Abstract

Measuring the sensitivity of an optical coherence tomography (OCT) system determines the minimum sample reflectivity it can detect and provides a figure of merit for system optimization and comparison. The published literature lacks a detailed description of OCT sensitivity measurement procedures. Here we describe a commonly-used measurement method and introduce two new phantom-based methods, which also offer a means to directly visualize low reflectivity conditions relevant to biological tissue. We provide quantitative results for the three methods from different OCT system configurations and discuss the methods’ advantages and disadvantages.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simplified method for polarization-sensitive optical coherence tomography

Jonathan E. Roth, Jennifer A. Kozak, Siavash Yazdanfar, Andrew M. Rollins, and Joseph A. Izatt
Opt. Lett. 26(14) 1069-1071 (2001)

Two applications of solid phantoms in performance assessment of optical coherence tomography systems

Mohammad R. N. Avanaki, Adrian Gh. Podoleanu, Mark C. Price, Serena A. Corr, and S. A. Hojjatoleslami
Appl. Opt. 52(29) 7054-7061 (2013)

Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source

Jingjiang Xu, Shaozhen Song, Wei Wei, and Ruikang K. Wang
Biomed. Opt. Express 8(1) 420-435 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and T. J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Proc. SPIE 6870, 687005 (2008).
    [Crossref]
  2. M. Brezinski, Optical Coherence Tomography: Principles and Applications (Elsevier, 2006).
  3. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]
  4. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992).
    [Crossref] [PubMed]
  5. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref] [PubMed]
  6. Z. Yaqoob, J. Wu, and C. Yang, “Spectral domain optical coherence tomography: a better OCT imaging strategy,” Biotechniques 39(6Suppl), S6–S13 (2005).
    [Crossref] [PubMed]
  7. R. C. Haskell, D. Liao, A. E. Pivonka, T. L. Bell, B. R. Haberle, B. M. Hoeling, and D. C. Petersen, “Role of beat noise in limiting the sensitivity of optical coherence tomography,” J. Opt. Soc. Am. A 23(11), 2747–2755 (2006).
    [Crossref] [PubMed]
  8. J. M. Schmitt, A. R. Knüttel, A. H. Gandjbakhche, and R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” Proc. SPIE 1889, 197–211 (1993).
    [Crossref]
  9. B. D. Goldberg, B. J. Vakoc, W. Y. Oh, M. J. Suter, S. Waxman, M. I. Freilich, B. E. Bouma, and G. J. Tearney, “Performance of reduced bit-depth acquisition for optical frequency domain imaging,” Opt. Express 17(19), 16957–16968 (2009).
    [Crossref] [PubMed]
  10. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Express 11(26), 3598–3604 (2003).
    [Crossref] [PubMed]
  11. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004).
    [Crossref] [PubMed]
  12. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
    [Crossref] [PubMed]
  13. H. Lim, J. F. de Boer, B. H. Park, E. C. W. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Express 14(13), 5937–5944 (2006).
    [Crossref] [PubMed]
  14. V. D. Nguyen, N. Weiss, W. Beeker, M. Hoekman, A. Leinse, R. G. Heideman, T. G. van Leeuwen, and J. Kalkman, “Integrated-optics-based swept-source optical coherence tomography,” Opt. Lett. 37(23), 4820–4822 (2012).
    [Crossref] [PubMed]
  15. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
    [Crossref] [PubMed]
  16. D. Lorenser, C. Christian Singe, A. Curatolo, and D. D. Sampson, “Energy-efficient low-Fresnel-number Bessel beams and their application in optical coherence tomography,” Opt. Lett. 39(3), 548–551 (2014).
    [Crossref] [PubMed]
  17. P. D. Woolliams, National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW United Kingdom (internal report, 2009).
  18. D. X. Hammer, R. D. Ferguson, M. Mujat, A. Patel, E. Plumb, N. Iftimia, T. Y. P. Chui, J. D. Akula, and A. B. Fulton, “Multimodal adaptive optics retinal imager: design and performance,” J. Opt. Soc. Am. A 29(12), 2598–2607 (2012).
    [Crossref] [PubMed]
  19. D. X. Hammer, A. Lozzi, E. Abliz, N. Greenbaum, A. Agrawal, V. Krauthamer, and C. G. Welle, “Longitudinal vascular dynamics following cranial window and electrode implantation measured with speckle variance optical coherence angiography,” Biomed. Opt. Express 5(8), 2823–2836 (2014).
    [Crossref] [PubMed]
  20. M. N. Polyanskiy, “Refractive index database,” http://refractiveindex.info
  21. P. H. Tomlins, G. N. Smith, P. D. Woolliams, J. Rasakanthan, and K. Sugden, “Femtosecond laser micro-inscription of optical coherence tomography resolution test artifacts,” Biomed. Opt. Express 2(5), 1319–1327 (2011).
    [Crossref] [PubMed]
  22. A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt. 11(4), 041121 (2006).
    [Crossref] [PubMed]
  23. S. Prahl, “Mie scattering,” http://omlc.org/software/mie .
  24. C. Maetzler, Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland (internal report, 2002).
  25. C. E. Papadopoulous and H. Yeung, “Uncertainty estimation and Monte Carlo simulation method,” Flow Meas. Instrum. 12(4), 291–298 (2001).
    [Crossref]

2014 (2)

2012 (2)

2011 (1)

2009 (1)

2008 (1)

A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and T. J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Proc. SPIE 6870, 687005 (2008).
[Crossref]

2006 (4)

2005 (2)

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[Crossref] [PubMed]

Z. Yaqoob, J. Wu, and C. Yang, “Spectral domain optical coherence tomography: a better OCT imaging strategy,” Biotechniques 39(6Suppl), S6–S13 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (3)

2001 (1)

C. E. Papadopoulous and H. Yeung, “Uncertainty estimation and Monte Carlo simulation method,” Flow Meas. Instrum. 12(4), 291–298 (2001).
[Crossref]

1993 (1)

J. M. Schmitt, A. R. Knüttel, A. H. Gandjbakhche, and R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” Proc. SPIE 1889, 197–211 (1993).
[Crossref]

1992 (1)

Abliz, E.

Agrawal, A.

D. X. Hammer, A. Lozzi, E. Abliz, N. Greenbaum, A. Agrawal, V. Krauthamer, and C. G. Welle, “Longitudinal vascular dynamics following cranial window and electrode implantation measured with speckle variance optical coherence angiography,” Biomed. Opt. Express 5(8), 2823–2836 (2014).
[Crossref] [PubMed]

A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and T. J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Proc. SPIE 6870, 687005 (2008).
[Crossref]

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt. 11(4), 041121 (2006).
[Crossref] [PubMed]

Akula, J. D.

Bachmann, A. H.

Barton, J. K.

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt. 11(4), 041121 (2006).
[Crossref] [PubMed]

Beeker, W.

Bell, T. L.

Bonner, R. F.

J. M. Schmitt, A. R. Knüttel, A. H. Gandjbakhche, and R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” Proc. SPIE 1889, 197–211 (1993).
[Crossref]

Bouma, B.

Bouma, B. E.

Cense, B.

Chakrabarti, K.

A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and T. J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Proc. SPIE 6870, 687005 (2008).
[Crossref]

Chen, T.

Choma, M.

Choma, M. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[Crossref] [PubMed]

Christian Singe, C.

Chui, T. Y. P.

Curatolo, A.

de Boer, J.

de Boer, J. F.

Drezek, R. A.

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt. 11(4), 041121 (2006).
[Crossref] [PubMed]

Fercher, A.

Ferguson, R. D.

Freilich, M. I.

Fujimoto, J. G.

Fulton, A. B.

Gandjbakhche, A. H.

J. M. Schmitt, A. R. Knüttel, A. H. Gandjbakhche, and R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” Proc. SPIE 1889, 197–211 (1993).
[Crossref]

Gavrielides, M. A.

A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and T. J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Proc. SPIE 6870, 687005 (2008).
[Crossref]

Goldberg, B. D.

Greenbaum, N.

Haberle, B. R.

Hammer, D. X.

Haskell, R. C.

Hee, M. R.

Heideman, R. G.

Hitzenberger, C.

Hoekman, M.

Hoeling, B. M.

Hsu, K.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[Crossref] [PubMed]

Huang, D.

Huang, S.

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt. 11(4), 041121 (2006).
[Crossref] [PubMed]

Iftimia, N.

Izatt, J.

Izatt, J. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[Crossref] [PubMed]

Kalkman, J.

Knüttel, A. R.

J. M. Schmitt, A. R. Knüttel, A. H. Gandjbakhche, and R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” Proc. SPIE 1889, 197–211 (1993).
[Crossref]

Krauthamer, V.

Lasser, T.

Lee, E. C. W.

Lee, M. H.

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt. 11(4), 041121 (2006).
[Crossref] [PubMed]

Leinse, A.

Leitgeb, R.

Leitgeb, R. A.

Liao, D.

Lim, H.

Lin, C. P.

Lorenser, D.

Lozzi, A.

Mujat, M.

Nassif, N.

Nguyen, V. D.

Oh, W. Y.

Papadopoulous, C. E.

C. E. Papadopoulous and H. Yeung, “Uncertainty estimation and Monte Carlo simulation method,” Flow Meas. Instrum. 12(4), 291–298 (2001).
[Crossref]

Park, B.

Park, B. H.

Patel, A.

Petersen, D. C.

Pfefer, T. J.

A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and T. J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Proc. SPIE 6870, 687005 (2008).
[Crossref]

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt. 11(4), 041121 (2006).
[Crossref] [PubMed]

Pierce, M.

Pivonka, A. E.

Plumb, E.

Puliafito, C. A.

Rasakanthan, J.

Sampson, D. D.

Sarunic, M.

Schmitt, J. M.

J. M. Schmitt, A. R. Knüttel, A. H. Gandjbakhche, and R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” Proc. SPIE 1889, 197–211 (1993).
[Crossref]

Smith, G. N.

Steinmann, L.

Sugden, K.

Suter, M. J.

Swanson, E. A.

Tearney, G.

Tearney, G. J.

Tomlins, P. H.

Vakoc, B. J.

van Leeuwen, T. G.

Villiger, M.

Waxman, S.

Wei Haw Lin, A.

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt. 11(4), 041121 (2006).
[Crossref] [PubMed]

Weininger, S.

A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and T. J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Proc. SPIE 6870, 687005 (2008).
[Crossref]

Weiss, N.

Welle, C. G.

Woolliams, P. D.

Wu, J.

Z. Yaqoob, J. Wu, and C. Yang, “Spectral domain optical coherence tomography: a better OCT imaging strategy,” Biotechniques 39(6Suppl), S6–S13 (2005).
[Crossref] [PubMed]

Yang, C.

Z. Yaqoob, J. Wu, and C. Yang, “Spectral domain optical coherence tomography: a better OCT imaging strategy,” Biotechniques 39(6Suppl), S6–S13 (2005).
[Crossref] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref] [PubMed]

Yaqoob, Z.

Z. Yaqoob, J. Wu, and C. Yang, “Spectral domain optical coherence tomography: a better OCT imaging strategy,” Biotechniques 39(6Suppl), S6–S13 (2005).
[Crossref] [PubMed]

Yelin, R.

Yeung, H.

C. E. Papadopoulous and H. Yeung, “Uncertainty estimation and Monte Carlo simulation method,” Flow Meas. Instrum. 12(4), 291–298 (2001).
[Crossref]

Yun, S.

Yun, S. H.

Biomed. Opt. Express (2)

Biotechniques (1)

Z. Yaqoob, J. Wu, and C. Yang, “Spectral domain optical coherence tomography: a better OCT imaging strategy,” Biotechniques 39(6Suppl), S6–S13 (2005).
[Crossref] [PubMed]

Flow Meas. Instrum. (1)

C. E. Papadopoulous and H. Yeung, “Uncertainty estimation and Monte Carlo simulation method,” Flow Meas. Instrum. 12(4), 291–298 (2001).
[Crossref]

J. Biomed. Opt. (2)

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[Crossref] [PubMed]

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt. 11(4), 041121 (2006).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

Opt. Express (6)

Opt. Lett. (4)

Proc. SPIE (2)

J. M. Schmitt, A. R. Knüttel, A. H. Gandjbakhche, and R. F. Bonner, “Optical characterization of dense tissues using low-coherence interferometry,” Proc. SPIE 1889, 197–211 (1993).
[Crossref]

A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and T. J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Proc. SPIE 6870, 687005 (2008).
[Crossref]

Other (5)

M. Brezinski, Optical Coherence Tomography: Principles and Applications (Elsevier, 2006).

S. Prahl, “Mie scattering,” http://omlc.org/software/mie .

C. Maetzler, Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland (internal report, 2002).

P. D. Woolliams, National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW United Kingdom (internal report, 2009).

M. N. Polyanskiy, “Refractive index database,” http://refractiveindex.info

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Conventional OCT sensitivity measurement setup.
Fig. 2
Fig. 2 Schematic of single group in sensitivity region of laser-inscribed phantom. (a) Top/en face view. (b) Side/B-scan view. (c) 3D perspective view. Group lines are in black, index lines are in red. Though not apparent in this schematic, group line width increases from left to right.
Fig. 3
Fig. 3 Photograph of laser-inscribed phantom.
Fig. 4
Fig. 4 Oblique illumination microscopy images of individual lines in the sensitivity region of laser-inscribed phantom. Images are 22 µm wide × 134 µm high. Brightness of each image is autoscaled to show detail.
Fig. 5
Fig. 5 Measured width and brightness of lines shown in Fig. 4. Error bars represent the standard deviation of the measurement across each image.
Fig. 6
Fig. 6 Photograph of microsphere suspensions. The scattering level of each suspension can be assessed by visibility of text behind vial.
Fig. 7
Fig. 7 Reflectance of the microsphere suspensions at zero depth for the two OCT systems. Error bars represent one standard deviation.
Fig. 8
Fig. 8 Standard deviation of background image intensity versus depth.
Fig. 9
Fig. 9 B-scans of fused silica front surface. Axes are labeled with pixel index. Linear intensity scale colormap is beneath each image.
Fig. 10
Fig. 10 B-scans of Groups 1 and 6 in sensitivity region of laser-inscribed phantom. Images are 1.5 mm wide × 1.5 mm optical depth. Linear intensity scale is to the right of each image.
Fig. 11
Fig. 11 Image SNR values measured for 12 Group 1 lines shown in Fig. 10.
Fig. 12
Fig. 12 Average B-scans of the eight suspensions. Images are ordered from suspension #1 at top to #8 at bottom, and are 1500 µm wide × 280 µm optical depth. Linear intensity scale at the bottom of each column applies to all the images in that column.
Fig. 13
Fig. 13 Image SNR measured from the eight microsphere suspensions, plotted against (a) suspension number and (b) mean Rsusp. Error bars are excluded from (b) for visual clarity.

Tables (6)

Tables Icon

Table 1 OCT system parameters

Tables Icon

Table 2 Reflectance and transmittance values for SNRmax calculations

Tables Icon

Table 3 Refractive index (nsusp) and scattering coefficient (μs) of the microsphere suspensions

Tables Icon

Table 4 SNR values for the specular surface method

Tables Icon

Table 5 SNRmax estimated with microsphere suspensions and specular surface

Tables Icon

Table 6 Key characteristics* of the sensitivity assessment methods in this study

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

SNR= ( I samp σ bg ) 2 ,
SNR (dB)=20log( I samp σ bg ).
SNR=KR,
SN R max =K1,
1=K R min .
R min = 1 SN R max .
SN R max  ( dB )=20log( I samp σ bg )10log( R samp T filt 2 ),
R susp (dB)=10log[ 2π μ b (NA) 2 l c ].

Metrics