Abstract

Evanescent field sensors have shown promise for biological sensing applications. In particular, Silicon-on-Insulator (SOI)-nano-photonic based resonator sensors have many advantages for lab-on-chip diagnostics, including high sensitivity for molecular detection and compatibility with CMOS foundries for high volume manufacturing. We have investigated the optimum design parameters within the fabrication constraints of Multi-Project Wafer (MPW) foundries that result in the highest sensitivity for a resonator sensor. We have demonstrated the optimum waveguide thickness needed to achieve the maximum bulk sensitivity with SOI-based resonator sensors to be 165 nm using the quasi-TM guided mode. The closest thickness offered by MPW foundry services is 150 nm. Therefore, resonators with 150 nm thick silicon waveguides were fabricated resulting in sensitivities as high as 270 nm/RIU, whereas a similar resonator sensor with a 220 nm thick waveguide demonstrated sensitivities of approximately 200 nm/RIU.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance of ultra-thin SOI-based resonators for sensing applications

Sahba Talebi Fard, Valentina Donzella, Shon A. Schmidt, Jonas Flueckiger, Samantha M. Grist, Pouria Talebi Fard, Yichen Wu, Rick J. Bojko, Ezra Kwok, Nicolas A. F. Jaeger, Daniel M. Ratner, and Lukas Chrostowski
Opt. Express 22(12) 14166-14179 (2014)

Silicon-on-insulator sensors using integrated resonance-enhanced defect-mediated photodetectors

Sahba Talebi Fard, Kyle Murray, Michael Caverley, Valentina Donzella, Jonas Flueckiger, Samantha M. Grist, Edgar Huante-Ceron, Shon A. Schmidt, Ezra Kwok, Nicolas A. F. Jaeger, Andrew P. Knights, and Lukas Chrostowski
Opt. Express 22(23) 28517-28529 (2014)

Sub-wavelength grating for enhanced ring resonator biosensor

Jonas Flueckiger, Shon Schmidt, Valentina Donzella, Ahmed Sherwali, Daniel M. Ratner, Lukas Chrostowski, and Karen C. Cheung
Opt. Express 24(14) 15672-15686 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499–9506 (2009).
    [Crossref] [PubMed]
  2. O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36, 56–61 (2012).
    [Crossref] [PubMed]
  3. W. W. Shia and R. C. Bailey, “Single domain antibodies for the detection of ricin using silicon photonic microring resonator arrays,” Anal. Chem. 85, 805–810 (2012).
    [Crossref] [PubMed]
  4. M. R. Tomita, L. S. Russ, R. Sridhar, and B. J. Naughton, “Smart home with healthcare technologies for community-dwelling older adults,” Available as on 13th of March (2012).
  5. S. Talebi Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE, Silicon Photonics VIII 8629, 862909 (2013).
    [Crossref]
  6. S. Talebi Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. TalebiFard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22, 14166–14179 (2014).
    [Crossref] [PubMed]
  7. X. Fan, I. White, S. Shopova, H. Zhu, J. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
    [Crossref] [PubMed]
  8. K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Advances in Optical Technologies 2008383927 (2008).
    [Crossref]
  9. M. S. Luchansky and R. C. Bailey, “Silicon photonic microring resonators for quantitative cytokine detection and T-cell secretion analysis,” Anal. Chem. 82, 1975–1981 (2010).
    [Crossref] [PubMed]
  10. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
    [Crossref]
  11. A. J. Qavi and R. C. Bailey, “Multiplexed detection and label-free quantitation of MicroRNAs using arrays of silicon photonic microring resonators,” Angew. Chem. 122, 4712–4715 (2010).
    [Crossref]
  12. A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82, 69–72 (2009).
    [Crossref] [PubMed]
  13. J. Arlett, E. Myers, and M. Roukes, “Comparative advantages of mechanical biosensors,” Nature nanotechnology 6, 203–215 (2011).
    [Crossref] [PubMed]
  14. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Tech. Lett. 18, 2520–2522 (2006).
    [Crossref]
  15. D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. Schmid, E. Post, and et al., “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express 18, 22867–22879 (2010).
    [Crossref] [PubMed]
  16. L. Chrostowski and M. Hochberg, Silicon Photonics Design (Cambridge University Press, 2015).
    [Crossref]
  17. J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87, 553–561 (2004).
    [Crossref] [PubMed]
  18. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering) (Oxford University Press, Inc., 2006).
  19. S. TalebiFard, “Optical resonator sensors and systems,” Ph.D. thesis, University of British Columbia (2015).
  20. I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B 23, 1381–1389 (2006).
    [Crossref]
  21. S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
    [Crossref] [PubMed]
  22. S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, X. Wang, A. Sherwali, J. Kirk, K. C. Cheung, L. Chrostowski, and D. Ratner, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” Proc. SPIE, Biosensing and Nanomedicine VII 9166, 91660M (2014).
  23. Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
    [Crossref]
  24. Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
    [Crossref] [PubMed]
  25. L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), pp. Th2A–37.
  26. S. Schmidt, “Enhancing the performance of silicon photonic biosensors for clinical applications,” Ph.D. thesis, University of Washington (2016).
  27. M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26, 1283–1291 (2010).
    [Crossref] [PubMed]
  28. G. Moţa, I. Moraru, J. Sjöquist, and V. Gheţie, “Protein a as a molecular probe for the detection of antigen induced conformational change in Fc region of rabbit antibody,” Mol. Immunol. 18, 373–378 (1981).
    [Crossref]
  29. W. L. DeLano, M. H. Ultsch, J. A. Wells, and et al., “Convergent solutions to binding at a protein-protein interface,” Science 287, 1279–1283 (2000).
    [Crossref] [PubMed]
  30. P. C. Weber, D. Ohlendorf, J. Wendoloski, and F. Salemme, “Structural origins of high-affinity biotin binding to streptavidin,” Science 243, 85–88 (1989).
    [Crossref] [PubMed]
  31. M. Graille, E. A. Stura, A. L. Corper, B. J. Sutton, M. J. Taussig, J.-B. Charbonnier, and G. J. Silverman, “Crystal structure of a staphylococcus aureus protein A domain complexed with the fab fragment of a human IgM antibody: structural basis for recognition of b-cell receptors and superantigen activity,” Proceedings of the National Academy of Sciences 97, 5399–5404 (2000).
    [Crossref]
  32. H. P. Erickson, “Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy,” Biological procedures online 11, 32–51 (2009).
    [Crossref] [PubMed]
  33. M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein A on silicon surfaces studied by AFM and XPS,” J. Colloid Interface Sci. 233, 180–189 (2001).
    [Crossref]
  34. F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall soi waveguides,” IEEE Photon. Tech. Lett. 16, 1661–1663 (2004).
    [Crossref]
  35. F. Grillot, L. Vivien, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24, 891 (2006).
    [Crossref]
  36. F. Payne and J. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
    [Crossref]
  37. M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101, 221106 (2012).
    [Crossref]

2014 (3)

2013 (3)

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
[Crossref] [PubMed]

S. Talebi Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE, Silicon Photonics VIII 8629, 862909 (2013).
[Crossref]

2012 (3)

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36, 56–61 (2012).
[Crossref] [PubMed]

W. W. Shia and R. C. Bailey, “Single domain antibodies for the detection of ricin using silicon photonic microring resonator arrays,” Anal. Chem. 85, 805–810 (2012).
[Crossref] [PubMed]

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101, 221106 (2012).
[Crossref]

2011 (1)

J. Arlett, E. Myers, and M. Roukes, “Comparative advantages of mechanical biosensors,” Nature nanotechnology 6, 203–215 (2011).
[Crossref] [PubMed]

2010 (5)

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. Schmid, E. Post, and et al., “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express 18, 22867–22879 (2010).
[Crossref] [PubMed]

M. S. Luchansky and R. C. Bailey, “Silicon photonic microring resonators for quantitative cytokine detection and T-cell secretion analysis,” Anal. Chem. 82, 1975–1981 (2010).
[Crossref] [PubMed]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
[Crossref]

A. J. Qavi and R. C. Bailey, “Multiplexed detection and label-free quantitation of MicroRNAs using arrays of silicon photonic microring resonators,” Angew. Chem. 122, 4712–4715 (2010).
[Crossref]

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26, 1283–1291 (2010).
[Crossref] [PubMed]

2009 (3)

H. P. Erickson, “Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy,” Biological procedures online 11, 32–51 (2009).
[Crossref] [PubMed]

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82, 69–72 (2009).
[Crossref] [PubMed]

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499–9506 (2009).
[Crossref] [PubMed]

2008 (2)

X. Fan, I. White, S. Shopova, H. Zhu, J. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Advances in Optical Technologies 2008383927 (2008).
[Crossref]

2006 (3)

2004 (2)

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall soi waveguides,” IEEE Photon. Tech. Lett. 16, 1661–1663 (2004).
[Crossref]

J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87, 553–561 (2004).
[Crossref] [PubMed]

2001 (1)

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein A on silicon surfaces studied by AFM and XPS,” J. Colloid Interface Sci. 233, 180–189 (2001).
[Crossref]

2000 (2)

W. L. DeLano, M. H. Ultsch, J. A. Wells, and et al., “Convergent solutions to binding at a protein-protein interface,” Science 287, 1279–1283 (2000).
[Crossref] [PubMed]

M. Graille, E. A. Stura, A. L. Corper, B. J. Sutton, M. J. Taussig, J.-B. Charbonnier, and G. J. Silverman, “Crystal structure of a staphylococcus aureus protein A domain complexed with the fab fragment of a human IgM antibody: structural basis for recognition of b-cell receptors and superantigen activity,” Proceedings of the National Academy of Sciences 97, 5399–5404 (2000).
[Crossref]

1994 (1)

F. Payne and J. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

1989 (1)

P. C. Weber, D. Ohlendorf, J. Wendoloski, and F. Salemme, “Structural origins of high-affinity biotin binding to streptavidin,” Science 243, 85–88 (1989).
[Crossref] [PubMed]

1981 (1)

G. Moţa, I. Moraru, J. Sjöquist, and V. Gheţie, “Protein a as a molecular probe for the detection of antigen induced conformational change in Fc region of rabbit antibody,” Mol. Immunol. 18, 373–378 (1981).
[Crossref]

Arlett, J.

J. Arlett, E. Myers, and M. Roukes, “Comparative advantages of mechanical biosensors,” Nature nanotechnology 6, 203–215 (2011).
[Crossref] [PubMed]

Arnold, S.

Baehr-Jones, T.

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101, 221106 (2012).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Bailey, R. C.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36, 56–61 (2012).
[Crossref] [PubMed]

W. W. Shia and R. C. Bailey, “Single domain antibodies for the detection of ricin using silicon photonic microring resonator arrays,” Anal. Chem. 85, 805–810 (2012).
[Crossref] [PubMed]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
[Crossref]

M. S. Luchansky and R. C. Bailey, “Silicon photonic microring resonators for quantitative cytokine detection and T-cell secretion analysis,” Anal. Chem. 82, 1975–1981 (2010).
[Crossref] [PubMed]

A. J. Qavi and R. C. Bailey, “Multiplexed detection and label-free quantitation of MicroRNAs using arrays of silicon photonic microring resonators,” Angew. Chem. 122, 4712–4715 (2010).
[Crossref]

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26, 1283–1291 (2010).
[Crossref] [PubMed]

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82, 69–72 (2009).
[Crossref] [PubMed]

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499–9506 (2009).
[Crossref] [PubMed]

Barry, T.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36, 56–61 (2012).
[Crossref] [PubMed]

Bielmann, M.

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein A on silicon surfaces studied by AFM and XPS,” J. Colloid Interface Sci. 233, 180–189 (2001).
[Crossref]

Bojko, R.

Bojko, R. J.

Bowman, A. L.

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82, 69–72 (2009).
[Crossref] [PubMed]

Carrascosa, L. G.

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Advances in Optical Technologies 2008383927 (2008).
[Crossref]

Cassan, E.

F. Grillot, L. Vivien, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24, 891 (2006).
[Crossref]

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall soi waveguides,” IEEE Photon. Tech. Lett. 16, 1661–1663 (2004).
[Crossref]

Charbonnier, J.-B.

M. Graille, E. A. Stura, A. L. Corper, B. J. Sutton, M. J. Taussig, J.-B. Charbonnier, and G. J. Silverman, “Crystal structure of a staphylococcus aureus protein A domain complexed with the fab fragment of a human IgM antibody: structural basis for recognition of b-cell receptors and superantigen activity,” Proceedings of the National Academy of Sciences 97, 5399–5404 (2000).
[Crossref]

Cheben, P.

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. Schmid, E. Post, and et al., “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express 18, 22867–22879 (2010).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Tech. Lett. 18, 2520–2522 (2006).
[Crossref]

Cheung, K. C.

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, X. Wang, A. Sherwali, J. Kirk, K. C. Cheung, L. Chrostowski, and D. Ratner, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” Proc. SPIE, Biosensing and Nanomedicine VII 9166, 91660M (2014).

S. Talebi Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE, Silicon Photonics VIII 8629, 862909 (2013).
[Crossref]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
[Crossref] [PubMed]

Chrostowski, L.

S. Talebi Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. TalebiFard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22, 14166–14179 (2014).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
[Crossref] [PubMed]

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, X. Wang, A. Sherwali, J. Kirk, K. C. Cheung, L. Chrostowski, and D. Ratner, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” Proc. SPIE, Biosensing and Nanomedicine VII 9166, 91660M (2014).

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

S. Talebi Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE, Silicon Photonics VIII 8629, 862909 (2013).
[Crossref]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
[Crossref] [PubMed]

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), pp. Th2A–37.

L. Chrostowski and M. Hochberg, Silicon Photonics Design (Cambridge University Press, 2015).
[Crossref]

Coen, M. C.

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein A on silicon surfaces studied by AFM and XPS,” J. Colloid Interface Sci. 233, 180–189 (2001).
[Crossref]

Corper, A. L.

M. Graille, E. A. Stura, A. L. Corper, B. J. Sutton, M. J. Taussig, J.-B. Charbonnier, and G. J. Silverman, “Crystal structure of a staphylococcus aureus protein A domain complexed with the fab fragment of a human IgM antibody: structural basis for recognition of b-cell receptors and superantigen activity,” Proceedings of the National Academy of Sciences 97, 5399–5404 (2000).
[Crossref]

Delâge, A.

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. Schmid, E. Post, and et al., “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express 18, 22867–22879 (2010).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Tech. Lett. 18, 2520–2522 (2006).
[Crossref]

DeLano, W. L.

W. L. DeLano, M. H. Ultsch, J. A. Wells, and et al., “Convergent solutions to binding at a protein-protein interface,” Science 287, 1279–1283 (2000).
[Crossref] [PubMed]

Densmore, A.

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. Schmid, E. Post, and et al., “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express 18, 22867–22879 (2010).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Tech. Lett. 18, 2520–2522 (2006).
[Crossref]

Domínguez, C.

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Advances in Optical Technologies 2008383927 (2008).
[Crossref]

Donzella, V.

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, X. Wang, A. Sherwali, J. Kirk, K. C. Cheung, L. Chrostowski, and D. Ratner, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” Proc. SPIE, Biosensing and Nanomedicine VII 9166, 91660M (2014).

S. Talebi Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. TalebiFard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22, 14166–14179 (2014).
[Crossref] [PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
[Crossref] [PubMed]

S. Talebi Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE, Silicon Photonics VIII 8629, 862909 (2013).
[Crossref]

Erickson, H. P.

H. P. Erickson, “Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy,” Biological procedures online 11, 32–51 (2009).
[Crossref] [PubMed]

Fan, X.

X. Fan, I. White, S. Shopova, H. Zhu, J. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

Flueckiger, J.

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, X. Wang, A. Sherwali, J. Kirk, K. C. Cheung, L. Chrostowski, and D. Ratner, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” Proc. SPIE, Biosensing and Nanomedicine VII 9166, 91660M (2014).

S. Talebi Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. TalebiFard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22, 14166–14179 (2014).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
[Crossref] [PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
[Crossref] [PubMed]

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

S. Talebi Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE, Silicon Photonics VIII 8629, 862909 (2013).
[Crossref]

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), pp. Th2A–37.

Galli, C.

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein A on silicon surfaces studied by AFM and XPS,” J. Colloid Interface Sci. 233, 180–189 (2001).
[Crossref]

Ghetie, V.

G. Moţa, I. Moraru, J. Sjöquist, and V. Gheţie, “Protein a as a molecular probe for the detection of antigen induced conformational change in Fc region of rabbit antibody,” Mol. Immunol. 18, 373–378 (1981).
[Crossref]

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Glynn, B.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36, 56–61 (2012).
[Crossref] [PubMed]

Gould, M.

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101, 221106 (2012).
[Crossref]

Graille, M.

M. Graille, E. A. Stura, A. L. Corper, B. J. Sutton, M. J. Taussig, J.-B. Charbonnier, and G. J. Silverman, “Crystal structure of a staphylococcus aureus protein A domain complexed with the fab fragment of a human IgM antibody: structural basis for recognition of b-cell receptors and superantigen activity,” Proceedings of the National Academy of Sciences 97, 5399–5404 (2000).
[Crossref]

Grillot, F.

F. Grillot, L. Vivien, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24, 891 (2006).
[Crossref]

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall soi waveguides,” IEEE Photon. Tech. Lett. 16, 1661–1663 (2004).
[Crossref]

Grist, S. M.

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, X. Wang, A. Sherwali, J. Kirk, K. C. Cheung, L. Chrostowski, and D. Ratner, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” Proc. SPIE, Biosensing and Nanomedicine VII 9166, 91660M (2014).

S. Talebi Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. TalebiFard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22, 14166–14179 (2014).
[Crossref] [PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
[Crossref] [PubMed]

S. Talebi Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE, Silicon Photonics VIII 8629, 862909 (2013).
[Crossref]

Gröning, P.

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein A on silicon surfaces studied by AFM and XPS,” J. Colloid Interface Sci. 233, 180–189 (2001).
[Crossref]

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
[Crossref]

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26, 1283–1291 (2010).
[Crossref] [PubMed]

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499–9506 (2009).
[Crossref] [PubMed]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Hill, C.

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101, 221106 (2012).
[Crossref]

Hochberg, M.

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101, 221106 (2012).
[Crossref]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
[Crossref]

L. Chrostowski and M. Hochberg, Silicon Photonics Design (Cambridge University Press, 2015).
[Crossref]

Iqbal, M.

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26, 1283–1291 (2010).
[Crossref] [PubMed]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Jaeger, N. A.

Jaeger, N. A. F.

Janz, S.

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. Schmid, E. Post, and et al., “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express 18, 22867–22879 (2010).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Tech. Lett. 18, 2520–2522 (2006).
[Crossref]

Kaplinski, L.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36, 56–61 (2012).
[Crossref] [PubMed]

Khumwan, P.

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, X. Wang, A. Sherwali, J. Kirk, K. C. Cheung, L. Chrostowski, and D. Ratner, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” Proc. SPIE, Biosensing and Nanomedicine VII 9166, 91660M (2014).

Kindt, J. T.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36, 56–61 (2012).
[Crossref] [PubMed]

Kirk, J.

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, X. Wang, A. Sherwali, J. Kirk, K. C. Cheung, L. Chrostowski, and D. Ratner, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” Proc. SPIE, Biosensing and Nanomedicine VII 9166, 91660M (2014).

Kirk, J. T.

Kulik, P.

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, X. Wang, A. Sherwali, J. Kirk, K. C. Cheung, L. Chrostowski, and D. Ratner, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” Proc. SPIE, Biosensing and Nanomedicine VII 9166, 91660M (2014).

Kurg, A.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36, 56–61 (2012).
[Crossref] [PubMed]

Kwok, E.

Lacey, J.

F. Payne and J. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

Lamontagne, B.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Tech. Lett. 18, 2520–2522 (2006).
[Crossref]

Lapointe, J.

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. Schmid, E. Post, and et al., “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express 18, 22867–22879 (2010).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Tech. Lett. 18, 2520–2522 (2006).
[Crossref]

Laval, S.

F. Grillot, L. Vivien, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24, 891 (2006).
[Crossref]

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall soi waveguides,” IEEE Photon. Tech. Lett. 16, 1661–1663 (2004).
[Crossref]

Lechuga, L. M.

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Advances in Optical Technologies 2008383927 (2008).
[Crossref]

Lehmann, R.

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein A on silicon surfaces studied by AFM and XPS,” J. Colloid Interface Sci. 233, 180–189 (2001).
[Crossref]

Lin, C.

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

Luchansky, M. S.

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26, 1283–1291 (2010).
[Crossref] [PubMed]

M. S. Luchansky and R. C. Bailey, “Silicon photonic microring resonators for quantitative cytokine detection and T-cell secretion analysis,” Anal. Chem. 82, 1975–1981 (2010).
[Crossref] [PubMed]

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82, 69–72 (2009).
[Crossref] [PubMed]

Ma, R.

Martin, T. A.

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26, 1283–1291 (2010).
[Crossref] [PubMed]

Millspaugh, A.

S. Talebi Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE, Silicon Photonics VIII 8629, 862909 (2013).
[Crossref]

Moraru, I.

G. Moţa, I. Moraru, J. Sjöquist, and V. Gheţie, “Protein a as a molecular probe for the detection of antigen induced conformational change in Fc region of rabbit antibody,” Mol. Immunol. 18, 373–378 (1981).
[Crossref]

Mota, G.

G. Moţa, I. Moraru, J. Sjöquist, and V. Gheţie, “Protein a as a molecular probe for the detection of antigen induced conformational change in Fc region of rabbit antibody,” Mol. Immunol. 18, 373–378 (1981).
[Crossref]

Myers, E.

J. Arlett, E. Myers, and M. Roukes, “Comparative advantages of mechanical biosensors,” Nature nanotechnology 6, 203–215 (2011).
[Crossref] [PubMed]

Naughton, B. J.

M. R. Tomita, L. S. Russ, R. Sridhar, and B. J. Naughton, “Smart home with healthcare technologies for community-dwelling older adults,” Available as on 13th of March (2012).

Ocheltree, S.

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101, 221106 (2012).
[Crossref]

Ohlendorf, D.

P. C. Weber, D. Ohlendorf, J. Wendoloski, and F. Salemme, “Structural origins of high-affinity biotin binding to streptavidin,” Science 243, 85–88 (1989).
[Crossref] [PubMed]

Pascal, D.

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall soi waveguides,” IEEE Photon. Tech. Lett. 16, 1661–1663 (2004).
[Crossref]

Payne, F.

F. Payne and J. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

Pomerene, A.

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101, 221106 (2012).
[Crossref]

Post, E.

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. Schmid, E. Post, and et al., “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express 18, 22867–22879 (2010).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Tech. Lett. 18, 2520–2522 (2006).
[Crossref]

Qavi, A. J.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36, 56–61 (2012).
[Crossref] [PubMed]

A. J. Qavi and R. C. Bailey, “Multiplexed detection and label-free quantitation of MicroRNAs using arrays of silicon photonic microring resonators,” Angew. Chem. 122, 4712–4715 (2010).
[Crossref]

Ratner, D.

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, X. Wang, A. Sherwali, J. Kirk, K. C. Cheung, L. Chrostowski, and D. Ratner, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” Proc. SPIE, Biosensing and Nanomedicine VII 9166, 91660M (2014).

Ratner, D. M.

Roukes, M.

J. Arlett, E. Myers, and M. Roukes, “Comparative advantages of mechanical biosensors,” Nature nanotechnology 6, 203–215 (2011).
[Crossref] [PubMed]

Russ, L. S.

M. R. Tomita, L. S. Russ, R. Sridhar, and B. J. Naughton, “Smart home with healthcare technologies for community-dwelling older adults,” Available as on 13th of March (2012).

Salemme, F.

P. C. Weber, D. Ohlendorf, J. Wendoloski, and F. Salemme, “Structural origins of high-affinity biotin binding to streptavidin,” Science 243, 85–88 (1989).
[Crossref] [PubMed]

Sánchez del Río, J.

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Advances in Optical Technologies 2008383927 (2008).
[Crossref]

Scheler, O.

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36, 56–61 (2012).
[Crossref] [PubMed]

Schlapbach, L.

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein A on silicon surfaces studied by AFM and XPS,” J. Colloid Interface Sci. 233, 180–189 (2001).
[Crossref]

Schmid, J.

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. Schmid, E. Post, and et al., “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express 18, 22867–22879 (2010).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Tech. Lett. 18, 2520–2522 (2006).
[Crossref]

Schmidt, S.

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, X. Wang, A. Sherwali, J. Kirk, K. C. Cheung, L. Chrostowski, and D. Ratner, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” Proc. SPIE, Biosensing and Nanomedicine VII 9166, 91660M (2014).

S. Schmidt, “Enhancing the performance of silicon photonic biosensors for clinical applications,” Ph.D. thesis, University of Washington (2016).

Schmidt, S. A.

Sepúlveda, B.

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Advances in Optical Technologies 2008383927 (2008).
[Crossref]

Sherwali, A.

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, X. Wang, A. Sherwali, J. Kirk, K. C. Cheung, L. Chrostowski, and D. Ratner, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” Proc. SPIE, Biosensing and Nanomedicine VII 9166, 91660M (2014).

Shi, W.

Shia, W. W.

W. W. Shia and R. C. Bailey, “Single domain antibodies for the detection of ricin using silicon photonic microring resonator arrays,” Anal. Chem. 85, 805–810 (2012).
[Crossref] [PubMed]

Shopova, S.

X. Fan, I. White, S. Shopova, H. Zhu, J. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

Silverman, G. J.

M. Graille, E. A. Stura, A. L. Corper, B. J. Sutton, M. J. Taussig, J.-B. Charbonnier, and G. J. Silverman, “Crystal structure of a staphylococcus aureus protein A domain complexed with the fab fragment of a human IgM antibody: structural basis for recognition of b-cell receptors and superantigen activity,” Proceedings of the National Academy of Sciences 97, 5399–5404 (2000).
[Crossref]

Sjöquist, J.

G. Moţa, I. Moraru, J. Sjöquist, and V. Gheţie, “Protein a as a molecular probe for the detection of antigen induced conformational change in Fc region of rabbit antibody,” Mol. Immunol. 18, 373–378 (1981).
[Crossref]

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Sridhar, R.

M. R. Tomita, L. S. Russ, R. Sridhar, and B. J. Naughton, “Smart home with healthcare technologies for community-dwelling older adults,” Available as on 13th of March (2012).

Stura, E. A.

M. Graille, E. A. Stura, A. L. Corper, B. J. Sutton, M. J. Taussig, J.-B. Charbonnier, and G. J. Silverman, “Crystal structure of a staphylococcus aureus protein A domain complexed with the fab fragment of a human IgM antibody: structural basis for recognition of b-cell receptors and superantigen activity,” Proceedings of the National Academy of Sciences 97, 5399–5404 (2000).
[Crossref]

Sun, Y.

X. Fan, I. White, S. Shopova, H. Zhu, J. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

Suter, J.

X. Fan, I. White, S. Shopova, H. Zhu, J. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

Sutton, B. J.

M. Graille, E. A. Stura, A. L. Corper, B. J. Sutton, M. J. Taussig, J.-B. Charbonnier, and G. J. Silverman, “Crystal structure of a staphylococcus aureus protein A domain complexed with the fab fragment of a human IgM antibody: structural basis for recognition of b-cell receptors and superantigen activity,” Proceedings of the National Academy of Sciences 97, 5399–5404 (2000).
[Crossref]

Talebi Fard, S.

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, X. Wang, A. Sherwali, J. Kirk, K. C. Cheung, L. Chrostowski, and D. Ratner, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” Proc. SPIE, Biosensing and Nanomedicine VII 9166, 91660M (2014).

S. Talebi Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. TalebiFard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22, 14166–14179 (2014).
[Crossref] [PubMed]

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21, 7994–8006 (2013).
[Crossref] [PubMed]

S. Talebi Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE, Silicon Photonics VIII 8629, 862909 (2013).
[Crossref]

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), pp. Th2A–37.

TalebiFard, P.

TalebiFard, S.

S. TalebiFard, “Optical resonator sensors and systems,” Ph.D. thesis, University of British Columbia (2015).

Taussig, M. J.

M. Graille, E. A. Stura, A. L. Corper, B. J. Sutton, M. J. Taussig, J.-B. Charbonnier, and G. J. Silverman, “Crystal structure of a staphylococcus aureus protein A domain complexed with the fab fragment of a human IgM antibody: structural basis for recognition of b-cell receptors and superantigen activity,” Proceedings of the National Academy of Sciences 97, 5399–5404 (2000).
[Crossref]

Teraoka, I.

Thompson, E. R.

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, X. Wang, A. Sherwali, J. Kirk, K. C. Cheung, L. Chrostowski, and D. Ratner, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” Proc. SPIE, Biosensing and Nanomedicine VII 9166, 91660M (2014).

Tomita, M. R.

M. R. Tomita, L. S. Russ, R. Sridhar, and B. J. Naughton, “Smart home with healthcare technologies for community-dwelling older adults,” Available as on 13th of March (2012).

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
[Crossref]

Ultsch, M. H.

W. L. DeLano, M. H. Ultsch, J. A. Wells, and et al., “Convergent solutions to binding at a protein-protein interface,” Science 287, 1279–1283 (2000).
[Crossref] [PubMed]

Vachon, M.

Vivien, L.

F. Grillot, L. Vivien, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24, 891 (2006).
[Crossref]

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall soi waveguides,” IEEE Photon. Tech. Lett. 16, 1661–1663 (2004).
[Crossref]

Vörös, J.

J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87, 553–561 (2004).
[Crossref] [PubMed]

Waldron, P.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Tech. Lett. 18, 2520–2522 (2006).
[Crossref]

Wang, Q.

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, X. Wang, A. Sherwali, J. Kirk, K. C. Cheung, L. Chrostowski, and D. Ratner, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” Proc. SPIE, Biosensing and Nanomedicine VII 9166, 91660M (2014).

Wang, X.

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, X. Wang, A. Sherwali, J. Kirk, K. C. Cheung, L. Chrostowski, and D. Ratner, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” Proc. SPIE, Biosensing and Nanomedicine VII 9166, 91660M (2014).

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
[Crossref] [PubMed]

S. Talebi Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE, Silicon Photonics VIII 8629, 862909 (2013).
[Crossref]

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), pp. Th2A–37.

Wang, Y.

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22, 20652–20662 (2014).
[Crossref] [PubMed]

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), pp. Th2A–37.

Washburn, A. L.

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26, 1283–1291 (2010).
[Crossref] [PubMed]

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499–9506 (2009).
[Crossref] [PubMed]

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82, 69–72 (2009).
[Crossref] [PubMed]

Webb, M.

S. Talebi Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE, Silicon Photonics VIII 8629, 862909 (2013).
[Crossref]

Weber, P. C.

P. C. Weber, D. Ohlendorf, J. Wendoloski, and F. Salemme, “Structural origins of high-affinity biotin binding to streptavidin,” Science 243, 85–88 (1989).
[Crossref] [PubMed]

Wells, J. A.

W. L. DeLano, M. H. Ultsch, J. A. Wells, and et al., “Convergent solutions to binding at a protein-protein interface,” Science 287, 1279–1283 (2000).
[Crossref] [PubMed]

Wendoloski, J.

P. C. Weber, D. Ohlendorf, J. Wendoloski, and F. Salemme, “Structural origins of high-affinity biotin binding to streptavidin,” Science 243, 85–88 (1989).
[Crossref] [PubMed]

White, I.

X. Fan, I. White, S. Shopova, H. Zhu, J. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

Wu, W.

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, X. Wang, A. Sherwali, J. Kirk, K. C. Cheung, L. Chrostowski, and D. Ratner, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” Proc. SPIE, Biosensing and Nanomedicine VII 9166, 91660M (2014).

Wu, Y.

S. Talebi Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. TalebiFard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express 22, 14166–14179 (2014).
[Crossref] [PubMed]

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), pp. Th2A–37.

Xu, D.-X.

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. Schmid, E. Post, and et al., “Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays,” Opt. Express 18, 22867–22879 (2010).
[Crossref] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Tech. Lett. 18, 2520–2522 (2006).
[Crossref]

Yariv, A.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering) (Oxford University Press, Inc., 2006).

Yeh, P.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering) (Oxford University Press, Inc., 2006).

Yun, H.

Zhang, Y.

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101, 221106 (2012).
[Crossref]

Zhu, H.

X. Fan, I. White, S. Shopova, H. Zhu, J. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

Zinoviev, K.

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Advances in Optical Technologies 2008383927 (2008).
[Crossref]

Advances in Optical Technologies (1)

K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Advances in Optical Technologies 2008383927 (2008).
[Crossref]

Anal. Chem. (4)

M. S. Luchansky and R. C. Bailey, “Silicon photonic microring resonators for quantitative cytokine detection and T-cell secretion analysis,” Anal. Chem. 82, 1975–1981 (2010).
[Crossref] [PubMed]

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499–9506 (2009).
[Crossref] [PubMed]

W. W. Shia and R. C. Bailey, “Single domain antibodies for the detection of ricin using silicon photonic microring resonator arrays,” Anal. Chem. 85, 805–810 (2012).
[Crossref] [PubMed]

A. L. Washburn, M. S. Luchansky, A. L. Bowman, and R. C. Bailey, “Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators,” Anal. Chem. 82, 69–72 (2009).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. White, S. Shopova, H. Zhu, J. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref] [PubMed]

Angew. Chem. (1)

A. J. Qavi and R. C. Bailey, “Multiplexed detection and label-free quantitation of MicroRNAs using arrays of silicon photonic microring resonators,” Angew. Chem. 122, 4712–4715 (2010).
[Crossref]

Appl. Phys. Lett. (1)

M. Gould, A. Pomerene, C. Hill, S. Ocheltree, Y. Zhang, T. Baehr-Jones, and M. Hochberg, “Ultra-thin silicon-on-insulator strip waveguides and mode couplers,” Appl. Phys. Lett. 101, 221106 (2012).
[Crossref]

Biological procedures online (1)

H. P. Erickson, “Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy,” Biological procedures online 11, 32–51 (2009).
[Crossref] [PubMed]

Biophys. J. (1)

J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87, 553–561 (2004).
[Crossref] [PubMed]

Biosens. Bioelectron. (2)

O. Scheler, J. T. Kindt, A. J. Qavi, L. Kaplinski, B. Glynn, T. Barry, A. Kurg, and R. C. Bailey, “Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators,” Biosens. Bioelectron. 36, 56–61 (2012).
[Crossref] [PubMed]

M. S. Luchansky, A. L. Washburn, T. A. Martin, M. Iqbal, L. C. Gunn, and R. C. Bailey, “Characterization of the evanescent field profile and bound mass sensitivity of a label-free silicon photonic microring resonator biosensing platform,” Biosens. Bioelectron. 26, 1283–1291 (2010).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Quantum Electron. 16, 654–661 (2010).
[Crossref]

IEEE Photon. Tech. Lett. (2)

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Tech. Lett. 18, 2520–2522 (2006).
[Crossref]

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall soi waveguides,” IEEE Photon. Tech. Lett. 16, 1661–1663 (2004).
[Crossref]

J. Colloid Interface Sci. (1)

M. C. Coen, R. Lehmann, P. Gröning, M. Bielmann, C. Galli, and L. Schlapbach, “Adsorption and bioactivity of protein A on silicon surfaces studied by AFM and XPS,” J. Colloid Interface Sci. 233, 180–189 (2001).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Mol. Immunol. (1)

G. Moţa, I. Moraru, J. Sjöquist, and V. Gheţie, “Protein a as a molecular probe for the detection of antigen induced conformational change in Fc region of rabbit antibody,” Mol. Immunol. 18, 373–378 (1981).
[Crossref]

Nature nanotechnology (1)

J. Arlett, E. Myers, and M. Roukes, “Comparative advantages of mechanical biosensors,” Nature nanotechnology 6, 203–215 (2011).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Quantum Electron. (1)

F. Payne and J. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

Proc. SPIE (1)

Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Universal grating coupler design,” Proc. SPIE 8915, 89150Y (2013).
[Crossref]

Proc. SPIE, Biosensing and Nanomedicine VII (1)

S. Schmidt, J. Flueckiger, W. Wu, S. M. Grist, S. Talebi Fard, V. Donzella, P. Khumwan, E. R. Thompson, Q. Wang, P. Kulik, X. Wang, A. Sherwali, J. Kirk, K. C. Cheung, L. Chrostowski, and D. Ratner, “Improving the performance of silicon photonic rings, disks, and bragg gratings for use in label-free biosensing,” Proc. SPIE, Biosensing and Nanomedicine VII 9166, 91660M (2014).

Proc. SPIE, Silicon Photonics VIII (1)

S. Talebi Fard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” Proc. SPIE, Silicon Photonics VIII 8629, 862909 (2013).
[Crossref]

Proceedings of the National Academy of Sciences (1)

M. Graille, E. A. Stura, A. L. Corper, B. J. Sutton, M. J. Taussig, J.-B. Charbonnier, and G. J. Silverman, “Crystal structure of a staphylococcus aureus protein A domain complexed with the fab fragment of a human IgM antibody: structural basis for recognition of b-cell receptors and superantigen activity,” Proceedings of the National Academy of Sciences 97, 5399–5404 (2000).
[Crossref]

Science (2)

W. L. DeLano, M. H. Ultsch, J. A. Wells, and et al., “Convergent solutions to binding at a protein-protein interface,” Science 287, 1279–1283 (2000).
[Crossref] [PubMed]

P. C. Weber, D. Ohlendorf, J. Wendoloski, and F. Salemme, “Structural origins of high-affinity biotin binding to streptavidin,” Science 243, 85–88 (1989).
[Crossref] [PubMed]

Other (6)

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2014), pp. Th2A–37.

S. Schmidt, “Enhancing the performance of silicon photonic biosensors for clinical applications,” Ph.D. thesis, University of Washington (2016).

M. R. Tomita, L. S. Russ, R. Sridhar, and B. J. Naughton, “Smart home with healthcare technologies for community-dwelling older adults,” Available as on 13th of March (2012).

L. Chrostowski and M. Hochberg, Silicon Photonics Design (Cambridge University Press, 2015).
[Crossref]

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering) (Oxford University Press, Inc., 2006).

S. TalebiFard, “Optical resonator sensors and systems,” Ph.D. thesis, University of British Columbia (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Group indices of slab waveguides as functions of slab thicknesses.
Fig. 2
Fig. 2 (a) Calculated resonator’s sensitivities, based on simulations, as functions of silicon core thicknesses. The hallowed markers are the simulated sensitivities for the case of a slab waveguide, the black filled markers are the simulated sensitivities for the case of rectangular waveguides with waveguide widths of 750 nm and 900 nm, and the red markers are averages of our experimental results for TM ring resonators with 150 nm and 220 nm thick silicon cores. (b) Contour plot of sensitivity in nm/RIU as functions of waveguide widths and thicknesses. The cross-section corresponding to the dashed line representing the slab is plotted in Fig. 2(a), and the other two cross-sections representing the thicknesses of 150 nm and 220 nm are plotted in Fig. 3(d). The red markers show the fabricated TM mode resonator devices (Star: Width = 900 nm and Thickness = 150 nm, Triangle: Width = 750 nm and Thickness = 220 nm).
Fig. 3
Fig. 3 (a, b) Spectra showing that the resonant wavelength shifts as the refractive index of the aqueous cladding medium changes, for the TM resonator sensors with (a) 220 nm thick waveguide cores, and (b) 150 nm thick waveguide cores. (c) Sensitivities of TM waveguide resonators to the aqueous cladding. (d) Sensitivities of TM waveguide resonators to the aqueous cladding, for the optimum silicon core thickness of 150 nm and for the conventional thickness of 220 nm, as functions of the waveguide width. The filled markers show corresponding experimental results. The labels “TM1 is mode 2” and “TM1 is mode 3”, means the first guided TM mode is the second and third guided mode in the waveguide, respectively. The first guided mode is the fundamental TE mode. For the strip waveguides wider than ∼ 650 nm, the first two TE modes are guided before the first TM mode.
Fig. 4
Fig. 4 Experimental results includes the measurement of the wavelength shift over time as the various layers of electrostatically charged polymers were introduced to the surface of our conventional TM resonator sensor. Polymers corresponding to the labels A–D are: A = Tris Buffer (0.5 mM, 100 mM NaCl, pH 7.1); B = PEI (solution of positively charged polyethylene imine, 5 mg/ml); C = PSS (solution of negatively charged polystyrene sulfonate, 5 mg/ml); D = PAH (solution of positively charged polyallylamine hydrochloride, 5 mg/ml).
Fig. 5
Fig. 5 (a) Schematic representation of model biological sandwich bioassay. Reagent sequencing corresponding to regions [A–E] include: Region A= Protein A adsorption, B= anti-streptavidin (Anti-SA) functionalization, C= Bovine Serum Albumin (BSA) challenge and block, D= streptavidin (SA) target analyte binding, E= Biotin-BSA amplification step. Introduction of each reagent was followed by a PBS wash. (b) Experimental results of biosensing assay following the physisorption of Protein A offline (Region A not shown). The blue-dashed vertical line shortly before Region C denotes the unintended introduction of an air bubble. While the air bubble desorbs some of the immobilized antibody, it does not impact the viability of the subsequent binding steps.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n g = n eff λ δ n eff δ λ
Resonator s Sensitivity = S = Δ λ res Δ n c = λ res n g δ n eff δ n c

Metrics