Abstract

Large-scale and label-free phenotyping of cells holds great promise in medicine, especially in cancer diagnostics and prognosis. Here, we introduce inline digital holography microscopy for volumetric imaging of cells in bulk flow and fingerprinting of flowing tumor cells based on two metrics, in-focus scattered intensity and cell diameter. Using planar distribution of immobilized particles, we identify the optimal recording distance and microscope objective magnification that minimizes the error in measurement of particle position, size and scattered intensity. Using the optimized conditions and the two metrics, we demonstrate the capacity to enumerate and fingerprint more than 100,000 cells. Finally, we highlight the power of our label-free and high throughput technology by characterizing breast tumor cell lines with different metastatic potentials and distinguishing drug resistant ovarian cancer cells from their parental cell line.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Label-free rapid identification of tumor cells and blood cells with silver film SERS substrate

Y. J. Zhang, Q. Y. Zeng, L. F. Li, M. N. Qi, Q. C. Qi, S. X. Li, and J. F. Xu
Opt. Express 26(25) 33044-33056 (2018)

In vivo imaging and quantitative analysis of zebrafish embryos by digital holographic microscopy

Jian Gao, Joseph A. Lyon, Daniel P. Szeto, and Jun Chen
Biomed. Opt. Express 3(10) 2623-2635 (2012)

Live tissue viability and chemosensitivity assays using digital holographic motility contrast imaging

Ran An, John Turek, Daniela Elena Matei, and David Nolte
Appl. Opt. 52(1) A300-A309 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Boutros, F. Heigwer, and C. Laufer, “Microscopy-based high-content screening,” Cell 163(6), 1314–1325 (2015).
    [Crossref] [PubMed]
  2. K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
    [Crossref] [PubMed]
  3. Y. Fang, “Label-free drug discovery,” Front. Pharmacol. 5, 52 (2014).
    [Crossref] [PubMed]
  4. K. Alm, Z. El-Schich, M. Falck, A. Gjrloff Wingren, B. Janicke, and S. Oredsso, “Cells and Holograms – Holograms and Digital Holographic Microscopy as a Tool to Study the Morphology of Living Cells,” in Holography - Basic Principles and Contemporary Applications, E. Mihaylova., ed. (InTech, 2013).
  5. B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
    [Crossref] [PubMed]
  6. A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic Identification of Malaria-Infected RBC With Digital Holographic Microscopy Using Correlation Algorithms,” IEEE Photonics J. 4(5), 1456–1464 (2012).
    [Crossref]
  7. I. Moon, B. Javidi, F. Yi, D. Boss, and P. Marquet, “Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells,” Opt. Express 20(9), 10295–10309 (2012).
    [Crossref] [PubMed]
  8. K. Jaferzadeh and I. Moon, “Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy,” J. Biomed. Opt. 20(11), 111218 (2015).
    [Crossref] [PubMed]
  9. S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T. W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
    [Crossref] [PubMed]
  10. K. Z. Boudejltia, D. Ribeiro de Sousa, P. Uzureau, C. Yourassowsky, D. Perez-Morga, G. Courbebaisse, B. Chopard, and F. Dubois, “Quantitative analysis of platelets aggregates in 3D by digital holographic microscopy,” Biomed. Opt. Express 6(9), 3556–3563 (2015).
    [Crossref] [PubMed]
  11. B. Rappaz, B. Breton, E. Shaffer, and G. Turcatti, “Digital holographic microscopy: a quantitative label-free microscopy technique for phenotypic screening,” Comb. Chem. High Throughput Screen. 17(1), 80–88 (2014).
    [Crossref] [PubMed]
  12. N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS One 7(1), e30912 (2012).
    [Crossref] [PubMed]
  13. A. E. Ekpenyong, S. M. Man, S. Achouri, C. E. Bryant, J. Guck, and K. J. Chalut, “Bacterial infection of macrophages induces decrease in refractive index,” J. Biophotonics 6(5), 393–397 (2013).
    [Crossref] [PubMed]
  14. M. Falck Miniotis, A. Mukwaya, and A. Gjörloff Wingren, “Digital holographic microscopy for non-invasive monitoring of cell cycle arrest in L929 cells,” PLoS One 9(9), e106546 (2014).
    [Crossref] [PubMed]
  15. L. Tian, N. Loomis, J. A. Domínguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography,” Appl. Opt. 49(9), 1549–1554 (2010).
    [Crossref] [PubMed]
  16. Y.-S. Choi and S.-J. Lee, “Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy,” Appl. Opt. 48(16), 2983–2990 (2009).
    [Crossref] [PubMed]
  17. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45(16), 3893–3901 (2006).
    [Crossref] [PubMed]
  18. X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53(11), 112306 (2014).
    [Crossref]
  19. D. K. Singh and P. K. Panigrahi, “Three-dimensional investigation of liquid slug Taylor flow inside a micro-capillary using holographic velocimetry,” Exp. Fluids 56(1), 1–15 (2015).
    [Crossref]
  20. H. B. Evans, S. Gorumlu, B. Aksak, L. Castillo, and J. Sheng, “Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars,” Sci. Rep. 6, 28753 (2016).
  21. F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, and A. Gambale, “Tomographic Flow Cytometry by Digital Holography,” Light Sci. Appl., accepted article preview 17 October 2016 (2016).
  22. K. Won Seo, Y. Ran Ha, and S. Joon Lee, “Vertical focusing and cell ordering in a microchannel via viscoelasticity: Applications for cell monitoring using a digital holographic microscopy,” Appl. Phys. Lett. 104(21), 213702 (2014).
    [Crossref]
  23. D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
    [Crossref] [PubMed]
  24. F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
    [Crossref] [PubMed]
  25. E. M. Zetsche, A. El Mallahi, F. Dubois, C. Yourassowsky, J. C. Kromkamp, and F. J. Meysman, “Imaging‐in‐Flow: Digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms,” Limnol. Oceanogr. Methods 12(11), 757–775 (2014).
    [Crossref]
  26. C. Yourassowsky and F. Dubois, “High throughput holographic imaging-in-flow for the analysis of a wide plankton size range,” Opt. Express 22(6), 6661–6673 (2014).
    [Crossref] [PubMed]
  27. Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
    [Crossref] [PubMed]
  28. Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
    [Crossref] [PubMed]
  29. Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
    [Crossref] [PubMed]
  30. E. M. Zetsche, A. El Mallahi, F. Dubois, C. Yourassowsky, J. C. Kromkamp, and F. J. Meysman, “Imaging‐in‐Flow: Digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms,” Limnol. Oceanogr. Methods 12(11), 757–775 (2014).
    [Crossref]
  31. K. Won Seo, Y. Ran Ha, and S. Joon Lee, “Vertical focusing and cell ordering in a microchannel via viscoelasticity: Applications for cell monitoring using a digital holographic microscopy,” Appl. Phys. Lett. 104(21), 213702 (2014).
    [Crossref]
  32. Q. Chang and D. Hedley, “Emerging applications of flow cytometry in solid tumor biology,” Methods 57(3), 359–367 (2012).
    [Crossref] [PubMed]
  33. K. Truong, P. Vielh, B. Malfoy, J. Klijanienko, B. Dutrillaux, and C. A. Bourgeois, “Fluorescence-based analysis of DNA ploidy and cell proliferation within fine-needle samplings of breast tumors: a new approach using automated image cytometry,” Cancer 84(5), 309–316 (1998).
    [Crossref] [PubMed]
  34. W. Bishara, H. Zhu, and A. Ozcan, “Holographic opto-fluidic microscopy,” Opt. Express 18(26), 27499–27510 (2010).
    [Crossref] [PubMed]
  35. W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
    [Crossref] [PubMed]
  36. O. Mudanyali, C. Oztoprak, D. Tseng, A. Erlinger, and A. Ozcan, “Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy,” Lab Chip 10(18), 2419–2423 (2010).
    [Crossref] [PubMed]
  37. W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4(3), e261 (2015).
    [Crossref]
  38. V. Bianco, M. Paturzo, and P. Ferraro, “Spatio-temporal scanning modality for synthesizing interferograms and digital holograms,” Opt. Express 22(19), 22328–22339 (2014).
    [Crossref] [PubMed]
  39. V. Bianco, M. Paturzo, V. Marchesano, I. Gallotta, E. Di Schiavi, and P. Ferraro, “Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector,” Lab Chip 15(9), 2117–2124 (2015).
    [Crossref] [PubMed]
  40. M. K. Kim, “Principles and techniques of digital holographic microscopy,” J. Photonics for Energy 1, 018005 (2010).
  41. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York 1968).
  42. T. Kreis, Handbook of Holographic Interferometry Optical and Digital Methods (WILEY-VCH Verlag GmbH & Co., KGaA, 2005).
  43. X. Wang, E. Wu, J. Wu, T. L. Wang, H. P. Hsieh, and X. Liu, “An antimitotic and antivascular agent BPR0L075 overcomes multidrug resistance and induces mitotic catastrophe in paclitaxel-resistant ovarian cancer cells,” PLoS One 8(6), e65686 (2013).
    [Crossref] [PubMed]
  44. D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
    [Crossref] [PubMed]
  45. D. K. Singh and P. K. Panigrahi, “Automatic threshold technique for holographic particle field characterization,” Appl. Opt. 51(17), 3874–3887 (2012).
    [Crossref] [PubMed]
  46. D. K. Singh and P. K. Panigrahi, “Improved digital holographic reconstruction algorithm for depth error reduction and elimination of out-of-focus particles,” Opt. Express 18(3), 2426–2448 (2010).
    [Crossref] [PubMed]
  47. Y.-S. Choi and S.-J. Lee, “High-accuracy three-dimensional position measurement of tens of micrometers size transparent microspheres using digital in-line holographic microscopy,” Opt. Lett. 36(21), 4167–4169 (2011).
    [Crossref] [PubMed]
  48. P. F. Mullaney, M. A. Van Dilla, J. R. Coulter, and P. N. Dean, “Cell sizing: a light scattering photometer for rapid volume determination,” Rev. Sci. Instrum. 40(8), 1029–1032 (1969).
    [Crossref] [PubMed]
  49. C. L. Sommers, S. W. Byers, E. W. Thompson, J. A. Torri, and E. P. Gelmann, “Differentiation state and invasiveness of human breast cancer cell lines,” Breast Cancer Res. Treat. 31(2-3), 325–335 (1994).
    [Crossref] [PubMed]
  50. P. J. Coopman, M. T. Do, M. Barth, E. T. Bowden, A. J. Hayes, E. Basyuk, J. K. Blancato, P. R. Vezza, S. W. McLeskey, P. H. Mangeat, and S. C. Mueller, “The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells,” Nature 406(6797), 742–747 (2000).
    [Crossref] [PubMed]
  51. M. Matrecano, M. Paturzo, and P. Ferraro, “Extended focus imaging in digital holographic microscopy: a review,” OPTICE 53(11), 112317 (2014).
    [Crossref]
  52. A. L. X. Liang, C. Lim, T. Ayi, and P. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sensor Actuat. A-Phys. 133, 349–354 (2007).

2016 (1)

H. B. Evans, S. Gorumlu, B. Aksak, L. Castillo, and J. Sheng, “Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars,” Sci. Rep. 6, 28753 (2016).

2015 (7)

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
[Crossref] [PubMed]

K. Jaferzadeh and I. Moon, “Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy,” J. Biomed. Opt. 20(11), 111218 (2015).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, V. Marchesano, I. Gallotta, E. Di Schiavi, and P. Ferraro, “Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector,” Lab Chip 15(9), 2117–2124 (2015).
[Crossref] [PubMed]

D. K. Singh and P. K. Panigrahi, “Three-dimensional investigation of liquid slug Taylor flow inside a micro-capillary using holographic velocimetry,” Exp. Fluids 56(1), 1–15 (2015).
[Crossref]

W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4(3), e261 (2015).
[Crossref]

M. Boutros, F. Heigwer, and C. Laufer, “Microscopy-based high-content screening,” Cell 163(6), 1314–1325 (2015).
[Crossref] [PubMed]

K. Z. Boudejltia, D. Ribeiro de Sousa, P. Uzureau, C. Yourassowsky, D. Perez-Morga, G. Courbebaisse, B. Chopard, and F. Dubois, “Quantitative analysis of platelets aggregates in 3D by digital holographic microscopy,” Biomed. Opt. Express 6(9), 3556–3563 (2015).
[Crossref] [PubMed]

2014 (14)

C. Yourassowsky and F. Dubois, “High throughput holographic imaging-in-flow for the analysis of a wide plankton size range,” Opt. Express 22(6), 6661–6673 (2014).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, and P. Ferraro, “Spatio-temporal scanning modality for synthesizing interferograms and digital holograms,” Opt. Express 22(19), 22328–22339 (2014).
[Crossref] [PubMed]

M. Matrecano, M. Paturzo, and P. Ferraro, “Extended focus imaging in digital holographic microscopy: a review,” OPTICE 53(11), 112317 (2014).
[Crossref]

Y. Fang, “Label-free drug discovery,” Front. Pharmacol. 5, 52 (2014).
[Crossref] [PubMed]

B. Rappaz, B. Breton, E. Shaffer, and G. Turcatti, “Digital holographic microscopy: a quantitative label-free microscopy technique for phenotypic screening,” Comb. Chem. High Throughput Screen. 17(1), 80–88 (2014).
[Crossref] [PubMed]

E. M. Zetsche, A. El Mallahi, F. Dubois, C. Yourassowsky, J. C. Kromkamp, and F. J. Meysman, “Imaging‐in‐Flow: Digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms,” Limnol. Oceanogr. Methods 12(11), 757–775 (2014).
[Crossref]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

E. M. Zetsche, A. El Mallahi, F. Dubois, C. Yourassowsky, J. C. Kromkamp, and F. J. Meysman, “Imaging‐in‐Flow: Digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms,” Limnol. Oceanogr. Methods 12(11), 757–775 (2014).
[Crossref]

K. Won Seo, Y. Ran Ha, and S. Joon Lee, “Vertical focusing and cell ordering in a microchannel via viscoelasticity: Applications for cell monitoring using a digital holographic microscopy,” Appl. Phys. Lett. 104(21), 213702 (2014).
[Crossref]

K. Won Seo, Y. Ran Ha, and S. Joon Lee, “Vertical focusing and cell ordering in a microchannel via viscoelasticity: Applications for cell monitoring using a digital holographic microscopy,” Appl. Phys. Lett. 104(21), 213702 (2014).
[Crossref]

M. Falck Miniotis, A. Mukwaya, and A. Gjörloff Wingren, “Digital holographic microscopy for non-invasive monitoring of cell cycle arrest in L929 cells,” PLoS One 9(9), e106546 (2014).
[Crossref] [PubMed]

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53(11), 112306 (2014).
[Crossref]

2013 (3)

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

X. Wang, E. Wu, J. Wu, T. L. Wang, H. P. Hsieh, and X. Liu, “An antimitotic and antivascular agent BPR0L075 overcomes multidrug resistance and induces mitotic catastrophe in paclitaxel-resistant ovarian cancer cells,” PLoS One 8(6), e65686 (2013).
[Crossref] [PubMed]

A. E. Ekpenyong, S. M. Man, S. Achouri, C. E. Bryant, J. Guck, and K. J. Chalut, “Bacterial infection of macrophages induces decrease in refractive index,” J. Biophotonics 6(5), 393–397 (2013).
[Crossref] [PubMed]

2012 (6)

A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic Identification of Malaria-Infected RBC With Digital Holographic Microscopy Using Correlation Algorithms,” IEEE Photonics J. 4(5), 1456–1464 (2012).
[Crossref]

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS One 7(1), e30912 (2012).
[Crossref] [PubMed]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Q. Chang and D. Hedley, “Emerging applications of flow cytometry in solid tumor biology,” Methods 57(3), 359–367 (2012).
[Crossref] [PubMed]

I. Moon, B. Javidi, F. Yi, D. Boss, and P. Marquet, “Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells,” Opt. Express 20(9), 10295–10309 (2012).
[Crossref] [PubMed]

D. K. Singh and P. K. Panigrahi, “Automatic threshold technique for holographic particle field characterization,” Appl. Opt. 51(17), 3874–3887 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (7)

2009 (1)

2008 (1)

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

2007 (1)

A. L. X. Liang, C. Lim, T. Ayi, and P. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sensor Actuat. A-Phys. 133, 349–354 (2007).

2006 (1)

2000 (1)

P. J. Coopman, M. T. Do, M. Barth, E. T. Bowden, A. J. Hayes, E. Basyuk, J. K. Blancato, P. R. Vezza, S. W. McLeskey, P. H. Mangeat, and S. C. Mueller, “The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells,” Nature 406(6797), 742–747 (2000).
[Crossref] [PubMed]

1998 (2)

K. Truong, P. Vielh, B. Malfoy, J. Klijanienko, B. Dutrillaux, and C. A. Bourgeois, “Fluorescence-based analysis of DNA ploidy and cell proliferation within fine-needle samplings of breast tumors: a new approach using automated image cytometry,” Cancer 84(5), 309–316 (1998).
[Crossref] [PubMed]

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

1994 (1)

C. L. Sommers, S. W. Byers, E. W. Thompson, J. A. Torri, and E. P. Gelmann, “Differentiation state and invasiveness of human breast cancer cell lines,” Breast Cancer Res. Treat. 31(2-3), 325–335 (1994).
[Crossref] [PubMed]

1969 (1)

P. F. Mullaney, M. A. Van Dilla, J. R. Coulter, and P. N. Dean, “Cell sizing: a light scattering photometer for rapid volume determination,” Rev. Sci. Instrum. 40(8), 1029–1032 (1969).
[Crossref] [PubMed]

Achouri, S.

A. E. Ekpenyong, S. M. Man, S. Achouri, C. E. Bryant, J. Guck, and K. J. Chalut, “Bacterial infection of macrophages induces decrease in refractive index,” J. Biophotonics 6(5), 393–397 (2013).
[Crossref] [PubMed]

Adam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Aksak, B.

H. B. Evans, S. Gorumlu, B. Aksak, L. Castillo, and J. Sheng, “Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars,” Sci. Rep. 6, 28753 (2016).

Anand, A.

A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic Identification of Malaria-Infected RBC With Digital Holographic Microscopy Using Correlation Algorithms,” IEEE Photonics J. 4(5), 1456–1464 (2012).
[Crossref]

Ayazi, A.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Ayi, T.

A. L. X. Liang, C. Lim, T. Ayi, and P. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sensor Actuat. A-Phys. 133, 349–354 (2007).

Balduzzi, D.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Barbastathis, G.

Barbul, A.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Barth, M.

P. J. Coopman, M. T. Do, M. Barth, E. T. Bowden, A. J. Hayes, E. Basyuk, J. K. Blancato, P. R. Vezza, S. W. McLeskey, P. H. Mangeat, and S. C. Mueller, “The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells,” Nature 406(6797), 742–747 (2000).
[Crossref] [PubMed]

Basyuk, E.

P. J. Coopman, M. T. Do, M. Barth, E. T. Bowden, A. J. Hayes, E. Basyuk, J. K. Blancato, P. R. Vezza, S. W. McLeskey, P. H. Mangeat, and S. C. Mueller, “The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells,” Nature 406(6797), 742–747 (2000).
[Crossref] [PubMed]

Bianco, V.

V. Bianco, M. Paturzo, V. Marchesano, I. Gallotta, E. Di Schiavi, and P. Ferraro, “Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector,” Lab Chip 15(9), 2117–2124 (2015).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, and P. Ferraro, “Spatio-temporal scanning modality for synthesizing interferograms and digital holograms,” Opt. Express 22(19), 22328–22339 (2014).
[Crossref] [PubMed]

Bishara, W.

Blancato, J. K.

P. J. Coopman, M. T. Do, M. Barth, E. T. Bowden, A. J. Hayes, E. Basyuk, J. K. Blancato, P. R. Vezza, S. W. McLeskey, P. H. Mangeat, and S. C. Mueller, “The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells,” Nature 406(6797), 742–747 (2000).
[Crossref] [PubMed]

Boss, D.

Boudejltia, K. Z.

Bourgeois, C. A.

K. Truong, P. Vielh, B. Malfoy, J. Klijanienko, B. Dutrillaux, and C. A. Bourgeois, “Fluorescence-based analysis of DNA ploidy and cell proliferation within fine-needle samplings of breast tumors: a new approach using automated image cytometry,” Cancer 84(5), 309–316 (1998).
[Crossref] [PubMed]

Boutros, M.

M. Boutros, F. Heigwer, and C. Laufer, “Microscopy-based high-content screening,” Cell 163(6), 1314–1325 (2015).
[Crossref] [PubMed]

Bowden, E. T.

P. J. Coopman, M. T. Do, M. Barth, E. T. Bowden, A. J. Hayes, E. Basyuk, J. K. Blancato, P. R. Vezza, S. W. McLeskey, P. H. Mangeat, and S. C. Mueller, “The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells,” Nature 406(6797), 742–747 (2000).
[Crossref] [PubMed]

Brackbill, N.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Breton, B.

B. Rappaz, B. Breton, E. Shaffer, and G. Turcatti, “Digital holographic microscopy: a quantitative label-free microscopy technique for phenotypic screening,” Comb. Chem. High Throughput Screen. 17(1), 80–88 (2014).
[Crossref] [PubMed]

Bryant, C. E.

A. E. Ekpenyong, S. M. Man, S. Achouri, C. E. Bryant, J. Guck, and K. J. Chalut, “Bacterial infection of macrophages induces decrease in refractive index,” J. Biophotonics 6(5), 393–397 (2013).
[Crossref] [PubMed]

Byers, S. W.

C. L. Sommers, S. W. Byers, E. W. Thompson, J. A. Torri, and E. P. Gelmann, “Differentiation state and invasiveness of human breast cancer cell lines,” Breast Cancer Res. Treat. 31(2-3), 325–335 (1994).
[Crossref] [PubMed]

Castillo, L.

H. B. Evans, S. Gorumlu, B. Aksak, L. Castillo, and J. Sheng, “Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars,” Sci. Rep. 6, 28753 (2016).

Chalut, K. J.

A. E. Ekpenyong, S. M. Man, S. Achouri, C. E. Bryant, J. Guck, and K. J. Chalut, “Bacterial infection of macrophages induces decrease in refractive index,” J. Biophotonics 6(5), 393–397 (2013).
[Crossref] [PubMed]

Chang, Q.

Q. Chang and D. Hedley, “Emerging applications of flow cytometry in solid tumor biology,” Methods 57(3), 359–367 (2012).
[Crossref] [PubMed]

Chhaniwal, V. K.

A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic Identification of Malaria-Infected RBC With Digital Holographic Microscopy Using Correlation Algorithms,” IEEE Photonics J. 4(5), 1456–1464 (2012).
[Crossref]

Choi, W.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Choi, Y.-S.

Chopard, B.

Coopman, P. J.

P. J. Coopman, M. T. Do, M. Barth, E. T. Bowden, A. J. Hayes, E. Basyuk, J. K. Blancato, P. R. Vezza, S. W. McLeskey, P. H. Mangeat, and S. C. Mueller, “The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells,” Nature 406(6797), 742–747 (2000).
[Crossref] [PubMed]

Coppola, G.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Coskun, A. F.

Coulter, J. R.

P. F. Mullaney, M. A. Van Dilla, J. R. Coulter, and P. N. Dean, “Cell sizing: a light scattering photometer for rapid volume determination,” Rev. Sci. Instrum. 40(8), 1029–1032 (1969).
[Crossref] [PubMed]

Courbebaisse, G.

Dasari, R. R.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

de Wijs, K.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
[Crossref] [PubMed]

Dean, P. N.

P. F. Mullaney, M. A. Van Dilla, J. R. Coulter, and P. N. Dean, “Cell sizing: a light scattering photometer for rapid volume determination,” Rev. Sci. Instrum. 40(8), 1029–1032 (1969).
[Crossref] [PubMed]

Depeursinge, C.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS One 7(1), e30912 (2012).
[Crossref] [PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Di Caprio, G.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Di Carlo, D.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Di Schiavi, E.

V. Bianco, M. Paturzo, V. Marchesano, I. Gallotta, E. Di Schiavi, and P. Ferraro, “Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector,” Lab Chip 15(9), 2117–2124 (2015).
[Crossref] [PubMed]

Do, M. T.

P. J. Coopman, M. T. Do, M. Barth, E. T. Bowden, A. J. Hayes, E. Basyuk, J. K. Blancato, P. R. Vezza, S. W. McLeskey, P. H. Mangeat, and S. C. Mueller, “The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells,” Nature 406(6797), 742–747 (2000).
[Crossref] [PubMed]

Domínguez-Caballero, J. A.

Dubois, F.

K. Z. Boudejltia, D. Ribeiro de Sousa, P. Uzureau, C. Yourassowsky, D. Perez-Morga, G. Courbebaisse, B. Chopard, and F. Dubois, “Quantitative analysis of platelets aggregates in 3D by digital holographic microscopy,” Biomed. Opt. Express 6(9), 3556–3563 (2015).
[Crossref] [PubMed]

C. Yourassowsky and F. Dubois, “High throughput holographic imaging-in-flow for the analysis of a wide plankton size range,” Opt. Express 22(6), 6661–6673 (2014).
[Crossref] [PubMed]

E. M. Zetsche, A. El Mallahi, F. Dubois, C. Yourassowsky, J. C. Kromkamp, and F. J. Meysman, “Imaging‐in‐Flow: Digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms,” Limnol. Oceanogr. Methods 12(11), 757–775 (2014).
[Crossref]

E. M. Zetsche, A. El Mallahi, F. Dubois, C. Yourassowsky, J. C. Kromkamp, and F. J. Meysman, “Imaging‐in‐Flow: Digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms,” Limnol. Oceanogr. Methods 12(11), 757–775 (2014).
[Crossref]

Duffy, D. C.

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

Dusa, A.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
[Crossref] [PubMed]

Dutrillaux, B.

K. Truong, P. Vielh, B. Malfoy, J. Klijanienko, B. Dutrillaux, and C. A. Bourgeois, “Fluorescence-based analysis of DNA ploidy and cell proliferation within fine-needle samplings of breast tumors: a new approach using automated image cytometry,” Cancer 84(5), 309–316 (1998).
[Crossref] [PubMed]

Ekpenyong, A. E.

A. E. Ekpenyong, S. M. Man, S. Achouri, C. E. Bryant, J. Guck, and K. J. Chalut, “Bacterial infection of macrophages induces decrease in refractive index,” J. Biophotonics 6(5), 393–397 (2013).
[Crossref] [PubMed]

El Mallahi, A.

E. M. Zetsche, A. El Mallahi, F. Dubois, C. Yourassowsky, J. C. Kromkamp, and F. J. Meysman, “Imaging‐in‐Flow: Digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms,” Limnol. Oceanogr. Methods 12(11), 757–775 (2014).
[Crossref]

E. M. Zetsche, A. El Mallahi, F. Dubois, C. Yourassowsky, J. C. Kromkamp, and F. J. Meysman, “Imaging‐in‐Flow: Digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms,” Limnol. Oceanogr. Methods 12(11), 757–775 (2014).
[Crossref]

Emery, Y.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Erlinger, A.

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T. W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[Crossref] [PubMed]

O. Mudanyali, C. Oztoprak, D. Tseng, A. Erlinger, and A. Ozcan, “Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy,” Lab Chip 10(18), 2419–2423 (2010).
[Crossref] [PubMed]

Evans, H. B.

H. B. Evans, S. Gorumlu, B. Aksak, L. Castillo, and J. Sheng, “Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars,” Sci. Rep. 6, 28753 (2016).

Falck Miniotis, M.

M. Falck Miniotis, A. Mukwaya, and A. Gjörloff Wingren, “Digital holographic microscopy for non-invasive monitoring of cell cycle arrest in L929 cells,” PLoS One 9(9), e106546 (2014).
[Crossref] [PubMed]

Fang, Y.

Y. Fang, “Label-free drug discovery,” Front. Pharmacol. 5, 52 (2014).
[Crossref] [PubMed]

Fard, A. M.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Ferraro, P.

V. Bianco, M. Paturzo, V. Marchesano, I. Gallotta, E. Di Schiavi, and P. Ferraro, “Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector,” Lab Chip 15(9), 2117–2124 (2015).
[Crossref] [PubMed]

M. Matrecano, M. Paturzo, and P. Ferraro, “Extended focus imaging in digital holographic microscopy: a review,” OPTICE 53(11), 112317 (2014).
[Crossref]

V. Bianco, M. Paturzo, and P. Ferraro, “Spatio-temporal scanning modality for synthesizing interferograms and digital holograms,” Opt. Express 22(19), 22328–22339 (2014).
[Crossref] [PubMed]

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Galli, A.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Gallotta, I.

V. Bianco, M. Paturzo, V. Marchesano, I. Gallotta, E. Di Schiavi, and P. Ferraro, “Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector,” Lab Chip 15(9), 2117–2124 (2015).
[Crossref] [PubMed]

Gelmann, E. P.

C. L. Sommers, S. W. Byers, E. W. Thompson, J. A. Torri, and E. P. Gelmann, “Differentiation state and invasiveness of human breast cancer cell lines,” Breast Cancer Res. Treat. 31(2-3), 325–335 (1994).
[Crossref] [PubMed]

Gjörloff Wingren, A.

M. Falck Miniotis, A. Mukwaya, and A. Gjörloff Wingren, “Digital holographic microscopy for non-invasive monitoring of cell cycle arrest in L929 cells,” PLoS One 9(9), e106546 (2014).
[Crossref] [PubMed]

Goda, K.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Gorumlu, S.

H. B. Evans, S. Gorumlu, B. Aksak, L. Castillo, and J. Sheng, “Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars,” Sci. Rep. 6, 28753 (2016).

Gossett, D. R.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Greenbaum, A.

W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4(3), e261 (2015).
[Crossref]

Guck, J.

A. E. Ekpenyong, S. M. Man, S. Achouri, C. E. Bryant, J. Guck, and K. J. Chalut, “Bacterial infection of macrophages induces decrease in refractive index,” J. Biophotonics 6(5), 393–397 (2013).
[Crossref] [PubMed]

Hamza, B.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Hayes, A. J.

P. J. Coopman, M. T. Do, M. Barth, E. T. Bowden, A. J. Hayes, E. Basyuk, J. K. Blancato, P. R. Vezza, S. W. McLeskey, P. H. Mangeat, and S. C. Mueller, “The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells,” Nature 406(6797), 742–747 (2000).
[Crossref] [PubMed]

Hedley, D.

Q. Chang and D. Hedley, “Emerging applications of flow cytometry in solid tumor biology,” Methods 57(3), 359–367 (2012).
[Crossref] [PubMed]

Heigwer, F.

M. Boutros, F. Heigwer, and C. Laufer, “Microscopy-based high-content screening,” Cell 163(6), 1314–1325 (2015).
[Crossref] [PubMed]

Hong, J.

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53(11), 112306 (2014).
[Crossref]

Hsieh, H. P.

X. Wang, E. Wu, J. Wu, T. L. Wang, H. P. Hsieh, and X. Liu, “An antimitotic and antivascular agent BPR0L075 overcomes multidrug resistance and induces mitotic catastrophe in paclitaxel-resistant ovarian cancer cells,” PLoS One 8(6), e65686 (2013).
[Crossref] [PubMed]

Hur, S. C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Irimia, D.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Isikman, S. O.

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T. W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[Crossref] [PubMed]

Jaferzadeh, K.

K. Jaferzadeh and I. Moon, “Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy,” J. Biomed. Opt. 20(11), 111218 (2015).
[Crossref] [PubMed]

Jalali, B.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Javidi, B.

A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic Identification of Malaria-Infected RBC With Digital Holographic Microscopy Using Correlation Algorithms,” IEEE Photonics J. 4(5), 1456–1464 (2012).
[Crossref]

I. Moon, B. Javidi, F. Yi, D. Boss, and P. Marquet, “Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells,” Opt. Express 20(9), 10295–10309 (2012).
[Crossref] [PubMed]

Joon Lee, S.

K. Won Seo, Y. Ran Ha, and S. Joon Lee, “Vertical focusing and cell ordering in a microchannel via viscoelasticity: Applications for cell monitoring using a digital holographic microscopy,” Appl. Phys. Lett. 104(21), 213702 (2014).
[Crossref]

K. Won Seo, Y. Ran Ha, and S. Joon Lee, “Vertical focusing and cell ordering in a microchannel via viscoelasticity: Applications for cell monitoring using a digital holographic microscopy,” Appl. Phys. Lett. 104(21), 213702 (2014).
[Crossref]

Jourdain, P.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS One 7(1), e30912 (2012).
[Crossref] [PubMed]

Katz, J.

Kim, M. K.

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53(11), 112306 (2014).
[Crossref]

M. K. Kim, “Principles and techniques of digital holographic microscopy,” J. Photonics for Energy 1, 018005 (2010).

Klijanienko, J.

K. Truong, P. Vielh, B. Malfoy, J. Klijanienko, B. Dutrillaux, and C. A. Bourgeois, “Fluorescence-based analysis of DNA ploidy and cell proliferation within fine-needle samplings of breast tumors: a new approach using automated image cytometry,” Cancer 84(5), 309–316 (1998).
[Crossref] [PubMed]

Korenstein, R.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Kromkamp, J. C.

E. M. Zetsche, A. El Mallahi, F. Dubois, C. Yourassowsky, J. C. Kromkamp, and F. J. Meysman, “Imaging‐in‐Flow: Digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms,” Limnol. Oceanogr. Methods 12(11), 757–775 (2014).
[Crossref]

E. M. Zetsche, A. El Mallahi, F. Dubois, C. Yourassowsky, J. C. Kromkamp, and F. J. Meysman, “Imaging‐in‐Flow: Digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms,” Limnol. Oceanogr. Methods 12(11), 757–775 (2014).
[Crossref]

Kühn, J.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS One 7(1), e30912 (2012).
[Crossref] [PubMed]

Lagae, L.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
[Crossref] [PubMed]

Laufer, C.

M. Boutros, F. Heigwer, and C. Laufer, “Microscopy-based high-content screening,” Cell 163(6), 1314–1325 (2015).
[Crossref] [PubMed]

Lee, S.-J.

Liang, A. L. X.

A. L. X. Liang, C. Lim, T. Ayi, and P. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sensor Actuat. A-Phys. 133, 349–354 (2007).

Lim, C.

A. L. X. Liang, C. Lim, T. Ayi, and P. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sensor Actuat. A-Phys. 133, 349–354 (2007).

Liu, C.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
[Crossref] [PubMed]

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53(11), 112306 (2014).
[Crossref]

Liu, X.

X. Wang, E. Wu, J. Wu, T. L. Wang, H. P. Hsieh, and X. Liu, “An antimitotic and antivascular agent BPR0L075 overcomes multidrug resistance and induces mitotic catastrophe in paclitaxel-resistant ovarian cancer cells,” PLoS One 8(6), e65686 (2013).
[Crossref] [PubMed]

Lonappan, C. K.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Loomis, N.

Lue, N.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Luo, W.

W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4(3), e261 (2015).
[Crossref]

Magistretti, P. J.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS One 7(1), e30912 (2012).
[Crossref] [PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Malfoy, B.

K. Truong, P. Vielh, B. Malfoy, J. Klijanienko, B. Dutrillaux, and C. A. Bourgeois, “Fluorescence-based analysis of DNA ploidy and cell proliferation within fine-needle samplings of breast tumors: a new approach using automated image cytometry,” Cancer 84(5), 309–316 (1998).
[Crossref] [PubMed]

Malkiel, E.

Man, S. M.

A. E. Ekpenyong, S. M. Man, S. Achouri, C. E. Bryant, J. Guck, and K. J. Chalut, “Bacterial infection of macrophages induces decrease in refractive index,” J. Biophotonics 6(5), 393–397 (2013).
[Crossref] [PubMed]

Mangeat, P. H.

P. J. Coopman, M. T. Do, M. Barth, E. T. Bowden, A. J. Hayes, E. Basyuk, J. K. Blancato, P. R. Vezza, S. W. McLeskey, P. H. Mangeat, and S. C. Mueller, “The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells,” Nature 406(6797), 742–747 (2000).
[Crossref] [PubMed]

Marchesano, V.

V. Bianco, M. Paturzo, V. Marchesano, I. Gallotta, E. Di Schiavi, and P. Ferraro, “Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector,” Lab Chip 15(9), 2117–2124 (2015).
[Crossref] [PubMed]

Marquet, P.

I. Moon, B. Javidi, F. Yi, D. Boss, and P. Marquet, “Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells,” Opt. Express 20(9), 10295–10309 (2012).
[Crossref] [PubMed]

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS One 7(1), e30912 (2012).
[Crossref] [PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Martel, J.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Matrecano, M.

M. Matrecano, M. Paturzo, and P. Ferraro, “Extended focus imaging in digital holographic microscopy: a review,” OPTICE 53(11), 112317 (2014).
[Crossref]

McDonald, J. C.

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

McLeskey, S. W.

P. J. Coopman, M. T. Do, M. Barth, E. T. Bowden, A. J. Hayes, E. Basyuk, J. K. Blancato, P. R. Vezza, S. W. McLeskey, P. H. Mangeat, and S. C. Mueller, “The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells,” Nature 406(6797), 742–747 (2000).
[Crossref] [PubMed]

Memmolo, P.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Merola, F.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Meysman, F. J.

E. M. Zetsche, A. El Mallahi, F. Dubois, C. Yourassowsky, J. C. Kromkamp, and F. J. Meysman, “Imaging‐in‐Flow: Digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms,” Limnol. Oceanogr. Methods 12(11), 757–775 (2014).
[Crossref]

E. M. Zetsche, A. El Mallahi, F. Dubois, C. Yourassowsky, J. C. Kromkamp, and F. J. Meysman, “Imaging‐in‐Flow: Digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms,” Limnol. Oceanogr. Methods 12(11), 757–775 (2014).
[Crossref]

Miccio, L.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Moon, I.

K. Jaferzadeh and I. Moon, “Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy,” J. Biomed. Opt. 20(11), 111218 (2015).
[Crossref] [PubMed]

I. Moon, B. Javidi, F. Yi, D. Boss, and P. Marquet, “Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells,” Opt. Express 20(9), 10295–10309 (2012).
[Crossref] [PubMed]

Moratal, C.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS One 7(1), e30912 (2012).
[Crossref] [PubMed]

Mudanyali, O.

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T. W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[Crossref] [PubMed]

O. Mudanyali, C. Oztoprak, D. Tseng, A. Erlinger, and A. Ozcan, “Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy,” Lab Chip 10(18), 2419–2423 (2010).
[Crossref] [PubMed]

Mueller, S. C.

P. J. Coopman, M. T. Do, M. Barth, E. T. Bowden, A. J. Hayes, E. Basyuk, J. K. Blancato, P. R. Vezza, S. W. McLeskey, P. H. Mangeat, and S. C. Mueller, “The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells,” Nature 406(6797), 742–747 (2000).
[Crossref] [PubMed]

Mukwaya, A.

M. Falck Miniotis, A. Mukwaya, and A. Gjörloff Wingren, “Digital holographic microscopy for non-invasive monitoring of cell cycle arrest in L929 cells,” PLoS One 9(9), e106546 (2014).
[Crossref] [PubMed]

Mullaney, P. F.

P. F. Mullaney, M. A. Van Dilla, J. R. Coulter, and P. N. Dean, “Cell sizing: a light scattering photometer for rapid volume determination,” Rev. Sci. Instrum. 40(8), 1029–1032 (1969).
[Crossref] [PubMed]

Murray, C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Netti, P.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Ozcan, A.

W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4(3), e261 (2015).
[Crossref]

W. Bishara, T.-W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
[Crossref] [PubMed]

W. Bishara, H. Zhu, and A. Ozcan, “Holographic opto-fluidic microscopy,” Opt. Express 18(26), 27499–27510 (2010).
[Crossref] [PubMed]

O. Mudanyali, C. Oztoprak, D. Tseng, A. Erlinger, and A. Ozcan, “Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy,” Lab Chip 10(18), 2419–2423 (2010).
[Crossref] [PubMed]

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T. W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[Crossref] [PubMed]

Oztoprak, C.

O. Mudanyali, C. Oztoprak, D. Tseng, A. Erlinger, and A. Ozcan, “Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy,” Lab Chip 10(18), 2419–2423 (2010).
[Crossref] [PubMed]

Panigrahi, P. K.

Patel, N. R.

A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic Identification of Malaria-Infected RBC With Digital Holographic Microscopy Using Correlation Algorithms,” IEEE Photonics J. 4(5), 1456–1464 (2012).
[Crossref]

Paturzo, M.

V. Bianco, M. Paturzo, V. Marchesano, I. Gallotta, E. Di Schiavi, and P. Ferraro, “Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector,” Lab Chip 15(9), 2117–2124 (2015).
[Crossref] [PubMed]

M. Matrecano, M. Paturzo, and P. Ferraro, “Extended focus imaging in digital holographic microscopy: a review,” OPTICE 53(11), 112317 (2014).
[Crossref]

V. Bianco, M. Paturzo, and P. Ferraro, “Spatio-temporal scanning modality for synthesizing interferograms and digital holograms,” Opt. Express 22(19), 22328–22339 (2014).
[Crossref] [PubMed]

Pavillon, N.

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS One 7(1), e30912 (2012).
[Crossref] [PubMed]

Perez-Morga, D.

Peumans, P.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
[Crossref] [PubMed]

Prodanov, D.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
[Crossref] [PubMed]

Puglisi, R.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Ran Ha, Y.

K. Won Seo, Y. Ran Ha, and S. Joon Lee, “Vertical focusing and cell ordering in a microchannel via viscoelasticity: Applications for cell monitoring using a digital holographic microscopy,” Appl. Phys. Lett. 104(21), 213702 (2014).
[Crossref]

K. Won Seo, Y. Ran Ha, and S. Joon Lee, “Vertical focusing and cell ordering in a microchannel via viscoelasticity: Applications for cell monitoring using a digital holographic microscopy,” Appl. Phys. Lett. 104(21), 213702 (2014).
[Crossref]

Rappaz, B.

B. Rappaz, B. Breton, E. Shaffer, and G. Turcatti, “Digital holographic microscopy: a quantitative label-free microscopy technique for phenotypic screening,” Comb. Chem. High Throughput Screen. 17(1), 80–88 (2014).
[Crossref] [PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Ribeiro de Sousa, D.

Sadasivam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Schueller, O. J.

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

Sencan, I.

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T. W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[Crossref] [PubMed]

Seo, S.

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T. W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[Crossref] [PubMed]

Shaffer, E.

B. Rappaz, B. Breton, E. Shaffer, and G. Turcatti, “Digital holographic microscopy: a quantitative label-free microscopy technique for phenotypic screening,” Comb. Chem. High Throughput Screen. 17(1), 80–88 (2014).
[Crossref] [PubMed]

Sheng, J.

H. B. Evans, S. Gorumlu, B. Aksak, L. Castillo, and J. Sheng, “Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars,” Sci. Rep. 6, 28753 (2016).

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45(16), 3893–3901 (2006).
[Crossref] [PubMed]

Singh, D. K.

So, P.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Sollier, E.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Sommers, C. L.

C. L. Sommers, S. W. Byers, E. W. Thompson, J. A. Torri, and E. P. Gelmann, “Differentiation state and invasiveness of human breast cancer cell lines,” Breast Cancer Res. Treat. 31(2-3), 325–335 (1994).
[Crossref] [PubMed]

Stahl, R.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
[Crossref] [PubMed]

Su, T. W.

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T. W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[Crossref] [PubMed]

Su, T.-W.

Sung, Y.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Thompson, E. W.

C. L. Sommers, S. W. Byers, E. W. Thompson, J. A. Torri, and E. P. Gelmann, “Differentiation state and invasiveness of human breast cancer cell lines,” Breast Cancer Res. Treat. 31(2-3), 325–335 (1994).
[Crossref] [PubMed]

Tian, L.

Torri, J. A.

C. L. Sommers, S. W. Byers, E. W. Thompson, J. A. Torri, and E. P. Gelmann, “Differentiation state and invasiveness of human breast cancer cell lines,” Breast Cancer Res. Treat. 31(2-3), 325–335 (1994).
[Crossref] [PubMed]

Truong, K.

K. Truong, P. Vielh, B. Malfoy, J. Klijanienko, B. Dutrillaux, and C. A. Bourgeois, “Fluorescence-based analysis of DNA ploidy and cell proliferation within fine-needle samplings of breast tumors: a new approach using automated image cytometry,” Cancer 84(5), 309–316 (1998).
[Crossref] [PubMed]

Tseng, D.

O. Mudanyali, C. Oztoprak, D. Tseng, A. Erlinger, and A. Ozcan, “Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy,” Lab Chip 10(18), 2419–2423 (2010).
[Crossref] [PubMed]

Turcatti, G.

B. Rappaz, B. Breton, E. Shaffer, and G. Turcatti, “Digital holographic microscopy: a quantitative label-free microscopy technique for phenotypic screening,” Comb. Chem. High Throughput Screen. 17(1), 80–88 (2014).
[Crossref] [PubMed]

Uzureau, P.

Van Dilla, M. A.

P. F. Mullaney, M. A. Van Dilla, J. R. Coulter, and P. N. Dean, “Cell sizing: a light scattering photometer for rapid volume determination,” Rev. Sci. Instrum. 40(8), 1029–1032 (1969).
[Crossref] [PubMed]

Vanmeerbeeck, G.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
[Crossref] [PubMed]

Vercruysse, D.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
[Crossref] [PubMed]

Vezza, P. R.

P. J. Coopman, M. T. Do, M. Barth, E. T. Bowden, A. J. Hayes, E. Basyuk, J. K. Blancato, P. R. Vezza, S. W. McLeskey, P. H. Mangeat, and S. C. Mueller, “The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells,” Nature 406(6797), 742–747 (2000).
[Crossref] [PubMed]

Vielh, P.

K. Truong, P. Vielh, B. Malfoy, J. Klijanienko, B. Dutrillaux, and C. A. Bourgeois, “Fluorescence-based analysis of DNA ploidy and cell proliferation within fine-needle samplings of breast tumors: a new approach using automated image cytometry,” Cancer 84(5), 309–316 (1998).
[Crossref] [PubMed]

Wang, C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Wang, T. L.

X. Wang, E. Wu, J. Wu, T. L. Wang, H. P. Hsieh, and X. Liu, “An antimitotic and antivascular agent BPR0L075 overcomes multidrug resistance and induces mitotic catastrophe in paclitaxel-resistant ovarian cancer cells,” PLoS One 8(6), e65686 (2013).
[Crossref] [PubMed]

Wang, X.

X. Wang, E. Wu, J. Wu, T. L. Wang, H. P. Hsieh, and X. Liu, “An antimitotic and antivascular agent BPR0L075 overcomes multidrug resistance and induces mitotic catastrophe in paclitaxel-resistant ovarian cancer cells,” PLoS One 8(6), e65686 (2013).
[Crossref] [PubMed]

Whitesides, G. M.

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

Won Seo, K.

K. Won Seo, Y. Ran Ha, and S. Joon Lee, “Vertical focusing and cell ordering in a microchannel via viscoelasticity: Applications for cell monitoring using a digital holographic microscopy,” Appl. Phys. Lett. 104(21), 213702 (2014).
[Crossref]

K. Won Seo, Y. Ran Ha, and S. Joon Lee, “Vertical focusing and cell ordering in a microchannel via viscoelasticity: Applications for cell monitoring using a digital holographic microscopy,” Appl. Phys. Lett. 104(21), 213702 (2014).
[Crossref]

Wu, E.

X. Wang, E. Wu, J. Wu, T. L. Wang, H. P. Hsieh, and X. Liu, “An antimitotic and antivascular agent BPR0L075 overcomes multidrug resistance and induces mitotic catastrophe in paclitaxel-resistant ovarian cancer cells,” PLoS One 8(6), e65686 (2013).
[Crossref] [PubMed]

Wu, J.

X. Wang, E. Wu, J. Wu, T. L. Wang, H. P. Hsieh, and X. Liu, “An antimitotic and antivascular agent BPR0L075 overcomes multidrug resistance and induces mitotic catastrophe in paclitaxel-resistant ovarian cancer cells,” PLoS One 8(6), e65686 (2013).
[Crossref] [PubMed]

Yap, P.

A. L. X. Liang, C. Lim, T. Ayi, and P. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sensor Actuat. A-Phys. 133, 349–354 (2007).

Yaqoob, Z.

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Yi, F.

Yourassowsky, C.

K. Z. Boudejltia, D. Ribeiro de Sousa, P. Uzureau, C. Yourassowsky, D. Perez-Morga, G. Courbebaisse, B. Chopard, and F. Dubois, “Quantitative analysis of platelets aggregates in 3D by digital holographic microscopy,” Biomed. Opt. Express 6(9), 3556–3563 (2015).
[Crossref] [PubMed]

C. Yourassowsky and F. Dubois, “High throughput holographic imaging-in-flow for the analysis of a wide plankton size range,” Opt. Express 22(6), 6661–6673 (2014).
[Crossref] [PubMed]

E. M. Zetsche, A. El Mallahi, F. Dubois, C. Yourassowsky, J. C. Kromkamp, and F. J. Meysman, “Imaging‐in‐Flow: Digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms,” Limnol. Oceanogr. Methods 12(11), 757–775 (2014).
[Crossref]

E. M. Zetsche, A. El Mallahi, F. Dubois, C. Yourassowsky, J. C. Kromkamp, and F. J. Meysman, “Imaging‐in‐Flow: Digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms,” Limnol. Oceanogr. Methods 12(11), 757–775 (2014).
[Crossref]

Yu, X.

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53(11), 112306 (2014).
[Crossref]

Zetsche, E. M.

E. M. Zetsche, A. El Mallahi, F. Dubois, C. Yourassowsky, J. C. Kromkamp, and F. J. Meysman, “Imaging‐in‐Flow: Digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms,” Limnol. Oceanogr. Methods 12(11), 757–775 (2014).
[Crossref]

E. M. Zetsche, A. El Mallahi, F. Dubois, C. Yourassowsky, J. C. Kromkamp, and F. J. Meysman, “Imaging‐in‐Flow: Digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms,” Limnol. Oceanogr. Methods 12(11), 757–775 (2014).
[Crossref]

Zhang, Y.

W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4(3), e261 (2015).
[Crossref]

Zhu, H.

Anal. Chem. (2)

S. Seo, S. O. Isikman, I. Sencan, O. Mudanyali, T. W. Su, W. Bishara, A. Erlinger, and A. Ozcan, “High-throughput lens-free blood analysis on a chip,” Anal. Chem. 82(11), 4621–4627 (2010).
[Crossref] [PubMed]

D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[Crossref] [PubMed]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

K. Won Seo, Y. Ran Ha, and S. Joon Lee, “Vertical focusing and cell ordering in a microchannel via viscoelasticity: Applications for cell monitoring using a digital holographic microscopy,” Appl. Phys. Lett. 104(21), 213702 (2014).
[Crossref]

K. Won Seo, Y. Ran Ha, and S. Joon Lee, “Vertical focusing and cell ordering in a microchannel via viscoelasticity: Applications for cell monitoring using a digital holographic microscopy,” Appl. Phys. Lett. 104(21), 213702 (2014).
[Crossref]

Biomed. Opt. Express (1)

Breast Cancer Res. Treat. (1)

C. L. Sommers, S. W. Byers, E. W. Thompson, J. A. Torri, and E. P. Gelmann, “Differentiation state and invasiveness of human breast cancer cell lines,” Breast Cancer Res. Treat. 31(2-3), 325–335 (1994).
[Crossref] [PubMed]

Cancer (1)

K. Truong, P. Vielh, B. Malfoy, J. Klijanienko, B. Dutrillaux, and C. A. Bourgeois, “Fluorescence-based analysis of DNA ploidy and cell proliferation within fine-needle samplings of breast tumors: a new approach using automated image cytometry,” Cancer 84(5), 309–316 (1998).
[Crossref] [PubMed]

Cell (1)

M. Boutros, F. Heigwer, and C. Laufer, “Microscopy-based high-content screening,” Cell 163(6), 1314–1325 (2015).
[Crossref] [PubMed]

Comb. Chem. High Throughput Screen. (1)

B. Rappaz, B. Breton, E. Shaffer, and G. Turcatti, “Digital holographic microscopy: a quantitative label-free microscopy technique for phenotypic screening,” Comb. Chem. High Throughput Screen. 17(1), 80–88 (2014).
[Crossref] [PubMed]

Cytometry A (1)

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Exp. Fluids (1)

D. K. Singh and P. K. Panigrahi, “Three-dimensional investigation of liquid slug Taylor flow inside a micro-capillary using holographic velocimetry,” Exp. Fluids 56(1), 1–15 (2015).
[Crossref]

Front. Pharmacol. (1)

Y. Fang, “Label-free drug discovery,” Front. Pharmacol. 5, 52 (2014).
[Crossref] [PubMed]

IEEE Photonics J. (1)

A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic Identification of Malaria-Infected RBC With Digital Holographic Microscopy Using Correlation Algorithms,” IEEE Photonics J. 4(5), 1456–1464 (2012).
[Crossref]

J. Biomed. Opt. (1)

K. Jaferzadeh and I. Moon, “Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy,” J. Biomed. Opt. 20(11), 111218 (2015).
[Crossref] [PubMed]

J. Biophotonics (1)

A. E. Ekpenyong, S. M. Man, S. Achouri, C. E. Bryant, J. Guck, and K. J. Chalut, “Bacterial infection of macrophages induces decrease in refractive index,” J. Biophotonics 6(5), 393–397 (2013).
[Crossref] [PubMed]

J. Photonics for Energy (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” J. Photonics for Energy 1, 018005 (2010).

Lab Chip (4)

O. Mudanyali, C. Oztoprak, D. Tseng, A. Erlinger, and A. Ozcan, “Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy,” Lab Chip 10(18), 2419–2423 (2010).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, V. Marchesano, I. Gallotta, E. Di Schiavi, and P. Ferraro, “Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector,” Lab Chip 15(9), 2117–2124 (2015).
[Crossref] [PubMed]

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab Chip 15(4), 1123–1132 (2015).
[Crossref] [PubMed]

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Light Sci. Appl. (1)

W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4(3), e261 (2015).
[Crossref]

Limnol. Oceanogr. Methods (2)

E. M. Zetsche, A. El Mallahi, F. Dubois, C. Yourassowsky, J. C. Kromkamp, and F. J. Meysman, “Imaging‐in‐Flow: Digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms,” Limnol. Oceanogr. Methods 12(11), 757–775 (2014).
[Crossref]

E. M. Zetsche, A. El Mallahi, F. Dubois, C. Yourassowsky, J. C. Kromkamp, and F. J. Meysman, “Imaging‐in‐Flow: Digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms,” Limnol. Oceanogr. Methods 12(11), 757–775 (2014).
[Crossref]

Methods (1)

Q. Chang and D. Hedley, “Emerging applications of flow cytometry in solid tumor biology,” Methods 57(3), 359–367 (2012).
[Crossref] [PubMed]

Nature (1)

P. J. Coopman, M. T. Do, M. Barth, E. T. Bowden, A. J. Hayes, E. Basyuk, J. K. Blancato, P. R. Vezza, S. W. McLeskey, P. H. Mangeat, and S. C. Mueller, “The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells,” Nature 406(6797), 742–747 (2000).
[Crossref] [PubMed]

Opt. Eng. (1)

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53(11), 112306 (2014).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

OPTICE (1)

M. Matrecano, M. Paturzo, and P. Ferraro, “Extended focus imaging in digital holographic microscopy: a review,” OPTICE 53(11), 112317 (2014).
[Crossref]

Phys. Rev. Appl. (3)

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

Y. Sung, N. Lue, B. Hamza, J. Martel, D. Irimia, R. R. Dasari, W. Choi, Z. Yaqoob, and P. So, “Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel,” Phys. Rev. Appl. 1(1), 014002 (2014).
[Crossref] [PubMed]

PLoS One (3)

M. Falck Miniotis, A. Mukwaya, and A. Gjörloff Wingren, “Digital holographic microscopy for non-invasive monitoring of cell cycle arrest in L929 cells,” PLoS One 9(9), e106546 (2014).
[Crossref] [PubMed]

N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS One 7(1), e30912 (2012).
[Crossref] [PubMed]

X. Wang, E. Wu, J. Wu, T. L. Wang, H. P. Hsieh, and X. Liu, “An antimitotic and antivascular agent BPR0L075 overcomes multidrug resistance and induces mitotic catastrophe in paclitaxel-resistant ovarian cancer cells,” PLoS One 8(6), e65686 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

P. F. Mullaney, M. A. Van Dilla, J. R. Coulter, and P. N. Dean, “Cell sizing: a light scattering photometer for rapid volume determination,” Rev. Sci. Instrum. 40(8), 1029–1032 (1969).
[Crossref] [PubMed]

Sci. Rep. (1)

H. B. Evans, S. Gorumlu, B. Aksak, L. Castillo, and J. Sheng, “Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars,” Sci. Rep. 6, 28753 (2016).

Sensor Actuat. A-Phys. (1)

A. L. X. Liang, C. Lim, T. Ayi, and P. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sensor Actuat. A-Phys. 133, 349–354 (2007).

Other (4)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York 1968).

T. Kreis, Handbook of Holographic Interferometry Optical and Digital Methods (WILEY-VCH Verlag GmbH & Co., KGaA, 2005).

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, and A. Gambale, “Tomographic Flow Cytometry by Digital Holography,” Light Sci. Appl., accepted article preview 17 October 2016 (2016).

K. Alm, Z. El-Schich, M. Falck, A. Gjrloff Wingren, B. Janicke, and S. Oredsso, “Cells and Holograms – Holograms and Digital Holographic Microscopy as a Tool to Study the Morphology of Living Cells,” in Holography - Basic Principles and Contemporary Applications, E. Mihaylova., ed. (InTech, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic layout of the inline Digital Holography Microscopy setup.
Fig. 2
Fig. 2 The procedure for fingerprinting of beads and tumor cells using inline-DHM is outlined: (A) shows the background correction of a representative raw hologram of polystyrene beads (i). The background hologram (ii) is generated for each raw hologram by averaging the 100 raw holograms centered around the hologram being processed. The noise-free hologram (iii) is generated by dividing pixel by pixel intensities of (i) by (ii). (B) shows the procedure for the numerical reconstruction of each bead or cell.
Fig. 3
Fig. 3 Optical arrangement for optimization of DHM recording parameters and evaluation of errors, using a planar test target of polystyrene beads. The recording distance is measured from the z = 0 position. The z = 0 position is defined as the location of the focal plane of microscope objective when the image is sharp and consists of bright centers of the beads surrounded by dark edges.
Fig. 4
Fig. 4 Digital holograms of static polystyrene beads of 15µm diameter, at magnifications of 10x [(a) – (d)] and 20x [(e) – (f)]. The recording distance from the focal plane of microscope objective is shown at the top of the first row of images.
Fig. 5
Fig. 5 Reconstructed axial positions (a, b) and ensemble average of axial intensity profile (c, d) of polystyrene beads in the planar test target, evaluated at magnifications of 10x (a, c) and 20x for the representative case of z mean =300μm . The number of beads analyzed is, N = 120 and 55 at magnification 10x and 20x respectively. The root mean square error in determining axial position ( z mean ) is 0.47D and 0.21D at 10x and 20x magnification respectively. Likewise the full width at half maximum (FWHM) values of the axial intensity profile are 1.06D and 0.67D corresponding to 10x and 20x respectively. Here D is the mean diameter of the beads.
Fig. 6
Fig. 6 Influence of recording distance and magnification on the error in locating the axial position of beads in the planar test target sample. Here z rms /D is the root mean square error in the axial position, normalized with the mean bead diameter, D.
Fig. 7
Fig. 7 The distribution of polystyrene bead diameter calculated at different recording distances, z = 200, 300, 500, 700, and 1000µm and at magnifications, M = 10x and 20x. The inset shows the mean diameter (D) and coefficient of variance (CV). The manufacturer reported D and CV is 15.13 µm and 6% respectively.
Fig. 8
Fig. 8 The process elimination of multiple counts and accurate enumeration of beads/cells in bulk flow using correlation of coordinates of beads/cells between sequential frames is demonstrated. The laminar velocity profile along x-direction ( v x ) across the width of rectangular channel (y) and at depth z = 0 is shown in (a). The ratio of number of beads after and before elimination of multiple counts ( N o / N i ) between sequential frames (SF) is shown in (b) and (c) corresponding to PS-beads and MCF7 cells respectively at three different concentrations (C) of beads/cells. The concentration (C) of beads is, 0.4× 10 4 ,0.5× 10 5  and 0.4× 10 6 and MCF7 cells is, 10 4 ,0.16× 10 5  and 0.25× 10 6 .
Fig. 9
Fig. 9 The holograms of size 64 × 64 pixels2 cropped from original raw holograms corresponding to (a) MDA-MB-231, (b) MCF7, (c) SKOV-3, and (d) SKOV-3-TR cells.
Fig. 10
Fig. 10 High throughput DHM-based fingerprinting of beads and tumor cells of different metastatic potential in bulk flow. The size distribution for polystyrene beads and breast tumor cells (MCF7 and MDA-MB-231) is presented in (a), (b), and (c) respectively. The maximum intensity distribution for the same systems is presented in (d). The inset shows the mean value and coefficient of variance [ μ±CV(%) ] for either the diameter (D) or maximum intensity ( I max ).
Fig. 11
Fig. 11 High throughput DHM-based fingerprinting of ovarian cancer cells in bulk flow. SKOV-3 is the parental ovarian cancer cell line and SKOV-3-TR is its drug resistant variant. The size distribution for SKOV-3 and SKOV-3-TR is presented in (a) and (b) respectively. The maximum intensity distribution for the same systems is presented in (c). The inset shows the mean value and coefficient of variance [ μ±CV(%) ] for either the diameter (D) or maximum intensity ( I max ).

Tables (3)

Tables Icon

Table 1 An overview of DHM studies in flow showing the capabilities demonstrated on fingerprinting biological cells.

Tables Icon

Table 2 The experimental parameters used to capture sequence of holograms of cells using DHM.

Tables Icon

Table 3 The distribution of maximum intensity [ I max =μ±CV(%) ] corresponding to single pixel of core of focused image of beads in the reconstruction volume at different recording distances, z = 200, 300, 500, 700, and 1000µm and at magnifications, M = 10x and 20x where, CV is coefficient of variance.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E(x,y,z)= I H ( x H , y H ) h z (x,y; x H , y H )
E(x,y,z)= 1 [{ I H ( x H , y H )}×{ h z (x,y; x H , y H )}]
I(x,y,z)= | E(x,y,z) | 2
F v (z)= x,y { 2 I(x,y,z) } 2
S F = L×F v x,y,z

Metrics