV design energy at a liquid-metal-jet source,” AIP Conference Proceedings1696 (2016).
[Crossref]

R. Baldock, J. Bard, D. R. Davidson, and G. Morriss-Kay, eds., Kaufman’s Atlas of Mouse Development Supplement (Academic, 2016).

D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University, 1999).
[Crossref]

Deciphering the Mechanisms of Developmental Disorders (2016). http://dmdd.org.uk/ .

A. Guinier, X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies (Dover Publications, 1994).

A. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001).
[Crossref]

Supplementary Material (3)

NameDescription
» Visualization 1: MP4 (8901 KB)      Movie sliding through the transverse slices of the embryo phase volume
» Visualization 2: MP4 (8408 KB)      Movie sliding through the sagittal slices of the embryo phase volume
» Visualization 3: MP4 (8367 KB)      Movie sliding through the frontal slices of the embryo phase volume

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup using a single phase grating (period: 10 μm) mounted at a distance of 5 cm downstream of the sample. A high-resolution X-ray detector (effective pixel size: 1.13 μm) is placed 72 cm further downstream to record the interference pattern created by the grating. The phase shift of the X-ray wavefront induced by the sample results in a distortion of the interference pattern.
Fig. 2
Fig. 2 (a) Interference pattern at the first fractional Talbot distance. The visibility in the centre of the field of view is approximately 29%. (b) Region of interest (152×76 pixels) in the centre of the image. (c) Horizontal profile through (b) averaged along the vertical direction. The grey values represent arbitrary intensity units.
Fig. 3
Fig. 3 One of the 1201 reconstructed projections showing (a) the differential phase signal measured as the refraction angle of the incoming X-rays induced by the sample and (b) the propagation signal, consisting of absorption and edge enhancement effects.
Fig. 4
Fig. 4 Sagittal, transverse and frontal slices through the reconstructed phase volumes of a mouse embryo (head removed) embedded in paraffin wax in panels (b), (d) and (f) compared to the results obtained with HREM of a different specimen at the same gestational stage (ED13.5) in panels (c), (e) and (g). Organs within the embryo are indicated by white arrows. Panel (a) shows the definition of the sectioning planes on a photograph of an embryo specimen. HREM data provided by Deciphering the Mechanisms of Developmental Disorders (http://dmdd.org.uk/), a programme funded by the Wellcome Trust with support from the Francis Crick Institute, is licensed under a Creative Commons Attribution Non-Commercial Share Alike licence.
Fig. 5
Fig. 5 (a) 3D rendering of the mouse embryo extracted from the phase volume (orthogonal slicing planes through the centre are indicated). (b) Frontal, (c) sagittal and (d) transverse cuts through the embryo showing the corresponding slices through whole phase volume (including paraffin).
Fig. 6
Fig. 6 (a) Region of interest from the sagittal slice through the phase volume in Fig. 4 containing the organs of the mouse embryo. Small areas within the organs are chosen to determine the corresponding δ-values (coloured boxes). (b) Histogram of the slice in (a) showing a separation of the peaks for the different organs.
Fig. 7
Fig. 7 Region of the phase volume showing the ventricles of the mouse embryo heart in (b) transverse and (c) frontal view. Line profiles across the smallest discernible structures in (a) the transverse slice and (d) the frontal slice. The full width at half maximum of the peaks (FWHM ≈ 12 μm) is taken as a measure of spatial resolution.
Fig. 8
Fig. 8 Transverse slice through the propagation volume showing a combination of absorption and edge-enhancement effects, retrieved from the same data set as the phase volume in Fig. 4. Negative values are due to edge enhancement leading to values larger than one.

Tables (1)

Tables Icon

Table 1 Refractive index decrements δ and electron densities ρe of the different organs of the mouse embryo measured in the small regions of interest (coloured boxes) in Fig. 6(a).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Φ x = 2 π λ α = p λ z ( ϕ s ϕ r ) ,
Φ = 2 π λ δ d z ,
ρ e = 2 π r 0 λ 2 δ ,
T = exp ( μ d z ) ,

Metrics