Abstract

We developed a multi-modal brain imaging system to investigate the relationship between blood flow, blood oxygenation/volume, intracellular calcium and electrographic activity during acute seizure-like events (SLEs), both before and after pharmacological intervention. Rising blood volume was highly specific to SLE-onset whereas blood flow was more correlated with all eletrographic activity. Intracellular calcium spiked between SLEs and at SLE-onset with oscillation during SLEs. Modified neurovascular and ionic SLE responses were observed after intervention and the interval between SLEs became shorter and more inconsistent. Comparison of artery and vein pulsatile flow suggest proximal interference and greater vascular leakage prior to intervention.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Imaging brain activity during seizures in freely behaving rats using a miniature multi-modal imaging system

Iliya Sigal, Margaret M. Koletar, Dene Ringuette, Raanan Gad, Melanie Jeffrey, Peter L. Carlen, Bojana Stefanovic, and Ofer Levi
Biomed. Opt. Express 7(9) 3596-3609 (2016)

Accessing to arteriovenous blood flow dynamics response using combined laser speckle contrast imaging and skin optical clearing

Rui Shi, Min Chen, Valery V. Tuchin, and Dan Zhu
Biomed. Opt. Express 6(6) 1977-1989 (2015)

Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography

Yimin Wang, Amani Fawzi, Ou Tan, John Gil-Flamer, and David Huang
Opt. Express 17(5) 4061-4073 (2009)

References

  • View by:
  • |
  • |
  • |

  1. B. Hermann and M. Seidenberg, “Epilepsy and cognition,” Epilepsy Currents 7, 1–6 (2007).
    [Crossref] [PubMed]
  2. A. Bonora, F. Benuzzi, G. Monti, L. Mirandola, M. Pugnaghi, P. Nichelli, and S. Meletti, “Recognition of emotions from faces and voices in medial temporal lobe epilepsy,” Epilepsy Behav. 20, 648–654 (2011).
    [Crossref] [PubMed]
  3. N. Adachi, T. Hara, Y. Oana, M. Matsuura, Y. Okubo, N. Akanuma, M. Ito, M. Kato, and T. Onuma, “Difference in age of onset of psychosis between epilepsy and schizophrenia,” Epilepsy Res. 78, 201–206 (2008).
    [Crossref] [PubMed]
  4. P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, and et al., “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci 107, 15246–15251 (2010).
    [Crossref] [PubMed]
  5. D. J. Rossi, “Another bold role for astrocytes: coupling blood flow to neural activity,” Nat. Neurosci 9, 159–161 (2006).
    [Crossref] [PubMed]
  6. P. Bazzigaluppi, S. Dufour, and P. L. Carlen, “Wide field fluorescent imaging of extracellular spatiotemporal potassium dynamics in vivo,” NeuroImage 104, 110–116 (2015).
    [Crossref]
  7. P. L. Carlen, N. Gurevich, and P. Polc, “Low-dose benzodiazepine neuronal inhibition: enhanced ca 2+-mediated k+-conductance,” Brain research 271, 358–364 (1983).
    [Crossref]
  8. S. Bahar, M. Suh, M. Zhao, and T. H. Schwartz, “Intrinsic optical signal imaging of neocortical seizures: the ‘epileptic dip’,” Neuroreport 17, 499–503 (2006).
    [Crossref] [PubMed]
  9. M. Zhao, M. Suh, H. Ma, C. Perry, A. Geneslaw, and T. H. Schwartz, “Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy,” Epilepsia 48, 2059–2067 (2007).
    [Crossref] [PubMed]
  10. M. Zhao, J. Nguyen, H. Ma, N. Nishimura, C. B. Schaffer, and T. H. Schwartz, “Preictal and ictal neurovascular and metabolic coupling surrounding a seizure focus,” J. Neurosci 31, 13292–13300 (2011).
    [Crossref] [PubMed]
  11. M. Zhao, H. Ma, M. Suh, and T. H. Schwartz, “Spatiotemporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex,” J. Neurosci 29, 2814–2823 (2009).
    [Crossref] [PubMed]
  12. M. B. Bouchard, B. R. Chen, S. A. Burgess, and E. M. C. Hillman, “Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics,” Opt. Express 17(18), 15670–15678 (2009).
    [Crossref] [PubMed]
  13. H. Ma, M. Zhao, and T. H. Schwartz, “Dynamic neurovascular coupling and uncoupling during ictal onset, propagation, and termination revealed by simultaneous in vivo optical imaging of neural activity and local blood volume,” Cerebral Cortex 23(4), 885–899 (2013).
    [Crossref]
  14. H. Ma, S. Harris, R. Rahmani, C. O. Lacefield, M. Zhao, A. G. Daniel, Z. Zhou, R. M. Bruno, J. Berwick, and T. H. Schwartz, “Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals,” Neurophotonics 1, 015003 (2014).
    [Crossref]
  15. S. Mennerick, M. Chisari, H.-J. Shu, A. Taylor, M. Vasek, L. N. Eisenman, and C. F. Zorumski, “Diverse voltage-sensitive dyes modulate GABAA receptor function,” J. Neurosci 30, 2871–2879 (2010).
    [Crossref] [PubMed]
  16. H. Levy, D. Ringuette, and O. Levi, “Rapid monitoring of cerebral ischemia dynamics using laser-based optical imaging of blood oxygenation and flow,” Biomed. Opt. Express 3, 777–791 (2012).
    [Crossref] [PubMed]
  17. L. M. Richards, E. L. Towle, D. J. Fox, and A. K. Dunn, “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1, 015006 (2014).
    [Crossref]
  18. E. A. Munro, H. Levy, D. Ringuette, T. D. O’Sullivan, and O. Levi, “Multi-modality optical neural imaging using coherence control of VCSELs,” Opt. Express 19, 10747–10761 (2011).
    [Crossref] [PubMed]
  19. C. Kamath, “A new approach to detect epileptic seizures in electroencephalograms using teager energy,” ISRN Biomedical Engineering 2013358108 (2013).
    [Crossref]
  20. R. Yadav, R. Agarwal, and M. Swamy, “Detection of epileptic seizures in stereo-EEG using frequency-weighted energy,” in 50th Midwest Symposium on Circuits and Systems, (IEEE, 2007), pp. 77–80.
  21. D. Ringuette, M. A. Jeffrey, P. L. Carlen, and O. Levi, “Multi-modal in vivo imaging of brain blood oxygenation, blood flow and neural calcium dynamics during acute seizures,” Proc. SPIE 9690, 969011 (2016).
    [Crossref]
  22. D. Ringuette, P. Carlen, and O. Levi, “Multi-modality optical imaging of temporal and spatial dynamics during in vivo seizure-like activity,” in Biomedical Optics, OSA Technical Digest (online), (Optical Society of America, 2016), paper BM4D–3.
  23. S. Dufour, Y. Atchia, R. Gad, D. Ringuette, I. Sigal, and O. Levi, “Evaluation of laser speckle contrast imaging as an intrinsic method to monitor blood brain barrier integrity,” Biomed. Opt. Express 4, 1856–1875 (2013).
    [Crossref] [PubMed]

2016 (1)

D. Ringuette, M. A. Jeffrey, P. L. Carlen, and O. Levi, “Multi-modal in vivo imaging of brain blood oxygenation, blood flow and neural calcium dynamics during acute seizures,” Proc. SPIE 9690, 969011 (2016).
[Crossref]

2015 (1)

P. Bazzigaluppi, S. Dufour, and P. L. Carlen, “Wide field fluorescent imaging of extracellular spatiotemporal potassium dynamics in vivo,” NeuroImage 104, 110–116 (2015).
[Crossref]

2014 (2)

H. Ma, S. Harris, R. Rahmani, C. O. Lacefield, M. Zhao, A. G. Daniel, Z. Zhou, R. M. Bruno, J. Berwick, and T. H. Schwartz, “Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals,” Neurophotonics 1, 015003 (2014).
[Crossref]

L. M. Richards, E. L. Towle, D. J. Fox, and A. K. Dunn, “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1, 015006 (2014).
[Crossref]

2013 (3)

C. Kamath, “A new approach to detect epileptic seizures in electroencephalograms using teager energy,” ISRN Biomedical Engineering 2013358108 (2013).
[Crossref]

H. Ma, M. Zhao, and T. H. Schwartz, “Dynamic neurovascular coupling and uncoupling during ictal onset, propagation, and termination revealed by simultaneous in vivo optical imaging of neural activity and local blood volume,” Cerebral Cortex 23(4), 885–899 (2013).
[Crossref]

S. Dufour, Y. Atchia, R. Gad, D. Ringuette, I. Sigal, and O. Levi, “Evaluation of laser speckle contrast imaging as an intrinsic method to monitor blood brain barrier integrity,” Biomed. Opt. Express 4, 1856–1875 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (3)

E. A. Munro, H. Levy, D. Ringuette, T. D. O’Sullivan, and O. Levi, “Multi-modality optical neural imaging using coherence control of VCSELs,” Opt. Express 19, 10747–10761 (2011).
[Crossref] [PubMed]

M. Zhao, J. Nguyen, H. Ma, N. Nishimura, C. B. Schaffer, and T. H. Schwartz, “Preictal and ictal neurovascular and metabolic coupling surrounding a seizure focus,” J. Neurosci 31, 13292–13300 (2011).
[Crossref] [PubMed]

A. Bonora, F. Benuzzi, G. Monti, L. Mirandola, M. Pugnaghi, P. Nichelli, and S. Meletti, “Recognition of emotions from faces and voices in medial temporal lobe epilepsy,” Epilepsy Behav. 20, 648–654 (2011).
[Crossref] [PubMed]

2010 (2)

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, and et al., “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci 107, 15246–15251 (2010).
[Crossref] [PubMed]

S. Mennerick, M. Chisari, H.-J. Shu, A. Taylor, M. Vasek, L. N. Eisenman, and C. F. Zorumski, “Diverse voltage-sensitive dyes modulate GABAA receptor function,” J. Neurosci 30, 2871–2879 (2010).
[Crossref] [PubMed]

2009 (2)

M. Zhao, H. Ma, M. Suh, and T. H. Schwartz, “Spatiotemporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex,” J. Neurosci 29, 2814–2823 (2009).
[Crossref] [PubMed]

M. B. Bouchard, B. R. Chen, S. A. Burgess, and E. M. C. Hillman, “Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics,” Opt. Express 17(18), 15670–15678 (2009).
[Crossref] [PubMed]

2008 (1)

N. Adachi, T. Hara, Y. Oana, M. Matsuura, Y. Okubo, N. Akanuma, M. Ito, M. Kato, and T. Onuma, “Difference in age of onset of psychosis between epilepsy and schizophrenia,” Epilepsy Res. 78, 201–206 (2008).
[Crossref] [PubMed]

2007 (2)

B. Hermann and M. Seidenberg, “Epilepsy and cognition,” Epilepsy Currents 7, 1–6 (2007).
[Crossref] [PubMed]

M. Zhao, M. Suh, H. Ma, C. Perry, A. Geneslaw, and T. H. Schwartz, “Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy,” Epilepsia 48, 2059–2067 (2007).
[Crossref] [PubMed]

2006 (2)

S. Bahar, M. Suh, M. Zhao, and T. H. Schwartz, “Intrinsic optical signal imaging of neocortical seizures: the ‘epileptic dip’,” Neuroreport 17, 499–503 (2006).
[Crossref] [PubMed]

D. J. Rossi, “Another bold role for astrocytes: coupling blood flow to neural activity,” Nat. Neurosci 9, 159–161 (2006).
[Crossref] [PubMed]

1983 (1)

P. L. Carlen, N. Gurevich, and P. Polc, “Low-dose benzodiazepine neuronal inhibition: enhanced ca 2+-mediated k+-conductance,” Brain research 271, 358–364 (1983).
[Crossref]

Adachi, N.

N. Adachi, T. Hara, Y. Oana, M. Matsuura, Y. Okubo, N. Akanuma, M. Ito, M. Kato, and T. Onuma, “Difference in age of onset of psychosis between epilepsy and schizophrenia,” Epilepsy Res. 78, 201–206 (2008).
[Crossref] [PubMed]

Agarwal, R.

R. Yadav, R. Agarwal, and M. Swamy, “Detection of epileptic seizures in stereo-EEG using frequency-weighted energy,” in 50th Midwest Symposium on Circuits and Systems, (IEEE, 2007), pp. 77–80.

Akanuma, N.

N. Adachi, T. Hara, Y. Oana, M. Matsuura, Y. Okubo, N. Akanuma, M. Ito, M. Kato, and T. Onuma, “Difference in age of onset of psychosis between epilepsy and schizophrenia,” Epilepsy Res. 78, 201–206 (2008).
[Crossref] [PubMed]

Atchia, Y.

Bahar, S.

S. Bahar, M. Suh, M. Zhao, and T. H. Schwartz, “Intrinsic optical signal imaging of neocortical seizures: the ‘epileptic dip’,” Neuroreport 17, 499–503 (2006).
[Crossref] [PubMed]

Bazzigaluppi, P.

P. Bazzigaluppi, S. Dufour, and P. L. Carlen, “Wide field fluorescent imaging of extracellular spatiotemporal potassium dynamics in vivo,” NeuroImage 104, 110–116 (2015).
[Crossref]

Benuzzi, F.

A. Bonora, F. Benuzzi, G. Monti, L. Mirandola, M. Pugnaghi, P. Nichelli, and S. Meletti, “Recognition of emotions from faces and voices in medial temporal lobe epilepsy,” Epilepsy Behav. 20, 648–654 (2011).
[Crossref] [PubMed]

Berwick, J.

H. Ma, S. Harris, R. Rahmani, C. O. Lacefield, M. Zhao, A. G. Daniel, Z. Zhou, R. M. Bruno, J. Berwick, and T. H. Schwartz, “Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals,” Neurophotonics 1, 015003 (2014).
[Crossref]

Bonora, A.

A. Bonora, F. Benuzzi, G. Monti, L. Mirandola, M. Pugnaghi, P. Nichelli, and S. Meletti, “Recognition of emotions from faces and voices in medial temporal lobe epilepsy,” Epilepsy Behav. 20, 648–654 (2011).
[Crossref] [PubMed]

Bouchard, M. B.

Bruno, R. M.

H. Ma, S. Harris, R. Rahmani, C. O. Lacefield, M. Zhao, A. G. Daniel, Z. Zhou, R. M. Bruno, J. Berwick, and T. H. Schwartz, “Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals,” Neurophotonics 1, 015003 (2014).
[Crossref]

Burgess, S. A.

Carlen, P.

D. Ringuette, P. Carlen, and O. Levi, “Multi-modality optical imaging of temporal and spatial dynamics during in vivo seizure-like activity,” in Biomedical Optics, OSA Technical Digest (online), (Optical Society of America, 2016), paper BM4D–3.

Carlen, P. L.

D. Ringuette, M. A. Jeffrey, P. L. Carlen, and O. Levi, “Multi-modal in vivo imaging of brain blood oxygenation, blood flow and neural calcium dynamics during acute seizures,” Proc. SPIE 9690, 969011 (2016).
[Crossref]

P. Bazzigaluppi, S. Dufour, and P. L. Carlen, “Wide field fluorescent imaging of extracellular spatiotemporal potassium dynamics in vivo,” NeuroImage 104, 110–116 (2015).
[Crossref]

P. L. Carlen, N. Gurevich, and P. Polc, “Low-dose benzodiazepine neuronal inhibition: enhanced ca 2+-mediated k+-conductance,” Brain research 271, 358–364 (1983).
[Crossref]

Chen, B. R.

Chisari, M.

S. Mennerick, M. Chisari, H.-J. Shu, A. Taylor, M. Vasek, L. N. Eisenman, and C. F. Zorumski, “Diverse voltage-sensitive dyes modulate GABAA receptor function,” J. Neurosci 30, 2871–2879 (2010).
[Crossref] [PubMed]

D’Arceuil, H. E.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, and et al., “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci 107, 15246–15251 (2010).
[Crossref] [PubMed]

Daniel, A. G.

H. Ma, S. Harris, R. Rahmani, C. O. Lacefield, M. Zhao, A. G. Daniel, Z. Zhou, R. M. Bruno, J. Berwick, and T. H. Schwartz, “Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals,” Neurophotonics 1, 015003 (2014).
[Crossref]

De Crespigny, A. J.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, and et al., “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci 107, 15246–15251 (2010).
[Crossref] [PubMed]

Dufour, S.

P. Bazzigaluppi, S. Dufour, and P. L. Carlen, “Wide field fluorescent imaging of extracellular spatiotemporal potassium dynamics in vivo,” NeuroImage 104, 110–116 (2015).
[Crossref]

S. Dufour, Y. Atchia, R. Gad, D. Ringuette, I. Sigal, and O. Levi, “Evaluation of laser speckle contrast imaging as an intrinsic method to monitor blood brain barrier integrity,” Biomed. Opt. Express 4, 1856–1875 (2013).
[Crossref] [PubMed]

Dunn, A. K.

L. M. Richards, E. L. Towle, D. J. Fox, and A. K. Dunn, “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1, 015006 (2014).
[Crossref]

Eisenman, L. N.

S. Mennerick, M. Chisari, H.-J. Shu, A. Taylor, M. Vasek, L. N. Eisenman, and C. F. Zorumski, “Diverse voltage-sensitive dyes modulate GABAA receptor function,” J. Neurosci 30, 2871–2879 (2010).
[Crossref] [PubMed]

Fox, D. J.

L. M. Richards, E. L. Towle, D. J. Fox, and A. K. Dunn, “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1, 015006 (2014).
[Crossref]

Gad, R.

Geneslaw, A.

M. Zhao, M. Suh, H. Ma, C. Perry, A. Geneslaw, and T. H. Schwartz, “Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy,” Epilepsia 48, 2059–2067 (2007).
[Crossref] [PubMed]

Gurevich, N.

P. L. Carlen, N. Gurevich, and P. Polc, “Low-dose benzodiazepine neuronal inhibition: enhanced ca 2+-mediated k+-conductance,” Brain research 271, 358–364 (1983).
[Crossref]

Hara, T.

N. Adachi, T. Hara, Y. Oana, M. Matsuura, Y. Okubo, N. Akanuma, M. Ito, M. Kato, and T. Onuma, “Difference in age of onset of psychosis between epilepsy and schizophrenia,” Epilepsy Res. 78, 201–206 (2008).
[Crossref] [PubMed]

Harris, S.

H. Ma, S. Harris, R. Rahmani, C. O. Lacefield, M. Zhao, A. G. Daniel, Z. Zhou, R. M. Bruno, J. Berwick, and T. H. Schwartz, “Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals,” Neurophotonics 1, 015003 (2014).
[Crossref]

Hermann, B.

B. Hermann and M. Seidenberg, “Epilepsy and cognition,” Epilepsy Currents 7, 1–6 (2007).
[Crossref] [PubMed]

Hillman, E. M.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, and et al., “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci 107, 15246–15251 (2010).
[Crossref] [PubMed]

Hillman, E. M. C.

Ito, M.

N. Adachi, T. Hara, Y. Oana, M. Matsuura, Y. Okubo, N. Akanuma, M. Ito, M. Kato, and T. Onuma, “Difference in age of onset of psychosis between epilepsy and schizophrenia,” Epilepsy Res. 78, 201–206 (2008).
[Crossref] [PubMed]

Jeffrey, M. A.

D. Ringuette, M. A. Jeffrey, P. L. Carlen, and O. Levi, “Multi-modal in vivo imaging of brain blood oxygenation, blood flow and neural calcium dynamics during acute seizures,” Proc. SPIE 9690, 969011 (2016).
[Crossref]

Kamath, C.

C. Kamath, “A new approach to detect epileptic seizures in electroencephalograms using teager energy,” ISRN Biomedical Engineering 2013358108 (2013).
[Crossref]

Kato, M.

N. Adachi, T. Hara, Y. Oana, M. Matsuura, Y. Okubo, N. Akanuma, M. Ito, M. Kato, and T. Onuma, “Difference in age of onset of psychosis between epilepsy and schizophrenia,” Epilepsy Res. 78, 201–206 (2008).
[Crossref] [PubMed]

Kurz, R.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, and et al., “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci 107, 15246–15251 (2010).
[Crossref] [PubMed]

Lacefield, C. O.

H. Ma, S. Harris, R. Rahmani, C. O. Lacefield, M. Zhao, A. G. Daniel, Z. Zhou, R. M. Bruno, J. Berwick, and T. H. Schwartz, “Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals,” Neurophotonics 1, 015003 (2014).
[Crossref]

Levi, O.

D. Ringuette, M. A. Jeffrey, P. L. Carlen, and O. Levi, “Multi-modal in vivo imaging of brain blood oxygenation, blood flow and neural calcium dynamics during acute seizures,” Proc. SPIE 9690, 969011 (2016).
[Crossref]

S. Dufour, Y. Atchia, R. Gad, D. Ringuette, I. Sigal, and O. Levi, “Evaluation of laser speckle contrast imaging as an intrinsic method to monitor blood brain barrier integrity,” Biomed. Opt. Express 4, 1856–1875 (2013).
[Crossref] [PubMed]

H. Levy, D. Ringuette, and O. Levi, “Rapid monitoring of cerebral ischemia dynamics using laser-based optical imaging of blood oxygenation and flow,” Biomed. Opt. Express 3, 777–791 (2012).
[Crossref] [PubMed]

E. A. Munro, H. Levy, D. Ringuette, T. D. O’Sullivan, and O. Levi, “Multi-modality optical neural imaging using coherence control of VCSELs,” Opt. Express 19, 10747–10761 (2011).
[Crossref] [PubMed]

D. Ringuette, P. Carlen, and O. Levi, “Multi-modality optical imaging of temporal and spatial dynamics during in vivo seizure-like activity,” in Biomedical Optics, OSA Technical Digest (online), (Optical Society of America, 2016), paper BM4D–3.

Levy, H.

Lu, K.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, and et al., “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci 107, 15246–15251 (2010).
[Crossref] [PubMed]

Ma, H.

H. Ma, S. Harris, R. Rahmani, C. O. Lacefield, M. Zhao, A. G. Daniel, Z. Zhou, R. M. Bruno, J. Berwick, and T. H. Schwartz, “Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals,” Neurophotonics 1, 015003 (2014).
[Crossref]

H. Ma, M. Zhao, and T. H. Schwartz, “Dynamic neurovascular coupling and uncoupling during ictal onset, propagation, and termination revealed by simultaneous in vivo optical imaging of neural activity and local blood volume,” Cerebral Cortex 23(4), 885–899 (2013).
[Crossref]

M. Zhao, J. Nguyen, H. Ma, N. Nishimura, C. B. Schaffer, and T. H. Schwartz, “Preictal and ictal neurovascular and metabolic coupling surrounding a seizure focus,” J. Neurosci 31, 13292–13300 (2011).
[Crossref] [PubMed]

M. Zhao, H. Ma, M. Suh, and T. H. Schwartz, “Spatiotemporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex,” J. Neurosci 29, 2814–2823 (2009).
[Crossref] [PubMed]

M. Zhao, M. Suh, H. Ma, C. Perry, A. Geneslaw, and T. H. Schwartz, “Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy,” Epilepsia 48, 2059–2067 (2007).
[Crossref] [PubMed]

Mandeville, J. B.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, and et al., “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci 107, 15246–15251 (2010).
[Crossref] [PubMed]

Matsuura, M.

N. Adachi, T. Hara, Y. Oana, M. Matsuura, Y. Okubo, N. Akanuma, M. Ito, M. Kato, and T. Onuma, “Difference in age of onset of psychosis between epilepsy and schizophrenia,” Epilepsy Res. 78, 201–206 (2008).
[Crossref] [PubMed]

May, L. D.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, and et al., “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci 107, 15246–15251 (2010).
[Crossref] [PubMed]

Meletti, S.

A. Bonora, F. Benuzzi, G. Monti, L. Mirandola, M. Pugnaghi, P. Nichelli, and S. Meletti, “Recognition of emotions from faces and voices in medial temporal lobe epilepsy,” Epilepsy Behav. 20, 648–654 (2011).
[Crossref] [PubMed]

Mennerick, S.

S. Mennerick, M. Chisari, H.-J. Shu, A. Taylor, M. Vasek, L. N. Eisenman, and C. F. Zorumski, “Diverse voltage-sensitive dyes modulate GABAA receptor function,” J. Neurosci 30, 2871–2879 (2010).
[Crossref] [PubMed]

Mirandola, L.

A. Bonora, F. Benuzzi, G. Monti, L. Mirandola, M. Pugnaghi, P. Nichelli, and S. Meletti, “Recognition of emotions from faces and voices in medial temporal lobe epilepsy,” Epilepsy Behav. 20, 648–654 (2011).
[Crossref] [PubMed]

Monti, G.

A. Bonora, F. Benuzzi, G. Monti, L. Mirandola, M. Pugnaghi, P. Nichelli, and S. Meletti, “Recognition of emotions from faces and voices in medial temporal lobe epilepsy,” Epilepsy Behav. 20, 648–654 (2011).
[Crossref] [PubMed]

Munro, E. A.

Nguyen, J.

M. Zhao, J. Nguyen, H. Ma, N. Nishimura, C. B. Schaffer, and T. H. Schwartz, “Preictal and ictal neurovascular and metabolic coupling surrounding a seizure focus,” J. Neurosci 31, 13292–13300 (2011).
[Crossref] [PubMed]

Nichelli, P.

A. Bonora, F. Benuzzi, G. Monti, L. Mirandola, M. Pugnaghi, P. Nichelli, and S. Meletti, “Recognition of emotions from faces and voices in medial temporal lobe epilepsy,” Epilepsy Behav. 20, 648–654 (2011).
[Crossref] [PubMed]

Nishimura, N.

M. Zhao, J. Nguyen, H. Ma, N. Nishimura, C. B. Schaffer, and T. H. Schwartz, “Preictal and ictal neurovascular and metabolic coupling surrounding a seizure focus,” J. Neurosci 31, 13292–13300 (2011).
[Crossref] [PubMed]

O’Sullivan, T. D.

Oana, Y.

N. Adachi, T. Hara, Y. Oana, M. Matsuura, Y. Okubo, N. Akanuma, M. Ito, M. Kato, and T. Onuma, “Difference in age of onset of psychosis between epilepsy and schizophrenia,” Epilepsy Res. 78, 201–206 (2008).
[Crossref] [PubMed]

Okubo, Y.

N. Adachi, T. Hara, Y. Oana, M. Matsuura, Y. Okubo, N. Akanuma, M. Ito, M. Kato, and T. Onuma, “Difference in age of onset of psychosis between epilepsy and schizophrenia,” Epilepsy Res. 78, 201–206 (2008).
[Crossref] [PubMed]

Onuma, T.

N. Adachi, T. Hara, Y. Oana, M. Matsuura, Y. Okubo, N. Akanuma, M. Ito, M. Kato, and T. Onuma, “Difference in age of onset of psychosis between epilepsy and schizophrenia,” Epilepsy Res. 78, 201–206 (2008).
[Crossref] [PubMed]

Perry, C.

M. Zhao, M. Suh, H. Ma, C. Perry, A. Geneslaw, and T. H. Schwartz, “Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy,” Epilepsia 48, 2059–2067 (2007).
[Crossref] [PubMed]

Polc, P.

P. L. Carlen, N. Gurevich, and P. Polc, “Low-dose benzodiazepine neuronal inhibition: enhanced ca 2+-mediated k+-conductance,” Brain research 271, 358–364 (1983).
[Crossref]

Pugnaghi, M.

A. Bonora, F. Benuzzi, G. Monti, L. Mirandola, M. Pugnaghi, P. Nichelli, and S. Meletti, “Recognition of emotions from faces and voices in medial temporal lobe epilepsy,” Epilepsy Behav. 20, 648–654 (2011).
[Crossref] [PubMed]

Rahmani, R.

H. Ma, S. Harris, R. Rahmani, C. O. Lacefield, M. Zhao, A. G. Daniel, Z. Zhou, R. M. Bruno, J. Berwick, and T. H. Schwartz, “Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals,” Neurophotonics 1, 015003 (2014).
[Crossref]

Richards, L. M.

L. M. Richards, E. L. Towle, D. J. Fox, and A. K. Dunn, “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1, 015006 (2014).
[Crossref]

Ringuette, D.

D. Ringuette, M. A. Jeffrey, P. L. Carlen, and O. Levi, “Multi-modal in vivo imaging of brain blood oxygenation, blood flow and neural calcium dynamics during acute seizures,” Proc. SPIE 9690, 969011 (2016).
[Crossref]

S. Dufour, Y. Atchia, R. Gad, D. Ringuette, I. Sigal, and O. Levi, “Evaluation of laser speckle contrast imaging as an intrinsic method to monitor blood brain barrier integrity,” Biomed. Opt. Express 4, 1856–1875 (2013).
[Crossref] [PubMed]

H. Levy, D. Ringuette, and O. Levi, “Rapid monitoring of cerebral ischemia dynamics using laser-based optical imaging of blood oxygenation and flow,” Biomed. Opt. Express 3, 777–791 (2012).
[Crossref] [PubMed]

E. A. Munro, H. Levy, D. Ringuette, T. D. O’Sullivan, and O. Levi, “Multi-modality optical neural imaging using coherence control of VCSELs,” Opt. Express 19, 10747–10761 (2011).
[Crossref] [PubMed]

D. Ringuette, P. Carlen, and O. Levi, “Multi-modality optical imaging of temporal and spatial dynamics during in vivo seizure-like activity,” in Biomedical Optics, OSA Technical Digest (online), (Optical Society of America, 2016), paper BM4D–3.

Rossi, D. J.

D. J. Rossi, “Another bold role for astrocytes: coupling blood flow to neural activity,” Nat. Neurosci 9, 159–161 (2006).
[Crossref] [PubMed]

Scadeng, M.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, and et al., “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci 107, 15246–15251 (2010).
[Crossref] [PubMed]

Schaffer, C. B.

M. Zhao, J. Nguyen, H. Ma, N. Nishimura, C. B. Schaffer, and T. H. Schwartz, “Preictal and ictal neurovascular and metabolic coupling surrounding a seizure focus,” J. Neurosci 31, 13292–13300 (2011).
[Crossref] [PubMed]

Schwartz, T. H.

H. Ma, S. Harris, R. Rahmani, C. O. Lacefield, M. Zhao, A. G. Daniel, Z. Zhou, R. M. Bruno, J. Berwick, and T. H. Schwartz, “Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals,” Neurophotonics 1, 015003 (2014).
[Crossref]

H. Ma, M. Zhao, and T. H. Schwartz, “Dynamic neurovascular coupling and uncoupling during ictal onset, propagation, and termination revealed by simultaneous in vivo optical imaging of neural activity and local blood volume,” Cerebral Cortex 23(4), 885–899 (2013).
[Crossref]

M. Zhao, J. Nguyen, H. Ma, N. Nishimura, C. B. Schaffer, and T. H. Schwartz, “Preictal and ictal neurovascular and metabolic coupling surrounding a seizure focus,” J. Neurosci 31, 13292–13300 (2011).
[Crossref] [PubMed]

M. Zhao, H. Ma, M. Suh, and T. H. Schwartz, “Spatiotemporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex,” J. Neurosci 29, 2814–2823 (2009).
[Crossref] [PubMed]

M. Zhao, M. Suh, H. Ma, C. Perry, A. Geneslaw, and T. H. Schwartz, “Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy,” Epilepsia 48, 2059–2067 (2007).
[Crossref] [PubMed]

S. Bahar, M. Suh, M. Zhao, and T. H. Schwartz, “Intrinsic optical signal imaging of neocortical seizures: the ‘epileptic dip’,” Neuroreport 17, 499–503 (2006).
[Crossref] [PubMed]

Seidenberg, M.

B. Hermann and M. Seidenberg, “Epilepsy and cognition,” Epilepsy Currents 7, 1–6 (2007).
[Crossref] [PubMed]

Shu, H.-J.

S. Mennerick, M. Chisari, H.-J. Shu, A. Taylor, M. Vasek, L. N. Eisenman, and C. F. Zorumski, “Diverse voltage-sensitive dyes modulate GABAA receptor function,” J. Neurosci 30, 2871–2879 (2010).
[Crossref] [PubMed]

Sigal, I.

Suh, M.

M. Zhao, H. Ma, M. Suh, and T. H. Schwartz, “Spatiotemporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex,” J. Neurosci 29, 2814–2823 (2009).
[Crossref] [PubMed]

M. Zhao, M. Suh, H. Ma, C. Perry, A. Geneslaw, and T. H. Schwartz, “Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy,” Epilepsia 48, 2059–2067 (2007).
[Crossref] [PubMed]

S. Bahar, M. Suh, M. Zhao, and T. H. Schwartz, “Intrinsic optical signal imaging of neocortical seizures: the ‘epileptic dip’,” Neuroreport 17, 499–503 (2006).
[Crossref] [PubMed]

Swamy, M.

R. Yadav, R. Agarwal, and M. Swamy, “Detection of epileptic seizures in stereo-EEG using frequency-weighted energy,” in 50th Midwest Symposium on Circuits and Systems, (IEEE, 2007), pp. 77–80.

Taylor, A.

S. Mennerick, M. Chisari, H.-J. Shu, A. Taylor, M. Vasek, L. N. Eisenman, and C. F. Zorumski, “Diverse voltage-sensitive dyes modulate GABAA receptor function,” J. Neurosci 30, 2871–2879 (2010).
[Crossref] [PubMed]

Teng, I. C.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, and et al., “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci 107, 15246–15251 (2010).
[Crossref] [PubMed]

Tian, P.

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, and et al., “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci 107, 15246–15251 (2010).
[Crossref] [PubMed]

Towle, E. L.

L. M. Richards, E. L. Towle, D. J. Fox, and A. K. Dunn, “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1, 015006 (2014).
[Crossref]

Vasek, M.

S. Mennerick, M. Chisari, H.-J. Shu, A. Taylor, M. Vasek, L. N. Eisenman, and C. F. Zorumski, “Diverse voltage-sensitive dyes modulate GABAA receptor function,” J. Neurosci 30, 2871–2879 (2010).
[Crossref] [PubMed]

Yadav, R.

R. Yadav, R. Agarwal, and M. Swamy, “Detection of epileptic seizures in stereo-EEG using frequency-weighted energy,” in 50th Midwest Symposium on Circuits and Systems, (IEEE, 2007), pp. 77–80.

Zhao, M.

H. Ma, S. Harris, R. Rahmani, C. O. Lacefield, M. Zhao, A. G. Daniel, Z. Zhou, R. M. Bruno, J. Berwick, and T. H. Schwartz, “Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals,” Neurophotonics 1, 015003 (2014).
[Crossref]

H. Ma, M. Zhao, and T. H. Schwartz, “Dynamic neurovascular coupling and uncoupling during ictal onset, propagation, and termination revealed by simultaneous in vivo optical imaging of neural activity and local blood volume,” Cerebral Cortex 23(4), 885–899 (2013).
[Crossref]

M. Zhao, J. Nguyen, H. Ma, N. Nishimura, C. B. Schaffer, and T. H. Schwartz, “Preictal and ictal neurovascular and metabolic coupling surrounding a seizure focus,” J. Neurosci 31, 13292–13300 (2011).
[Crossref] [PubMed]

M. Zhao, H. Ma, M. Suh, and T. H. Schwartz, “Spatiotemporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex,” J. Neurosci 29, 2814–2823 (2009).
[Crossref] [PubMed]

M. Zhao, M. Suh, H. Ma, C. Perry, A. Geneslaw, and T. H. Schwartz, “Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy,” Epilepsia 48, 2059–2067 (2007).
[Crossref] [PubMed]

S. Bahar, M. Suh, M. Zhao, and T. H. Schwartz, “Intrinsic optical signal imaging of neocortical seizures: the ‘epileptic dip’,” Neuroreport 17, 499–503 (2006).
[Crossref] [PubMed]

Zhou, Z.

H. Ma, S. Harris, R. Rahmani, C. O. Lacefield, M. Zhao, A. G. Daniel, Z. Zhou, R. M. Bruno, J. Berwick, and T. H. Schwartz, “Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals,” Neurophotonics 1, 015003 (2014).
[Crossref]

Zorumski, C. F.

S. Mennerick, M. Chisari, H.-J. Shu, A. Taylor, M. Vasek, L. N. Eisenman, and C. F. Zorumski, “Diverse voltage-sensitive dyes modulate GABAA receptor function,” J. Neurosci 30, 2871–2879 (2010).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Brain research (1)

P. L. Carlen, N. Gurevich, and P. Polc, “Low-dose benzodiazepine neuronal inhibition: enhanced ca 2+-mediated k+-conductance,” Brain research 271, 358–364 (1983).
[Crossref]

Cerebral Cortex (1)

H. Ma, M. Zhao, and T. H. Schwartz, “Dynamic neurovascular coupling and uncoupling during ictal onset, propagation, and termination revealed by simultaneous in vivo optical imaging of neural activity and local blood volume,” Cerebral Cortex 23(4), 885–899 (2013).
[Crossref]

Epilepsia (1)

M. Zhao, M. Suh, H. Ma, C. Perry, A. Geneslaw, and T. H. Schwartz, “Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy,” Epilepsia 48, 2059–2067 (2007).
[Crossref] [PubMed]

Epilepsy Behav. (1)

A. Bonora, F. Benuzzi, G. Monti, L. Mirandola, M. Pugnaghi, P. Nichelli, and S. Meletti, “Recognition of emotions from faces and voices in medial temporal lobe epilepsy,” Epilepsy Behav. 20, 648–654 (2011).
[Crossref] [PubMed]

Epilepsy Currents (1)

B. Hermann and M. Seidenberg, “Epilepsy and cognition,” Epilepsy Currents 7, 1–6 (2007).
[Crossref] [PubMed]

Epilepsy Res. (1)

N. Adachi, T. Hara, Y. Oana, M. Matsuura, Y. Okubo, N. Akanuma, M. Ito, M. Kato, and T. Onuma, “Difference in age of onset of psychosis between epilepsy and schizophrenia,” Epilepsy Res. 78, 201–206 (2008).
[Crossref] [PubMed]

ISRN Biomedical Engineering (1)

C. Kamath, “A new approach to detect epileptic seizures in electroencephalograms using teager energy,” ISRN Biomedical Engineering 2013358108 (2013).
[Crossref]

J. Neurosci (3)

S. Mennerick, M. Chisari, H.-J. Shu, A. Taylor, M. Vasek, L. N. Eisenman, and C. F. Zorumski, “Diverse voltage-sensitive dyes modulate GABAA receptor function,” J. Neurosci 30, 2871–2879 (2010).
[Crossref] [PubMed]

M. Zhao, J. Nguyen, H. Ma, N. Nishimura, C. B. Schaffer, and T. H. Schwartz, “Preictal and ictal neurovascular and metabolic coupling surrounding a seizure focus,” J. Neurosci 31, 13292–13300 (2011).
[Crossref] [PubMed]

M. Zhao, H. Ma, M. Suh, and T. H. Schwartz, “Spatiotemporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex,” J. Neurosci 29, 2814–2823 (2009).
[Crossref] [PubMed]

Nat. Neurosci (1)

D. J. Rossi, “Another bold role for astrocytes: coupling blood flow to neural activity,” Nat. Neurosci 9, 159–161 (2006).
[Crossref] [PubMed]

NeuroImage (1)

P. Bazzigaluppi, S. Dufour, and P. L. Carlen, “Wide field fluorescent imaging of extracellular spatiotemporal potassium dynamics in vivo,” NeuroImage 104, 110–116 (2015).
[Crossref]

Neurophotonics (2)

H. Ma, S. Harris, R. Rahmani, C. O. Lacefield, M. Zhao, A. G. Daniel, Z. Zhou, R. M. Bruno, J. Berwick, and T. H. Schwartz, “Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals,” Neurophotonics 1, 015003 (2014).
[Crossref]

L. M. Richards, E. L. Towle, D. J. Fox, and A. K. Dunn, “Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow,” Neurophotonics 1, 015006 (2014).
[Crossref]

Neuroreport (1)

S. Bahar, M. Suh, M. Zhao, and T. H. Schwartz, “Intrinsic optical signal imaging of neocortical seizures: the ‘epileptic dip’,” Neuroreport 17, 499–503 (2006).
[Crossref] [PubMed]

Opt. Express (2)

Proc. Natl. Acad. Sci (1)

P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. De Crespigny, H. E. D’Arceuil, J. B. Mandeville, and et al., “Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal,” Proc. Natl. Acad. Sci 107, 15246–15251 (2010).
[Crossref] [PubMed]

Proc. SPIE (1)

D. Ringuette, M. A. Jeffrey, P. L. Carlen, and O. Levi, “Multi-modal in vivo imaging of brain blood oxygenation, blood flow and neural calcium dynamics during acute seizures,” Proc. SPIE 9690, 969011 (2016).
[Crossref]

Other (2)

D. Ringuette, P. Carlen, and O. Levi, “Multi-modality optical imaging of temporal and spatial dynamics during in vivo seizure-like activity,” in Biomedical Optics, OSA Technical Digest (online), (Optical Society of America, 2016), paper BM4D–3.

R. Yadav, R. Agarwal, and M. Swamy, “Detection of epileptic seizures in stereo-EEG using frequency-weighted energy,” in 50th Midwest Symposium on Circuits and Systems, (IEEE, 2007), pp. 77–80.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Multi-modality rodent optical imaging system. (a) System diagram showing separate light paths and synchronization with LFP recording. Legend: CCD-1&2: cameras for NIR imaging and CSFDI, respectively, Trg-Inv: trigger inverter, E-Src & E-Swt: current source and switch, respectively, Ex/Em: CSFDI band-pass filters, LP: long-pass filter and dichroic mirror, Int: pin adapter interface, and VCSEL and LPHR comprise the NIR illumination module. (b) Large FOV images from LSCI (left) and CSFDI (right) just prior to dye injection (4× mag.) (c) Small FOV images from LSCI (left) and CSFDI (right) after dye injection (20× mag). (d) Relative spectrum of CSFDI and multi-modal NIR imaging. Fluorescent cube ex/em band-pass indicated by blue/green regions, respectively. The darker blue/green vertical lines correspond to the dye ex/em maximum. The dotted red lines show the VCSEL wavelengths. (e) Modality synchronization and current switching sequence for VCSELs.
Fig. 2
Fig. 2 High-speed multi-modal imaging of 4-AP induced SLEs. (a) 30 min after 4-AP application the measured (i) LFP, (ii) LFP-ESD, (iii) relative blood flow, (iv) Δ[HbO2], Δ[HbR] and Δ[HbT] = blood volume, (v) relative [Ca2+]i, and (vi) blood flow cross section, across six SLEs. Horizontal black strip indicates baseline for plot. (b) Detailed view of the 2nd SLE in grey window in (a). (c) Images of (i, ii) relative blood flow (in speckle flow index (SFI) units), (iii, iv) changes in 680 nm reflectance (~Δ[HbR]), and (vi, vii) relative [Ca2+]i from fluorescence intensity (FI) occurring between an SLE and at the peak of an SLE, respectively. (v) The larger FOV prior to dye injection. The ROIs used for (a & b)–iii–v are overlayed in (c)–i,iii,vi and also (c)–ii,iv,vii. The blood flow profile in (a)–vi was taken from the ROI in (c)–i,ii.
Fig. 3
Fig. 3 Multi-modal imaging of SLEs after pharmacological intervention. (a) 5 min after LZP administration. (i–v) Use same correspondence as in Fig. 2, above. The four vertical arrows in (a)–iv mark higher distinction in the increase in blood volume at SLE-onset not matched by higher distinction in the increase in blood flow. (b & c) Detailed view of the 1st and 3rd SLEs from the orange and blue windows in (a), respectively. Multi-modal imaging of this rat prior to LZP administration is shown in Fig. 2. The ROIs shown in Fig. 2(c) were also used for all traces within this figure.
Fig. 4
Fig. 4 Highest distinct SLE recurrence rate occurred under near-normoxic state. (a) Imaging series before and (b) after LZP administration. The (i–v) correspondence is the same as in Figs. 2 and 3. The second LFP in (a,b)–i is shown in grey.
Fig. 5
Fig. 5 Propagation of SLEs associated with high degree of correspondence in LFP. (a) Relative blood flow maps over a larger FOV showing (i–iii) propagation of a distinct SLE and (iv–vi) stagnation of a non-distinct SLE. (b) Comparison of (i) dual LFP recording and (ii) separate blood flow ROIs. Vertical grey bars indicate correspondence to (a)–i–vi.
Fig. 6
Fig. 6 Temporal correlation between optical parameters and χc during SLEs (a) prior to and (b) after LZP administration and (c&d) in the near-normoxic state. (i–vi) are the same for (a–d). (i) The χc maximally correlated with blood flow, HbR and CSFDI. (ii) The ψα parameter. Correlation plot between (iii) blood flow, (iv) HbR, and (v) ψα and their respective optimum χc. (iii–v) The red- and green-scales color scales indicate correspondence during increasing and decreasing χc, respectively. (vi) Correlation plot between blood flow and HbR.
Fig. 7
Fig. 7 Blood flow and HbR normalized value distributions along a cardiac cycle (profiles). (a) Blood flow profiles time centered on ECG R-wave (i) before intervention, (ii) after intervention, and (iii) before minus after intervention indicating profile change. In this grey-scale white is positive/before, black is negative/after and grey is no change. (iv–vi) The re-computed profiles from i–iii after subtraction of computed profile from signal. (b) Reflectance profile at 680 nm (∼ Δ[HbR]). (i–vi) The same as in (a). (c) Comparison between small artery and large vein before and after intervention. (i) Blood flow map (temporally averaged). (ii) Artery minus vein before and (iii) after intervention. (iv) Artery and (v) vein before minus after intervention. (d) Comparison between large artery and small vein. (i–v) The same as in (c). For all plots the temporal window is 200 ms (i.e., for 5 Hz heart rate) and vertical axis is 60 speckle flow index units (a, c, & d) or grey levels (b).

Metrics