Abstract

The full shape of the accommodating crystalline lens was estimated using custom three-dimensional (3-D) spectral OCT and image processing algorithms. Automatic segmentation and distortion correction were used to construct 3-D models of the lens region visible through the pupil. The lens peripheral region was estimated with a trained and validated parametric model. Nineteen young eyes were measured at 0-6 D accommodative demands in 1.5 D steps. Lens volume, surface area, diameter, and equatorial plane position were automatically quantified. Lens diameter & surface area correlated negatively and equatorial plane position positively with accommodation response. Lens volume remained constant and surface area decreased with accommodation, indicating that the lens material is incompressible and the capsular bag elastic.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT

Enrique Gambra, Sergio Ortiz, Pablo Perez-Merino, Michalina Gora, Maciej Wojtkowski, and Susana Marcos
Biomed. Opt. Express 4(9) 1595-1609 (2013)

In vivo human crystalline lens topography

Sergio Ortiz, Pablo Pérez-Merino, Enrique Gambra, Alberto de Castro, and Susana Marcos
Biomed. Opt. Express 3(10) 2471-2488 (2012)

Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging

Marco Ruggeri, Carolina de Freitas, Siobhan Williams, Victor M. Hernandez, Florence Cabot, Nilufer Yesilirmak, Karam Alawa, Yu-Cherng Chang, Sonia H. Yoo, Giovanni Gregori, Jean-Marie Parel, and Fabrice Manns
Biomed. Opt. Express 7(4) 1351-1364 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. F. Garner and M. K. Yap, “Changes in ocular dimensions and refraction with accommodation,” Ophthalmic Physiol. Opt. 17(1), 12–17 (1997).
    [Crossref] [PubMed]
  2. P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
    [Crossref] [PubMed]
  3. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
    [Crossref] [PubMed]
  4. M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43(22), 2363–2375 (2003).
    [Crossref] [PubMed]
  5. E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
    [Crossref] [PubMed]
  6. P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
    [Crossref] [PubMed]
  7. J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
    [Crossref] [PubMed]
  8. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
    [Crossref] [PubMed]
  9. P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis. 8(1), 18 (2008) doi:.
    [Crossref]
  10. K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalmic Physiol. Opt. 28(5), 441–447 (2008).
    [Crossref] [PubMed]
  11. L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J. M. Parel, “Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher,” Invest. Ophthalmol. Vis. Sci. 56(8), 4239–4248 (2015).
    [Crossref] [PubMed]
  12. E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, E. Arrieta-Quintero, and J. M. Parel, “Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation,” J. Biomed. Opt. 16(5), 056003 (2011).
    [Crossref] [PubMed]
  13. A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
    [Crossref] [PubMed]
  14. A. Roorda and A. Glasser, “Wave aberrations of the isolated crystalline lens,” J. Vis. 4(4), 250–261 (2003) doi:.
    [Crossref] [PubMed]
  15. E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
    [Crossref] [PubMed]
  16. A. L. Sheppard, C. J. Evans, K. D. Singh, J. S. Wolffsohn, M. C. Dunne, and L. N. Davies, “Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation,” Invest. Ophthalmol. Vis. Sci. 52(6), 3689–3697 (2011).
    [Crossref] [PubMed]
  17. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
    [Crossref] [PubMed]
  18. C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci. 84(10), 990–995 (2007).
    [Crossref] [PubMed]
  19. S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
    [PubMed]
  20. R. Gerometta, A. C. Zamudio, D. P. Escobar, and O. A. Candia, “Volume change of the ocular lens during accommodation,” Am. J. Physiol. Cell Physiol. 293(2), C797–C804 (2007).
    [Crossref] [PubMed]
  21. S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
    [Crossref] [PubMed]
  22. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
    [Crossref] [PubMed]
  23. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
    [Crossref] [PubMed]
  24. S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
    [Crossref] [PubMed]
  25. M. Sun, P. Pérez-Merino, E. Martinez-Enriquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
    [Crossref] [PubMed]
  26. E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT600 (2016).
    [Crossref] [PubMed]
  27. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
    [Crossref] [PubMed]
  28. S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
    [Crossref] [PubMed]
  29. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional ray tracing on Delaunay-based reconstructed surfaces,” Appl. Opt. 48(20), 3886–3893 (2009).
    [Crossref] [PubMed]
  30. W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, H. Sattmann, and A. F. Fercher, “Submicrometer precision biometry of the anterior segment of the human eye,” Invest. Ophthalmol. Vis. Sci. 38(7), 1304–1313 (1997).
    [PubMed]
  31. S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
    [Crossref] [PubMed]
  32. R. Navarro, L. González, and J. L. Hernández, “Optics of the average normal cornea from general and canonical representations of its surface topography,” J. Opt. Soc. Am. A 23(2), 219–232 (2006).
    [Crossref] [PubMed]
  33. P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
    [Crossref] [PubMed]
  34. J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Aging of the human lens: changes in lens shape at zero-diopter accommodation,” J. Opt. Soc. Am. A 18(2), 265–272 (2001).
    [Crossref] [PubMed]
  35. O. Nishi, Y. Nishi, S. Chang, and K. Nishi, “Accommodation amplitudes after an accommodating intraocular lens refilling procedure: in vivo update,” J. Cataract Refract. Surg. 40(2), 295–305 (2014).
    [Crossref] [PubMed]
  36. D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008) doi:.
    [Crossref]
  37. A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
    [Crossref] [PubMed]
  38. E. A. Hermans, M. Dubbelman, G. L. van der Heijde, and R. M. Heethaar, “Change in the accommodative force on the lens of the human eye with age,” Vision Res. 48(1), 119–126 (2008).
    [Crossref] [PubMed]
  39. E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci. 85(12), 1179–1184 (2008).
    [Crossref] [PubMed]
  40. A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
    [Crossref] [PubMed]
  41. D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
    [Crossref] [PubMed]
  42. J. C. He, S. A. Burns, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40(1), 41–48 (2000).
    [Crossref] [PubMed]
  43. E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis. 9(6), 4 (2009) doi:.
    [Crossref]
  44. S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 466–477 (2005) doi:.
    [Crossref] [PubMed]
  45. J. F. McClelland and K. J. Saunders, “The repeatability and validity of dynamic retinoscopy in assessing the accommodative response,” Ophthalmic Physiol. Opt. 23(3), 243–250 (2003).
    [Crossref] [PubMed]

2016 (2)

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT600 (2016).
[Crossref] [PubMed]

M. Sun, P. Pérez-Merino, E. Martinez-Enriquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
[Crossref] [PubMed]

2015 (2)

P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
[Crossref] [PubMed]

L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J. M. Parel, “Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher,” Invest. Ophthalmol. Vis. Sci. 56(8), 4239–4248 (2015).
[Crossref] [PubMed]

2014 (1)

O. Nishi, Y. Nishi, S. Chang, and K. Nishi, “Accommodation amplitudes after an accommodating intraocular lens refilling procedure: in vivo update,” J. Cataract Refract. Surg. 40(2), 295–305 (2014).
[Crossref] [PubMed]

2013 (2)

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref] [PubMed]

2012 (2)

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref] [PubMed]

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

2011 (4)

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, E. Arrieta-Quintero, and J. M. Parel, “Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation,” J. Biomed. Opt. 16(5), 056003 (2011).
[Crossref] [PubMed]

A. L. Sheppard, C. J. Evans, K. D. Singh, J. S. Wolffsohn, M. C. Dunne, and L. N. Davies, “Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation,” Invest. Ophthalmol. Vis. Sci. 52(6), 3689–3697 (2011).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (6)

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional ray tracing on Delaunay-based reconstructed surfaces,” Appl. Opt. 48(20), 3886–3893 (2009).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref] [PubMed]

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[Crossref] [PubMed]

E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis. 9(6), 4 (2009) doi:.
[Crossref]

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[Crossref] [PubMed]

2008 (6)

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

E. A. Hermans, M. Dubbelman, G. L. van der Heijde, and R. M. Heethaar, “Change in the accommodative force on the lens of the human eye with age,” Vision Res. 48(1), 119–126 (2008).
[Crossref] [PubMed]

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci. 85(12), 1179–1184 (2008).
[Crossref] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008) doi:.
[Crossref]

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis. 8(1), 18 (2008) doi:.
[Crossref]

K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalmic Physiol. Opt. 28(5), 441–447 (2008).
[Crossref] [PubMed]

2007 (2)

C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci. 84(10), 990–995 (2007).
[Crossref] [PubMed]

R. Gerometta, A. C. Zamudio, D. P. Escobar, and O. A. Candia, “Volume change of the ocular lens during accommodation,” Am. J. Physiol. Cell Physiol. 293(2), C797–C804 (2007).
[Crossref] [PubMed]

2006 (3)

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[Crossref] [PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[Crossref] [PubMed]

R. Navarro, L. González, and J. L. Hernández, “Optics of the average normal cornea from general and canonical representations of its surface topography,” J. Opt. Soc. Am. A 23(2), 219–232 (2006).
[Crossref] [PubMed]

2005 (2)

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 466–477 (2005) doi:.
[Crossref] [PubMed]

2004 (2)

J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
[Crossref] [PubMed]

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

2003 (3)

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43(22), 2363–2375 (2003).
[Crossref] [PubMed]

A. Roorda and A. Glasser, “Wave aberrations of the isolated crystalline lens,” J. Vis. 4(4), 250–261 (2003) doi:.
[Crossref] [PubMed]

J. F. McClelland and K. J. Saunders, “The repeatability and validity of dynamic retinoscopy in assessing the accommodative response,” Ophthalmic Physiol. Opt. 23(3), 243–250 (2003).
[Crossref] [PubMed]

2001 (2)

J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Aging of the human lens: changes in lens shape at zero-diopter accommodation,” J. Opt. Soc. Am. A 18(2), 265–272 (2001).
[Crossref] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

2000 (1)

J. C. He, S. A. Burns, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40(1), 41–48 (2000).
[Crossref] [PubMed]

1999 (2)

A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref] [PubMed]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

1997 (2)

L. F. Garner and M. K. Yap, “Changes in ocular dimensions and refraction with accommodation,” Ophthalmic Physiol. Opt. 17(1), 12–17 (1997).
[Crossref] [PubMed]

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, H. Sattmann, and A. F. Fercher, “Submicrometer precision biometry of the anterior segment of the human eye,” Invest. Ophthalmol. Vis. Sci. 38(7), 1304–1313 (1997).
[PubMed]

Arrieta, E.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

Arrieta-Quintero, E.

L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J. M. Parel, “Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher,” Invest. Ophthalmol. Vis. Sci. 56(8), 4239–4248 (2015).
[Crossref] [PubMed]

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, E. Arrieta-Quintero, and J. M. Parel, “Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation,” J. Biomed. Opt. 16(5), 056003 (2011).
[Crossref] [PubMed]

Atchison, D. A.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008) doi:.
[Crossref]

C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci. 84(10), 990–995 (2007).
[Crossref] [PubMed]

Augusteyn, R.

L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J. M. Parel, “Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher,” Invest. Ophthalmol. Vis. Sci. 56(8), 4239–4248 (2015).
[Crossref] [PubMed]

Augusteyn, R. C.

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[Crossref] [PubMed]

Baumgartner, A.

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, H. Sattmann, and A. F. Fercher, “Submicrometer precision biometry of the anterior segment of the human eye,” Invest. Ophthalmol. Vis. Sci. 38(7), 1304–1313 (1997).
[PubMed]

Birkenfeld, J.

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT600 (2016).
[Crossref] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

Borja, D.

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, E. Arrieta-Quintero, and J. M. Parel, “Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation,” J. Biomed. Opt. 16(5), 056003 (2011).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[Crossref] [PubMed]

Bullimore, M. A.

K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalmic Physiol. Opt. 28(5), 441–447 (2008).
[Crossref] [PubMed]

Burns, S. A.

J. C. He, S. A. Burns, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40(1), 41–48 (2000).
[Crossref] [PubMed]

Campbell, M. C.

A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref] [PubMed]

Candia, O. A.

R. Gerometta, A. C. Zamudio, D. P. Escobar, and O. A. Candia, “Volume change of the ocular lens during accommodation,” Am. J. Physiol. Cell Physiol. 293(2), C797–C804 (2007).
[Crossref] [PubMed]

Chang, S.

O. Nishi, Y. Nishi, S. Chang, and K. Nishi, “Accommodation amplitudes after an accommodating intraocular lens refilling procedure: in vivo update,” J. Cataract Refract. Surg. 40(2), 295–305 (2014).
[Crossref] [PubMed]

Chia, N.

Cook, C. A.

Davies, L. N.

A. L. Sheppard, C. J. Evans, K. D. Singh, J. S. Wolffsohn, M. C. Dunne, and L. N. Davies, “Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation,” Invest. Ophthalmol. Vis. Sci. 52(6), 3689–3697 (2011).
[Crossref] [PubMed]

de Castro, A.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref] [PubMed]

DeMarco, J. K.

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Denham, D. B.

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[Crossref] [PubMed]

Dorronsoro, C.

E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis. 9(6), 4 (2009) doi:.
[Crossref]

Drexler, W.

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, H. Sattmann, and A. F. Fercher, “Submicrometer precision biometry of the anterior segment of the human eye,” Invest. Ophthalmol. Vis. Sci. 38(7), 1304–1313 (1997).
[PubMed]

Dubbelman, M.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[Crossref] [PubMed]

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci. 85(12), 1179–1184 (2008).
[Crossref] [PubMed]

E. A. Hermans, M. Dubbelman, G. L. van der Heijde, and R. M. Heethaar, “Change in the accommodative force on the lens of the human eye with age,” Vision Res. 48(1), 119–126 (2008).
[Crossref] [PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[Crossref] [PubMed]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43(22), 2363–2375 (2003).
[Crossref] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

Dunne, M. C.

A. L. Sheppard, C. J. Evans, K. D. Singh, J. S. Wolffsohn, M. C. Dunne, and L. N. Davies, “Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation,” Invest. Ophthalmol. Vis. Sci. 52(6), 3689–3697 (2011).
[Crossref] [PubMed]

Ehrmann, K.

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, E. Arrieta-Quintero, and J. M. Parel, “Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation,” J. Biomed. Opt. 16(5), 056003 (2011).
[Crossref] [PubMed]

Escobar, D. P.

R. Gerometta, A. C. Zamudio, D. P. Escobar, and O. A. Candia, “Volume change of the ocular lens during accommodation,” Am. J. Physiol. Cell Physiol. 293(2), C797–C804 (2007).
[Crossref] [PubMed]

Evans, C. J.

A. L. Sheppard, C. J. Evans, K. D. Singh, J. S. Wolffsohn, M. C. Dunne, and L. N. Davies, “Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation,” Invest. Ophthalmol. Vis. Sci. 52(6), 3689–3697 (2011).
[Crossref] [PubMed]

Fercher, A. F.

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, H. Sattmann, and A. F. Fercher, “Submicrometer precision biometry of the anterior segment of the human eye,” Invest. Ophthalmol. Vis. Sci. 38(7), 1304–1313 (1997).
[PubMed]

Fernandez, V.

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[Crossref] [PubMed]

Findl, O.

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, H. Sattmann, and A. F. Fercher, “Submicrometer precision biometry of the anterior segment of the human eye,” Invest. Ophthalmol. Vis. Sci. 38(7), 1304–1313 (1997).
[PubMed]

Gambra, E.

E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref] [PubMed]

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis. 9(6), 4 (2009) doi:.
[Crossref]

Garner, L. F.

L. F. Garner and M. K. Yap, “Changes in ocular dimensions and refraction with accommodation,” Ophthalmic Physiol. Opt. 17(1), 12–17 (1997).
[Crossref] [PubMed]

Gerometta, R.

R. Gerometta, A. C. Zamudio, D. P. Escobar, and O. A. Candia, “Volume change of the ocular lens during accommodation,” Am. J. Physiol. Cell Physiol. 293(2), C797–C804 (2007).
[Crossref] [PubMed]

Ginis, H. S.

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 466–477 (2005) doi:.
[Crossref] [PubMed]

Glasser, A.

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis. 8(1), 18 (2008) doi:.
[Crossref]

A. Roorda and A. Glasser, “Wave aberrations of the isolated crystalline lens,” J. Vis. 4(4), 250–261 (2003) doi:.
[Crossref] [PubMed]

A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref] [PubMed]

González, L.

Gora, M.

Gorczynska, I.

Gronlund-Jacob, J.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Grulkowski, I.

He, J. C.

J. C. He, S. A. Burns, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40(1), 41–48 (2000).
[Crossref] [PubMed]

Heethaar, R. M.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[Crossref] [PubMed]

E. A. Hermans, M. Dubbelman, G. L. van der Heijde, and R. M. Heethaar, “Change in the accommodative force on the lens of the human eye with age,” Vision Res. 48(1), 119–126 (2008).
[Crossref] [PubMed]

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci. 85(12), 1179–1184 (2008).
[Crossref] [PubMed]

Hermans, E. A.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[Crossref] [PubMed]

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci. 85(12), 1179–1184 (2008).
[Crossref] [PubMed]

E. A. Hermans, M. Dubbelman, G. L. van der Heijde, and R. M. Heethaar, “Change in the accommodative force on the lens of the human eye with age,” Vision Res. 48(1), 119–126 (2008).
[Crossref] [PubMed]

Hernández, J. L.

Hitzenberger, C. K.

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, H. Sattmann, and A. F. Fercher, “Submicrometer precision biometry of the anterior segment of the human eye,” Invest. Ophthalmol. Vis. Sci. 38(7), 1304–1313 (1997).
[PubMed]

Ho, A.

L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J. M. Parel, “Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher,” Invest. Ophthalmol. Vis. Sci. 56(8), 4239–4248 (2015).
[Crossref] [PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[Crossref] [PubMed]

Jones, C. E.

C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci. 84(10), 990–995 (2007).
[Crossref] [PubMed]

Kasthurirangan, S.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008) doi:.
[Crossref]

Kaufman, P. L.

Kim, E.

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, E. Arrieta-Quintero, and J. M. Parel, “Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation,” J. Biomed. Opt. 16(5), 056003 (2011).
[Crossref] [PubMed]

Koretz, J. E.

Koretz, J. F.

Kowalczyk, A.

Kuijer, J. P.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[Crossref] [PubMed]

Maceo, B.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

Maceo Heilman, B.

L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J. M. Parel, “Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher,” Invest. Ophthalmol. Vis. Sci. 56(8), 4239–4248 (2015).
[Crossref] [PubMed]

Manns, F.

L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J. M. Parel, “Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher,” Invest. Ophthalmol. Vis. Sci. 56(8), 4239–4248 (2015).
[Crossref] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[Crossref] [PubMed]

Marcos, S.

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT600 (2016).
[Crossref] [PubMed]

M. Sun, P. Pérez-Merino, E. Martinez-Enriquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
[Crossref] [PubMed]

P. Pérez-Merino, M. Velasco-Ocana, E. Martinez-Enriquez, and S. Marcos, “OCT-based crystalline lens topography in accommodating eyes,” Biomed. Opt. Express 6(12), 5039–5054 (2015).
[Crossref] [PubMed]

E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional ray tracing on Delaunay-based reconstructed surfaces,” Appl. Opt. 48(20), 3886–3893 (2009).
[Crossref] [PubMed]

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[Crossref] [PubMed]

E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis. 9(6), 4 (2009) doi:.
[Crossref]

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis. 8(1), 18 (2008) doi:.
[Crossref]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[Crossref] [PubMed]

J. C. He, S. A. Burns, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40(1), 41–48 (2000).
[Crossref] [PubMed]

Markwell, E. L.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008) doi:.
[Crossref]

Martinez-Enriquez, E.

Marussich, L.

L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J. M. Parel, “Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher,” Invest. Ophthalmol. Vis. Sci. 56(8), 4239–4248 (2015).
[Crossref] [PubMed]

McClelland, J. F.

J. F. McClelland and K. J. Saunders, “The repeatability and validity of dynamic retinoscopy in assessing the accommodative response,” Ophthalmic Physiol. Opt. 23(3), 243–250 (2003).
[Crossref] [PubMed]

Munoz, P.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Nankivil, D.

L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J. M. Parel, “Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher,” Invest. Ophthalmol. Vis. Sci. 56(8), 4239–4248 (2015).
[Crossref] [PubMed]

Navarro, R.

Nishi, K.

O. Nishi, Y. Nishi, S. Chang, and K. Nishi, “Accommodation amplitudes after an accommodating intraocular lens refilling procedure: in vivo update,” J. Cataract Refract. Surg. 40(2), 295–305 (2014).
[Crossref] [PubMed]

Nishi, O.

O. Nishi, Y. Nishi, S. Chang, and K. Nishi, “Accommodation amplitudes after an accommodating intraocular lens refilling procedure: in vivo update,” J. Cataract Refract. Surg. 40(2), 295–305 (2014).
[Crossref] [PubMed]

Nishi, Y.

O. Nishi, Y. Nishi, S. Chang, and K. Nishi, “Accommodation amplitudes after an accommodating intraocular lens refilling procedure: in vivo update,” J. Cataract Refract. Surg. 40(2), 295–305 (2014).
[Crossref] [PubMed]

Ortiz, S.

E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref] [PubMed]

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional ray tracing on Delaunay-based reconstructed surfaces,” Appl. Opt. 48(20), 3886–3893 (2009).
[Crossref] [PubMed]

Pallikaris, A.

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 466–477 (2005) doi:.
[Crossref] [PubMed]

Parel, J. M.

L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J. M. Parel, “Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher,” Invest. Ophthalmol. Vis. Sci. 56(8), 4239–4248 (2015).
[Crossref] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, E. Arrieta-Quintero, and J. M. Parel, “Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation,” J. Biomed. Opt. 16(5), 056003 (2011).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[Crossref] [PubMed]

Pascual, D.

Perez-Merino, P.

Pérez-Merino, P.

Plainis, S.

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 466–477 (2005) doi:.
[Crossref] [PubMed]

Pope, J. M.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008) doi:.
[Crossref]

C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci. 84(10), 990–995 (2007).
[Crossref] [PubMed]

Pouwels, P. J.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[Crossref] [PubMed]

Remon, L.

Richdale, K.

K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalmic Physiol. Opt. 28(5), 441–447 (2008).
[Crossref] [PubMed]

Roorda, A.

A. Roorda and A. Glasser, “Wave aberrations of the isolated crystalline lens,” J. Vis. 4(4), 250–261 (2003) doi:.
[Crossref] [PubMed]

Rosales, P.

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[Crossref] [PubMed]

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis. 8(1), 18 (2008) doi:.
[Crossref]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[Crossref] [PubMed]

Rosen, A. M.

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[Crossref] [PubMed]

Sattmann, H.

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, H. Sattmann, and A. F. Fercher, “Submicrometer precision biometry of the anterior segment of the human eye,” Invest. Ophthalmol. Vis. Sci. 38(7), 1304–1313 (1997).
[PubMed]

Saunders, K. J.

J. F. McClelland and K. J. Saunders, “The repeatability and validity of dynamic retinoscopy in assessing the accommodative response,” Ophthalmic Physiol. Opt. 23(3), 243–250 (2003).
[Crossref] [PubMed]

Sawides, L.

E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis. 9(6), 4 (2009) doi:.
[Crossref]

Semmlow, J. L.

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
[Crossref] [PubMed]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Sheppard, A. L.

A. L. Sheppard, C. J. Evans, K. D. Singh, J. S. Wolffsohn, M. C. Dunne, and L. N. Davies, “Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation,” Invest. Ophthalmol. Vis. Sci. 52(6), 3689–3697 (2011).
[Crossref] [PubMed]

Siedlecki, D.

Singh, K. D.

A. L. Sheppard, C. J. Evans, K. D. Singh, J. S. Wolffsohn, M. C. Dunne, and L. N. Davies, “Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation,” Invest. Ophthalmol. Vis. Sci. 52(6), 3689–3697 (2011).
[Crossref] [PubMed]

Smith, G.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008) doi:.
[Crossref]

Strenk, L. M.

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
[Crossref] [PubMed]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Strenk, S. A.

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
[Crossref] [PubMed]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

Sun, M.

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT600 (2016).
[Crossref] [PubMed]

M. Sun, P. Pérez-Merino, E. Martinez-Enriquez, M. Velasco-Ocana, and S. Marcos, “Full 3-D OCT-based pseudophakic custom computer eye model,” Biomed. Opt. Express 7(3), 1074–1088 (2016).
[Crossref] [PubMed]

Swann, P. G.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008) doi:.
[Crossref]

Szkulmowski, M.

Szlag, D.

Uhlhorn, S.

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, E. Arrieta-Quintero, and J. M. Parel, “Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation,” J. Biomed. Opt. 16(5), 056003 (2011).
[Crossref] [PubMed]

Uhlhorn, S. R.

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

van der Heijde, G. L.

E. A. Hermans, M. Dubbelman, G. L. van der Heijde, and R. M. Heethaar, “Change in the accommodative force on the lens of the human eye with age,” Vision Res. 48(1), 119–126 (2008).
[Crossref] [PubMed]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43(22), 2363–2375 (2003).
[Crossref] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

Van der Heijde, R.

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci. 85(12), 1179–1184 (2008).
[Crossref] [PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[Crossref] [PubMed]

van der Heijde, R. G.

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[Crossref] [PubMed]

Velasco-Ocana, M.

Vrensen, G. F.

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43(22), 2363–2375 (2003).
[Crossref] [PubMed]

Weeber, H. A.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43(22), 2363–2375 (2003).
[Crossref] [PubMed]

Wendt, M.

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis. 8(1), 18 (2008) doi:.
[Crossref]

Wojtkowski, M.

Wolffsohn, J. S.

A. L. Sheppard, C. J. Evans, K. D. Singh, J. S. Wolffsohn, M. C. Dunne, and L. N. Davies, “Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation,” Invest. Ophthalmol. Vis. Sci. 52(6), 3689–3697 (2011).
[Crossref] [PubMed]

Yao, Y.

L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J. M. Parel, “Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher,” Invest. Ophthalmol. Vis. Sci. 56(8), 4239–4248 (2015).
[Crossref] [PubMed]

Yap, M. K.

L. F. Garner and M. K. Yap, “Changes in ocular dimensions and refraction with accommodation,” Ophthalmic Physiol. Opt. 17(1), 12–17 (1997).
[Crossref] [PubMed]

Zadnik, K.

K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalmic Physiol. Opt. 28(5), 441–447 (2008).
[Crossref] [PubMed]

Zamudio, A. C.

R. Gerometta, A. C. Zamudio, D. P. Escobar, and O. A. Candia, “Volume change of the ocular lens during accommodation,” Am. J. Physiol. Cell Physiol. 293(2), C797–C804 (2007).
[Crossref] [PubMed]

Am. J. Physiol. Cell Physiol. (1)

R. Gerometta, A. C. Zamudio, D. P. Escobar, and O. A. Candia, “Volume change of the ocular lens during accommodation,” Am. J. Physiol. Cell Physiol. 293(2), C797–C804 (2007).
[Crossref] [PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (5)

Invest. Ophthalmol. Vis. Sci. (8)

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, H. Sattmann, and A. F. Fercher, “Submicrometer precision biometry of the anterior segment of the human eye,” Invest. Ophthalmol. Vis. Sci. 38(7), 1304–1313 (1997).
[PubMed]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Vis. Sci. 40(6), 1162–1169 (1999).
[PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

S. A. Strenk, L. M. Strenk, J. L. Semmlow, and J. K. DeMarco, “Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area,” Invest. Ophthalmol. Vis. Sci. 45(2), 539–545 (2004).
[Crossref] [PubMed]

E. Martinez-Enriquez, M. Sun, M. Velasco-Ocana, J. Birkenfeld, P. Pérez-Merino, and S. Marcos, “Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT600 (2016).
[Crossref] [PubMed]

L. Marussich, F. Manns, D. Nankivil, B. Maceo Heilman, Y. Yao, E. Arrieta-Quintero, A. Ho, R. Augusteyn, and J. M. Parel, “Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher,” Invest. Ophthalmol. Vis. Sci. 56(8), 4239–4248 (2015).
[Crossref] [PubMed]

E. A. Hermans, P. J. Pouwels, M. Dubbelman, J. P. Kuijer, R. G. van der Heijde, and R. M. Heethaar, “Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study,” Invest. Ophthalmol. Vis. Sci. 50(1), 281–289 (2009).
[Crossref] [PubMed]

A. L. Sheppard, C. J. Evans, K. D. Singh, J. S. Wolffsohn, M. C. Dunne, and L. N. Davies, “Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation,” Invest. Ophthalmol. Vis. Sci. 52(6), 3689–3697 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, E. Arrieta-Quintero, and J. M. Parel, “Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation,” J. Biomed. Opt. 16(5), 056003 (2011).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (1)

O. Nishi, Y. Nishi, S. Chang, and K. Nishi, “Accommodation amplitudes after an accommodating intraocular lens refilling procedure: in vivo update,” J. Cataract Refract. Surg. 40(2), 295–305 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (3)

J. Refract. Surg. (1)

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[Crossref] [PubMed]

J. Vis. (7)

E. Gambra, L. Sawides, C. Dorronsoro, and S. Marcos, “Accommodative lag and fluctuations when optical aberrations are manipulated,” J. Vis. 9(6), 4 (2009) doi:.
[Crossref]

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 466–477 (2005) doi:.
[Crossref] [PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[Crossref] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29 (2008) doi:.
[Crossref]

A. Roorda and A. Glasser, “Wave aberrations of the isolated crystalline lens,” J. Vis. 4(4), 250–261 (2003) doi:.
[Crossref] [PubMed]

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis. 8(1), 18 (2008) doi:.
[Crossref]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (3)

K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalmic Physiol. Opt. 28(5), 441–447 (2008).
[Crossref] [PubMed]

L. F. Garner and M. K. Yap, “Changes in ocular dimensions and refraction with accommodation,” Ophthalmic Physiol. Opt. 17(1), 12–17 (1997).
[Crossref] [PubMed]

J. F. McClelland and K. J. Saunders, “The repeatability and validity of dynamic retinoscopy in assessing the accommodative response,” Ophthalmic Physiol. Opt. 23(3), 243–250 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Optom. Vis. Sci. (3)

D. Siedlecki, A. de Castro, E. Gambra, S. Ortiz, D. Borja, S. Uhlhorn, F. Manns, S. Marcos, and J. M. Parel, “Distortion correction of OCT images of the crystalline lens: gradient index approach,” Optom. Vis. Sci. 89(5), E709–E718 (2012).
[Crossref] [PubMed]

E. A. Hermans, M. Dubbelman, R. Van der Heijde, and R. M. Heethaar, “Equivalent refractive index of the human lens upon accommodative response,” Optom. Vis. Sci. 85(12), 1179–1184 (2008).
[Crossref] [PubMed]

C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vis. Sci. 84(10), 990–995 (2007).
[Crossref] [PubMed]

Vision Res. (8)

A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006).
[Crossref] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

A. Glasser and M. C. Campbell, “Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia,” Vision Res. 39(11), 1991–2015 (1999).
[Crossref] [PubMed]

E. A. Hermans, M. Dubbelman, G. L. van der Heijde, and R. M. Heethaar, “Change in the accommodative force on the lens of the human eye with age,” Vision Res. 48(1), 119–126 (2008).
[Crossref] [PubMed]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[Crossref] [PubMed]

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43(22), 2363–2375 (2003).
[Crossref] [PubMed]

J. C. He, S. A. Burns, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40(1), 41–48 (2000).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Illustration of the process to quantify the 3-D anterior segment including the full shape of the lens of a specific subject from OCT images.
Fig. 2
Fig. 2 Raw OCT images for subject #2: (left) 0 D of accommodative demand (Horizontal B-scan); (middle) 6 D of accommodative demand (Horizontal B-scan); (right) 3-D OCT image (consisting of 50 B-scans) at 0 D of accommodative demand.
Fig. 3
Fig. 3 Change in the optical power of the eye with accommodative demand, relative to the value obtained for the un-accommodated condition (0D). Data are average across the nineteen subjects. Error bars represent standard deviation.
Fig. 4
Fig. 4 Mean values and standard deviation across repeated measurements for 0 D accommodative demand for each subject: (A) VOL; (B) EPP; (C) DIA; (D) LSA; (E) ACD; (F) LT; (G) RAL; (H) RPL (in absolute value); (I) QAL; (J) QPL.
Fig. 5
Fig. 5 Relative increment (respect to the average value of the variable at 0D) of: (A) RAL; (B) RPL; (C) ACD; (D) LT; (E) QAL; (F) QPL. Each color represents a different subject. The black solid line represents the best linear fitting.
Fig. 6
Fig. 6 Relative increment (respect to the average value of the variable at 0D) of: (A) EPP; (B) DIA; (C) LSA; (D) VOL. Each color represents a different subject. The black solid line represents the best linear fitting.
Fig. 7
Fig. 7 3-D changes on the estimated whole lens shape with accommodation for S#2. Accommodative demands of 0D (black) and 6D (green) are superimposed.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A i = 1 2 v 1 (i) × v 2 (i) ,
LS A ANT/POS = i=1 N A i = i=1 N A i A i .
LSA=LSA ANT +LSA POS .
VOL= D ( f AL (x,y)g(x,y))dxdy + D ( f PL (x,y)g(x,y))dxdy .
P C = n h -1 R C , P L =( n l - n h )( 1 RAL - 1 RPL )+ ( n l - n h ) 2 LT RAL n l RPL , P= P C + P L - ACD P C P L n h + P C ( n l - n h )LT n l RPL ,

Metrics