Abstract

We developed a multimodal nonlinear optical (NLO) microscope system by integrating stimulated Raman scattering (SRS), second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) imaging. The system was used to study the morphological and biochemical characteristics of tibial cartilage in a kinesin-1 (Kif5b) knockout mouse model. The detailed structure of fibrillar collagen in the extracellular matrix of cartilage was visualized by the forward and backward SHG signals, while high resolution imaging of chondrocytes was achieved by capturing endogenous TPEF and SRS signals of the cells. The results demonstrate that collagen fibrils in the superficial surface of the articular cartilage decreased significantly in the absence of Kif5b. The distorted morphology along with accumulated intracellular collagen was observed in the Kif5b-deficient chondrocytes, indicating the critical roles of kinesin-1 in the chondrocyte morphogenesis and collagen secretion. The study shows that multimodal NLO imaging method is an effective approach to investigate early development of cartilage.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear optical microscopy of early stage (ICRS Grade-I) osteoarthritic human cartilage

Rajesh Kumar, Kirsten M. Grønhaug, Catharina L. Davies, Jon O. Drogset, and Magnus B. Lilledahl
Biomed. Opt. Express 6(5) 1895-1903 (2015)

Label-free multimodal nonlinear optical microscopy reveals fundamental insights of skeletal muscle development

Qiqi Sun, Yanfeng Li, Sicong He, Chenghao Situ, Zhenguo Wu, and Jianan Y. Qu
Biomed. Opt. Express 5(1) 158-166 (2014)

Polarized reflectance from articular cartilage depends upon superficial zone collagen network microstructure

R. N. Huynh, B. Pesante, G. Nehmetallah, and C. B. Raub
Biomed. Opt. Express 10(11) 5518-5534 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Buckwalter and H. J. Mankin, “Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation,” Instr. Course Lect. 47, 487–504 (1998).
    [PubMed]
  2. M. B. Goldring and S. R. Goldring, “Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis,” Ann. N. Y. Acad. Sci. 1192(1), 230–237 (2010).
    [Crossref] [PubMed]
  3. H. Madry, F. P. Luyten, and A. Facchini, “Biological aspects of early osteoarthritis,” Knee Surg. Sports Traumatol. Arthrosc. 20(3), 407–422 (2012).
    [Crossref] [PubMed]
  4. S. S. Sannasgala and D. R. Johnson, “Kinetic parameters in the growth plate of normal and achondroplastic (cn/cn) mice,” J. Anat. 172, 245–258 (1990).
    [PubMed]
  5. R. Silberberg, M. Hasler, and P. Lesker, “Ultrastructure of articular cartilage of achondroplastic mice,” Acta Anat. (Basel) 96(2), 162–175 (1976).
    [Crossref] [PubMed]
  6. A. M. Proulx and T. W. Zryd, “Costochondritis: diagnosis and treatment,” Am. Fam. Physician 80(6), 617–620 (2009).
    [PubMed]
  7. B. He, J. P. Wu, T. B. Kirk, J. A. Carrino, C. Xiang, and J. Xu, “High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential,” Arthritis Res. Ther. 16(2), 205 (2014).
    [Crossref] [PubMed]
  8. A. J. Sophia Fox, A. Bedi, and S. A. Rodeo, “The basic science of articular cartilage: structure, composition, and function,” Sports Health 1(6), 461–468 (2009).
    [Crossref] [PubMed]
  9. D. Eyre, “Articular cartilage and changes in arthritis: collagen of articular cartilage,” Arthritis Res. Ther. 4, 1 (2001).
  10. E. B. Hunziker, “Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes,” Microsc. Res. Tech. 28(6), 505–519 (1994).
    [Crossref] [PubMed]
  11. L. C. Hughes, C. W. Archer, and I. ap Gwynn, “The ultrastructure of mouse articular cartilage: collagen orientation and implications for tissue functionality. A polarised light and scanning electron microscope study and review,” Eur. Cell. Mater. 9, 68–84 (2005).
    [Crossref] [PubMed]
  12. R. Wilson, E. L. Norris, B. Brachvogel, C. Angelucci, S. Zivkovic, L. Gordon, B. C. Bernardo, J. Stermann, K. Sekiguchi, J. J. Gorman, and J. F. Bateman, “Changes in the chondrocyte and extracellular matrix proteome during post-natal mouse cartilage development,” Mol. Cell. Proteomics 11, M111.014159 (2012).
  13. V. Abad, J. L. Meyers, M. Weise, R. I. Gafni, K. M. Barnes, O. Nilsson, J. D. Bacher, and J. Baron, “The role of the resting zone in growth plate chondrogenesis,” Endocrinology 143(5), 1851–1857 (2002).
    [Crossref] [PubMed]
  14. L. J. Sandell and T. Aigner, “Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis,” Arthritis Res. 3(2), 107–113 (2001).
    [Crossref] [PubMed]
  15. J. Chan, J. Huang, and K. Lai, ”The kinesin motor protein KIF5B regulates RNA trafficking and dendritic spine morphologenesis in hippocampal neuron” in Neuroscience Symposium & Annual Scientific Conference ofthe Hong KongSociety of NeurosciencesAnonymous (The University of Hong Kong., 2016).
  16. J. Cui, Z. Wang, Q. Cheng, R. Lin, X. M. Zhang, P. S. Leung, N. G. Copeland, N. A. Jenkins, K. M. Yao, and J. D. Huang, “Targeted inactivation of kinesin-1 in pancreatic β-cells in vivo leads to insulin secretory deficiency,” Diabetes 60(1), 320–330 (2011).
    [Crossref] [PubMed]
  17. Z. Wang, J. Cui, W. M. Wong, X. Li, W. Xue, R. Lin, J. Wang, P. Wang, J. A. Tanner, K. S. Cheah, W. Wu, and J. D. Huang, “Kif5b controls the localization of myofibril components for their assembly and linkage to the myotendinous junctions,” Development 140(3), 617–626 (2013).
    [Crossref] [PubMed]
  18. G. Zhu, “Study of the function of Kinesin-1 (KIF5B) in long bone development,” (Open Dissertation Press, 2009).
  19. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
    [Crossref] [PubMed]
  20. A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 11014–11019 (2002).
    [Crossref] [PubMed]
  21. S. He, C. Ye, Q. Sun, C. K. Leung, and J. Y. Qu, “Label-free nonlinear optical imaging of mouse retina,” Biomed. Opt. Express 6(3), 1055–1066 (2015).
    [Crossref] [PubMed]
  22. K. G. Brockbank, W. R. MacLellan, J. Xie, S. F. Hamm-Alvarez, Z. Z. Chen, and K. Schenke-Layland, “Quantitative second harmonic generation imaging of cartilage damage,” Cell Tissue Bank. 9(4), 299–307 (2008).
    [Crossref] [PubMed]
  23. A. T. Yeh, M. J. Hammer-Wilson, D. C. Van Sickle, H. P. Benton, A. Zoumi, B. J. Tromberg, and G. M. Peavy, “Nonlinear optical microscopy of articular cartilage,” Osteoarthritis Cartilage 13(4), 345–352 (2005).
    [Crossref] [PubMed]
  24. E. Werkmeister, N. de Isla, P. Netter, J. F. Stoltz, and D. Dumas, “Collagenous extracellular matrix of cartilage submitted to mechanical forces studied by second harmonic generation microscopy,” Photochem. Photobiol. 86(2), 302–310 (2010).
    [Crossref] [PubMed]
  25. H. Kiyomatsu, Y. Oshima, T. Saitou, T. Miyazaki, A. Hikita, H. Miura, T. Iimura, and T. Imamura, “Quantitative SHG imaging in osteoarthritis model mice, implying a diagnostic application,” Biomed. Opt. Express 6(2), 405–420 (2015).
    [Crossref] [PubMed]
  26. D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
    [Crossref] [PubMed]
  27. S. W. Chu, S. P. Tai, T. M. Liu, C. K. Sun, and C. H. Lin, “Selective imaging in second-harmonic-generation microscopy with anisotropic radiation,” J. Biomed. Opt. 14(1), 010504 (2009).
    [Crossref] [PubMed]
  28. R. A. R. Rao, M. R. Mehta, S. Leithem, and K. C. Toussaint., “Quantitative analysis of forward and backward second-harmonic images of collagen fibers using Fourier transform second-harmonic-generation microscopy,” Opt. Lett. 34(24), 3779–3781 (2009).
    [Crossref] [PubMed]
  29. P. Bianchini and A. Diaspro, “Three-dimensional (3D) backward and forward second harmonic generation (SHG) microscopy of biological tissues,” J. Biophotonics 1(6), 443–450 (2008).
    [Crossref] [PubMed]
  30. M. Han, G. Giese, and J. Bille, “Second harmonic generation imaging of collagen fibrils in cornea and sclera,” Opt. Express 13(15), 5791–5797 (2005).
    [Crossref] [PubMed]
  31. S. P. Tai, T. H. Tsai, W. J. Lee, D. B. Shieh, Y. H. Liao, H. Y. Huang, K. Zhang, H. L. Liu, and C. K. Sun, “Optical biopsy of fixed human skin with backward-collected optical harmonics signals,” Opt. Express 13(20), 8231–8242 (2005).
    [Crossref] [PubMed]
  32. M. Rehberg, F. Krombach, U. Pohl, and S. Dietzel, “Label-free 3D visualization of cellular and tissue structures in intact muscle with second and third harmonic generation microscopy,” PLoS One 6(11), e28237 (2011).
    [Crossref] [PubMed]
  33. R. LaComb, O. Nadiarnykh, S. S. Townsend, and P. J. Campagnola, “Phase matching considerations in Second Harmonic Generation from tissues: Effects on emission directionality, conversion efficiency and observed morphology,” Opt. Commun. 281(7), 1823–1832 (2008).
    [Crossref] [PubMed]
  34. M. Benjamin and J. R. Ralphs, “Fibrocartilage in tendons and ligaments--an adaptation to compressive load,” J. Anat. 193(4), 481–494 (1998).
    [Crossref] [PubMed]
  35. R. Rezakhaniha, A. Agianniotis, J. T. C. Schrauwen, A. Griffa, D. Sage, C. V. Bouten, F. N. van de Vosse, M. Unser, and N. Stergiopulos, “Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy,” Biomech. Model. Mechanobiol. 11(3-4), 461–473 (2012).
    [Crossref] [PubMed]

2015 (2)

2014 (1)

B. He, J. P. Wu, T. B. Kirk, J. A. Carrino, C. Xiang, and J. Xu, “High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential,” Arthritis Res. Ther. 16(2), 205 (2014).
[Crossref] [PubMed]

2013 (2)

Z. Wang, J. Cui, W. M. Wong, X. Li, W. Xue, R. Lin, J. Wang, P. Wang, J. A. Tanner, K. S. Cheah, W. Wu, and J. D. Huang, “Kif5b controls the localization of myofibril components for their assembly and linkage to the myotendinous junctions,” Development 140(3), 617–626 (2013).
[Crossref] [PubMed]

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

2012 (2)

R. Rezakhaniha, A. Agianniotis, J. T. C. Schrauwen, A. Griffa, D. Sage, C. V. Bouten, F. N. van de Vosse, M. Unser, and N. Stergiopulos, “Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy,” Biomech. Model. Mechanobiol. 11(3-4), 461–473 (2012).
[Crossref] [PubMed]

H. Madry, F. P. Luyten, and A. Facchini, “Biological aspects of early osteoarthritis,” Knee Surg. Sports Traumatol. Arthrosc. 20(3), 407–422 (2012).
[Crossref] [PubMed]

2011 (2)

J. Cui, Z. Wang, Q. Cheng, R. Lin, X. M. Zhang, P. S. Leung, N. G. Copeland, N. A. Jenkins, K. M. Yao, and J. D. Huang, “Targeted inactivation of kinesin-1 in pancreatic β-cells in vivo leads to insulin secretory deficiency,” Diabetes 60(1), 320–330 (2011).
[Crossref] [PubMed]

M. Rehberg, F. Krombach, U. Pohl, and S. Dietzel, “Label-free 3D visualization of cellular and tissue structures in intact muscle with second and third harmonic generation microscopy,” PLoS One 6(11), e28237 (2011).
[Crossref] [PubMed]

2010 (2)

E. Werkmeister, N. de Isla, P. Netter, J. F. Stoltz, and D. Dumas, “Collagenous extracellular matrix of cartilage submitted to mechanical forces studied by second harmonic generation microscopy,” Photochem. Photobiol. 86(2), 302–310 (2010).
[Crossref] [PubMed]

M. B. Goldring and S. R. Goldring, “Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis,” Ann. N. Y. Acad. Sci. 1192(1), 230–237 (2010).
[Crossref] [PubMed]

2009 (4)

A. J. Sophia Fox, A. Bedi, and S. A. Rodeo, “The basic science of articular cartilage: structure, composition, and function,” Sports Health 1(6), 461–468 (2009).
[Crossref] [PubMed]

A. M. Proulx and T. W. Zryd, “Costochondritis: diagnosis and treatment,” Am. Fam. Physician 80(6), 617–620 (2009).
[PubMed]

S. W. Chu, S. P. Tai, T. M. Liu, C. K. Sun, and C. H. Lin, “Selective imaging in second-harmonic-generation microscopy with anisotropic radiation,” J. Biomed. Opt. 14(1), 010504 (2009).
[Crossref] [PubMed]

R. A. R. Rao, M. R. Mehta, S. Leithem, and K. C. Toussaint., “Quantitative analysis of forward and backward second-harmonic images of collagen fibers using Fourier transform second-harmonic-generation microscopy,” Opt. Lett. 34(24), 3779–3781 (2009).
[Crossref] [PubMed]

2008 (3)

P. Bianchini and A. Diaspro, “Three-dimensional (3D) backward and forward second harmonic generation (SHG) microscopy of biological tissues,” J. Biophotonics 1(6), 443–450 (2008).
[Crossref] [PubMed]

R. LaComb, O. Nadiarnykh, S. S. Townsend, and P. J. Campagnola, “Phase matching considerations in Second Harmonic Generation from tissues: Effects on emission directionality, conversion efficiency and observed morphology,” Opt. Commun. 281(7), 1823–1832 (2008).
[Crossref] [PubMed]

K. G. Brockbank, W. R. MacLellan, J. Xie, S. F. Hamm-Alvarez, Z. Z. Chen, and K. Schenke-Layland, “Quantitative second harmonic generation imaging of cartilage damage,” Cell Tissue Bank. 9(4), 299–307 (2008).
[Crossref] [PubMed]

2005 (4)

A. T. Yeh, M. J. Hammer-Wilson, D. C. Van Sickle, H. P. Benton, A. Zoumi, B. J. Tromberg, and G. M. Peavy, “Nonlinear optical microscopy of articular cartilage,” Osteoarthritis Cartilage 13(4), 345–352 (2005).
[Crossref] [PubMed]

L. C. Hughes, C. W. Archer, and I. ap Gwynn, “The ultrastructure of mouse articular cartilage: collagen orientation and implications for tissue functionality. A polarised light and scanning electron microscope study and review,” Eur. Cell. Mater. 9, 68–84 (2005).
[Crossref] [PubMed]

M. Han, G. Giese, and J. Bille, “Second harmonic generation imaging of collagen fibrils in cornea and sclera,” Opt. Express 13(15), 5791–5797 (2005).
[Crossref] [PubMed]

S. P. Tai, T. H. Tsai, W. J. Lee, D. B. Shieh, Y. H. Liao, H. Y. Huang, K. Zhang, H. L. Liu, and C. K. Sun, “Optical biopsy of fixed human skin with backward-collected optical harmonics signals,” Opt. Express 13(20), 8231–8242 (2005).
[Crossref] [PubMed]

2003 (1)

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

2002 (2)

A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 11014–11019 (2002).
[Crossref] [PubMed]

V. Abad, J. L. Meyers, M. Weise, R. I. Gafni, K. M. Barnes, O. Nilsson, J. D. Bacher, and J. Baron, “The role of the resting zone in growth plate chondrogenesis,” Endocrinology 143(5), 1851–1857 (2002).
[Crossref] [PubMed]

2001 (2)

L. J. Sandell and T. Aigner, “Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis,” Arthritis Res. 3(2), 107–113 (2001).
[Crossref] [PubMed]

D. Eyre, “Articular cartilage and changes in arthritis: collagen of articular cartilage,” Arthritis Res. Ther. 4, 1 (2001).

1998 (2)

J. A. Buckwalter and H. J. Mankin, “Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation,” Instr. Course Lect. 47, 487–504 (1998).
[PubMed]

M. Benjamin and J. R. Ralphs, “Fibrocartilage in tendons and ligaments--an adaptation to compressive load,” J. Anat. 193(4), 481–494 (1998).
[Crossref] [PubMed]

1994 (1)

E. B. Hunziker, “Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes,” Microsc. Res. Tech. 28(6), 505–519 (1994).
[Crossref] [PubMed]

1990 (1)

S. S. Sannasgala and D. R. Johnson, “Kinetic parameters in the growth plate of normal and achondroplastic (cn/cn) mice,” J. Anat. 172, 245–258 (1990).
[PubMed]

1976 (1)

R. Silberberg, M. Hasler, and P. Lesker, “Ultrastructure of articular cartilage of achondroplastic mice,” Acta Anat. (Basel) 96(2), 162–175 (1976).
[Crossref] [PubMed]

Abad, V.

V. Abad, J. L. Meyers, M. Weise, R. I. Gafni, K. M. Barnes, O. Nilsson, J. D. Bacher, and J. Baron, “The role of the resting zone in growth plate chondrogenesis,” Endocrinology 143(5), 1851–1857 (2002).
[Crossref] [PubMed]

Agianniotis, A.

R. Rezakhaniha, A. Agianniotis, J. T. C. Schrauwen, A. Griffa, D. Sage, C. V. Bouten, F. N. van de Vosse, M. Unser, and N. Stergiopulos, “Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy,” Biomech. Model. Mechanobiol. 11(3-4), 461–473 (2012).
[Crossref] [PubMed]

Aigner, T.

L. J. Sandell and T. Aigner, “Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis,” Arthritis Res. 3(2), 107–113 (2001).
[Crossref] [PubMed]

ap Gwynn, I.

L. C. Hughes, C. W. Archer, and I. ap Gwynn, “The ultrastructure of mouse articular cartilage: collagen orientation and implications for tissue functionality. A polarised light and scanning electron microscope study and review,” Eur. Cell. Mater. 9, 68–84 (2005).
[Crossref] [PubMed]

Archer, C. W.

L. C. Hughes, C. W. Archer, and I. ap Gwynn, “The ultrastructure of mouse articular cartilage: collagen orientation and implications for tissue functionality. A polarised light and scanning electron microscope study and review,” Eur. Cell. Mater. 9, 68–84 (2005).
[Crossref] [PubMed]

Bacher, J. D.

V. Abad, J. L. Meyers, M. Weise, R. I. Gafni, K. M. Barnes, O. Nilsson, J. D. Bacher, and J. Baron, “The role of the resting zone in growth plate chondrogenesis,” Endocrinology 143(5), 1851–1857 (2002).
[Crossref] [PubMed]

Barnes, K. M.

V. Abad, J. L. Meyers, M. Weise, R. I. Gafni, K. M. Barnes, O. Nilsson, J. D. Bacher, and J. Baron, “The role of the resting zone in growth plate chondrogenesis,” Endocrinology 143(5), 1851–1857 (2002).
[Crossref] [PubMed]

Baron, J.

V. Abad, J. L. Meyers, M. Weise, R. I. Gafni, K. M. Barnes, O. Nilsson, J. D. Bacher, and J. Baron, “The role of the resting zone in growth plate chondrogenesis,” Endocrinology 143(5), 1851–1857 (2002).
[Crossref] [PubMed]

Bedi, A.

A. J. Sophia Fox, A. Bedi, and S. A. Rodeo, “The basic science of articular cartilage: structure, composition, and function,” Sports Health 1(6), 461–468 (2009).
[Crossref] [PubMed]

Benjamin, M.

M. Benjamin and J. R. Ralphs, “Fibrocartilage in tendons and ligaments--an adaptation to compressive load,” J. Anat. 193(4), 481–494 (1998).
[Crossref] [PubMed]

Benton, H. P.

A. T. Yeh, M. J. Hammer-Wilson, D. C. Van Sickle, H. P. Benton, A. Zoumi, B. J. Tromberg, and G. M. Peavy, “Nonlinear optical microscopy of articular cartilage,” Osteoarthritis Cartilage 13(4), 345–352 (2005).
[Crossref] [PubMed]

Bianchini, P.

P. Bianchini and A. Diaspro, “Three-dimensional (3D) backward and forward second harmonic generation (SHG) microscopy of biological tissues,” J. Biophotonics 1(6), 443–450 (2008).
[Crossref] [PubMed]

Bille, J.

Bouten, C. V.

R. Rezakhaniha, A. Agianniotis, J. T. C. Schrauwen, A. Griffa, D. Sage, C. V. Bouten, F. N. van de Vosse, M. Unser, and N. Stergiopulos, “Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy,” Biomech. Model. Mechanobiol. 11(3-4), 461–473 (2012).
[Crossref] [PubMed]

Brockbank, K. G.

K. G. Brockbank, W. R. MacLellan, J. Xie, S. F. Hamm-Alvarez, Z. Z. Chen, and K. Schenke-Layland, “Quantitative second harmonic generation imaging of cartilage damage,” Cell Tissue Bank. 9(4), 299–307 (2008).
[Crossref] [PubMed]

Buckwalter, J. A.

J. A. Buckwalter and H. J. Mankin, “Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation,” Instr. Course Lect. 47, 487–504 (1998).
[PubMed]

Campagnola, P. J.

R. LaComb, O. Nadiarnykh, S. S. Townsend, and P. J. Campagnola, “Phase matching considerations in Second Harmonic Generation from tissues: Effects on emission directionality, conversion efficiency and observed morphology,” Opt. Commun. 281(7), 1823–1832 (2008).
[Crossref] [PubMed]

Carrino, J. A.

B. He, J. P. Wu, T. B. Kirk, J. A. Carrino, C. Xiang, and J. Xu, “High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential,” Arthritis Res. Ther. 16(2), 205 (2014).
[Crossref] [PubMed]

Cheah, K. S.

Z. Wang, J. Cui, W. M. Wong, X. Li, W. Xue, R. Lin, J. Wang, P. Wang, J. A. Tanner, K. S. Cheah, W. Wu, and J. D. Huang, “Kif5b controls the localization of myofibril components for their assembly and linkage to the myotendinous junctions,” Development 140(3), 617–626 (2013).
[Crossref] [PubMed]

Chen, Z. Z.

K. G. Brockbank, W. R. MacLellan, J. Xie, S. F. Hamm-Alvarez, Z. Z. Chen, and K. Schenke-Layland, “Quantitative second harmonic generation imaging of cartilage damage,” Cell Tissue Bank. 9(4), 299–307 (2008).
[Crossref] [PubMed]

Cheng, Q.

J. Cui, Z. Wang, Q. Cheng, R. Lin, X. M. Zhang, P. S. Leung, N. G. Copeland, N. A. Jenkins, K. M. Yao, and J. D. Huang, “Targeted inactivation of kinesin-1 in pancreatic β-cells in vivo leads to insulin secretory deficiency,” Diabetes 60(1), 320–330 (2011).
[Crossref] [PubMed]

Christie, R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

Chu, S. W.

S. W. Chu, S. P. Tai, T. M. Liu, C. K. Sun, and C. H. Lin, “Selective imaging in second-harmonic-generation microscopy with anisotropic radiation,” J. Biomed. Opt. 14(1), 010504 (2009).
[Crossref] [PubMed]

Copeland, N. G.

J. Cui, Z. Wang, Q. Cheng, R. Lin, X. M. Zhang, P. S. Leung, N. G. Copeland, N. A. Jenkins, K. M. Yao, and J. D. Huang, “Targeted inactivation of kinesin-1 in pancreatic β-cells in vivo leads to insulin secretory deficiency,” Diabetes 60(1), 320–330 (2011).
[Crossref] [PubMed]

Cui, J.

Z. Wang, J. Cui, W. M. Wong, X. Li, W. Xue, R. Lin, J. Wang, P. Wang, J. A. Tanner, K. S. Cheah, W. Wu, and J. D. Huang, “Kif5b controls the localization of myofibril components for their assembly and linkage to the myotendinous junctions,” Development 140(3), 617–626 (2013).
[Crossref] [PubMed]

J. Cui, Z. Wang, Q. Cheng, R. Lin, X. M. Zhang, P. S. Leung, N. G. Copeland, N. A. Jenkins, K. M. Yao, and J. D. Huang, “Targeted inactivation of kinesin-1 in pancreatic β-cells in vivo leads to insulin secretory deficiency,” Diabetes 60(1), 320–330 (2011).
[Crossref] [PubMed]

de Isla, N.

E. Werkmeister, N. de Isla, P. Netter, J. F. Stoltz, and D. Dumas, “Collagenous extracellular matrix of cartilage submitted to mechanical forces studied by second harmonic generation microscopy,” Photochem. Photobiol. 86(2), 302–310 (2010).
[Crossref] [PubMed]

Diaspro, A.

P. Bianchini and A. Diaspro, “Three-dimensional (3D) backward and forward second harmonic generation (SHG) microscopy of biological tissues,” J. Biophotonics 1(6), 443–450 (2008).
[Crossref] [PubMed]

Dietzel, S.

M. Rehberg, F. Krombach, U. Pohl, and S. Dietzel, “Label-free 3D visualization of cellular and tissue structures in intact muscle with second and third harmonic generation microscopy,” PLoS One 6(11), e28237 (2011).
[Crossref] [PubMed]

Dumas, D.

E. Werkmeister, N. de Isla, P. Netter, J. F. Stoltz, and D. Dumas, “Collagenous extracellular matrix of cartilage submitted to mechanical forces studied by second harmonic generation microscopy,” Photochem. Photobiol. 86(2), 302–310 (2010).
[Crossref] [PubMed]

Eyre, D.

D. Eyre, “Articular cartilage and changes in arthritis: collagen of articular cartilage,” Arthritis Res. Ther. 4, 1 (2001).

Facchini, A.

H. Madry, F. P. Luyten, and A. Facchini, “Biological aspects of early osteoarthritis,” Knee Surg. Sports Traumatol. Arthrosc. 20(3), 407–422 (2012).
[Crossref] [PubMed]

Freudiger, C.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

Fu, D.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

Gafni, R. I.

V. Abad, J. L. Meyers, M. Weise, R. I. Gafni, K. M. Barnes, O. Nilsson, J. D. Bacher, and J. Baron, “The role of the resting zone in growth plate chondrogenesis,” Endocrinology 143(5), 1851–1857 (2002).
[Crossref] [PubMed]

Giese, G.

Goldring, M. B.

M. B. Goldring and S. R. Goldring, “Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis,” Ann. N. Y. Acad. Sci. 1192(1), 230–237 (2010).
[Crossref] [PubMed]

Goldring, S. R.

M. B. Goldring and S. R. Goldring, “Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis,” Ann. N. Y. Acad. Sci. 1192(1), 230–237 (2010).
[Crossref] [PubMed]

Griffa, A.

R. Rezakhaniha, A. Agianniotis, J. T. C. Schrauwen, A. Griffa, D. Sage, C. V. Bouten, F. N. van de Vosse, M. Unser, and N. Stergiopulos, “Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy,” Biomech. Model. Mechanobiol. 11(3-4), 461–473 (2012).
[Crossref] [PubMed]

Hamm-Alvarez, S. F.

K. G. Brockbank, W. R. MacLellan, J. Xie, S. F. Hamm-Alvarez, Z. Z. Chen, and K. Schenke-Layland, “Quantitative second harmonic generation imaging of cartilage damage,” Cell Tissue Bank. 9(4), 299–307 (2008).
[Crossref] [PubMed]

Hammer-Wilson, M. J.

A. T. Yeh, M. J. Hammer-Wilson, D. C. Van Sickle, H. P. Benton, A. Zoumi, B. J. Tromberg, and G. M. Peavy, “Nonlinear optical microscopy of articular cartilage,” Osteoarthritis Cartilage 13(4), 345–352 (2005).
[Crossref] [PubMed]

Han, M.

Hasler, M.

R. Silberberg, M. Hasler, and P. Lesker, “Ultrastructure of articular cartilage of achondroplastic mice,” Acta Anat. (Basel) 96(2), 162–175 (1976).
[Crossref] [PubMed]

He, B.

B. He, J. P. Wu, T. B. Kirk, J. A. Carrino, C. Xiang, and J. Xu, “High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential,” Arthritis Res. Ther. 16(2), 205 (2014).
[Crossref] [PubMed]

He, S.

Hikita, A.

Holtom, G.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

Huang, H. Y.

Huang, J. D.

Z. Wang, J. Cui, W. M. Wong, X. Li, W. Xue, R. Lin, J. Wang, P. Wang, J. A. Tanner, K. S. Cheah, W. Wu, and J. D. Huang, “Kif5b controls the localization of myofibril components for their assembly and linkage to the myotendinous junctions,” Development 140(3), 617–626 (2013).
[Crossref] [PubMed]

J. Cui, Z. Wang, Q. Cheng, R. Lin, X. M. Zhang, P. S. Leung, N. G. Copeland, N. A. Jenkins, K. M. Yao, and J. D. Huang, “Targeted inactivation of kinesin-1 in pancreatic β-cells in vivo leads to insulin secretory deficiency,” Diabetes 60(1), 320–330 (2011).
[Crossref] [PubMed]

Hughes, L. C.

L. C. Hughes, C. W. Archer, and I. ap Gwynn, “The ultrastructure of mouse articular cartilage: collagen orientation and implications for tissue functionality. A polarised light and scanning electron microscope study and review,” Eur. Cell. Mater. 9, 68–84 (2005).
[Crossref] [PubMed]

Hunziker, E. B.

E. B. Hunziker, “Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes,” Microsc. Res. Tech. 28(6), 505–519 (1994).
[Crossref] [PubMed]

Hyman, B. T.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

Iimura, T.

Imamura, T.

Jenkins, N. A.

J. Cui, Z. Wang, Q. Cheng, R. Lin, X. M. Zhang, P. S. Leung, N. G. Copeland, N. A. Jenkins, K. M. Yao, and J. D. Huang, “Targeted inactivation of kinesin-1 in pancreatic β-cells in vivo leads to insulin secretory deficiency,” Diabetes 60(1), 320–330 (2011).
[Crossref] [PubMed]

Johnson, D. R.

S. S. Sannasgala and D. R. Johnson, “Kinetic parameters in the growth plate of normal and achondroplastic (cn/cn) mice,” J. Anat. 172, 245–258 (1990).
[PubMed]

Kirk, T. B.

B. He, J. P. Wu, T. B. Kirk, J. A. Carrino, C. Xiang, and J. Xu, “High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential,” Arthritis Res. Ther. 16(2), 205 (2014).
[Crossref] [PubMed]

Kiyomatsu, H.

Krombach, F.

M. Rehberg, F. Krombach, U. Pohl, and S. Dietzel, “Label-free 3D visualization of cellular and tissue structures in intact muscle with second and third harmonic generation microscopy,” PLoS One 6(11), e28237 (2011).
[Crossref] [PubMed]

LaComb, R.

R. LaComb, O. Nadiarnykh, S. S. Townsend, and P. J. Campagnola, “Phase matching considerations in Second Harmonic Generation from tissues: Effects on emission directionality, conversion efficiency and observed morphology,” Opt. Commun. 281(7), 1823–1832 (2008).
[Crossref] [PubMed]

Lee, W. J.

Leithem, S.

Lesker, P.

R. Silberberg, M. Hasler, and P. Lesker, “Ultrastructure of articular cartilage of achondroplastic mice,” Acta Anat. (Basel) 96(2), 162–175 (1976).
[Crossref] [PubMed]

Leung, C. K.

Leung, P. S.

J. Cui, Z. Wang, Q. Cheng, R. Lin, X. M. Zhang, P. S. Leung, N. G. Copeland, N. A. Jenkins, K. M. Yao, and J. D. Huang, “Targeted inactivation of kinesin-1 in pancreatic β-cells in vivo leads to insulin secretory deficiency,” Diabetes 60(1), 320–330 (2011).
[Crossref] [PubMed]

Li, X.

Z. Wang, J. Cui, W. M. Wong, X. Li, W. Xue, R. Lin, J. Wang, P. Wang, J. A. Tanner, K. S. Cheah, W. Wu, and J. D. Huang, “Kif5b controls the localization of myofibril components for their assembly and linkage to the myotendinous junctions,” Development 140(3), 617–626 (2013).
[Crossref] [PubMed]

Liao, Y. H.

Lin, C. H.

S. W. Chu, S. P. Tai, T. M. Liu, C. K. Sun, and C. H. Lin, “Selective imaging in second-harmonic-generation microscopy with anisotropic radiation,” J. Biomed. Opt. 14(1), 010504 (2009).
[Crossref] [PubMed]

Lin, R.

Z. Wang, J. Cui, W. M. Wong, X. Li, W. Xue, R. Lin, J. Wang, P. Wang, J. A. Tanner, K. S. Cheah, W. Wu, and J. D. Huang, “Kif5b controls the localization of myofibril components for their assembly and linkage to the myotendinous junctions,” Development 140(3), 617–626 (2013).
[Crossref] [PubMed]

J. Cui, Z. Wang, Q. Cheng, R. Lin, X. M. Zhang, P. S. Leung, N. G. Copeland, N. A. Jenkins, K. M. Yao, and J. D. Huang, “Targeted inactivation of kinesin-1 in pancreatic β-cells in vivo leads to insulin secretory deficiency,” Diabetes 60(1), 320–330 (2011).
[Crossref] [PubMed]

Liu, H. L.

Liu, T. M.

S. W. Chu, S. P. Tai, T. M. Liu, C. K. Sun, and C. H. Lin, “Selective imaging in second-harmonic-generation microscopy with anisotropic radiation,” J. Biomed. Opt. 14(1), 010504 (2009).
[Crossref] [PubMed]

Luyten, F. P.

H. Madry, F. P. Luyten, and A. Facchini, “Biological aspects of early osteoarthritis,” Knee Surg. Sports Traumatol. Arthrosc. 20(3), 407–422 (2012).
[Crossref] [PubMed]

MacLellan, W. R.

K. G. Brockbank, W. R. MacLellan, J. Xie, S. F. Hamm-Alvarez, Z. Z. Chen, and K. Schenke-Layland, “Quantitative second harmonic generation imaging of cartilage damage,” Cell Tissue Bank. 9(4), 299–307 (2008).
[Crossref] [PubMed]

Madry, H.

H. Madry, F. P. Luyten, and A. Facchini, “Biological aspects of early osteoarthritis,” Knee Surg. Sports Traumatol. Arthrosc. 20(3), 407–422 (2012).
[Crossref] [PubMed]

Mankin, H. J.

J. A. Buckwalter and H. J. Mankin, “Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation,” Instr. Course Lect. 47, 487–504 (1998).
[PubMed]

Mehta, M. R.

Meyers, J. L.

V. Abad, J. L. Meyers, M. Weise, R. I. Gafni, K. M. Barnes, O. Nilsson, J. D. Bacher, and J. Baron, “The role of the resting zone in growth plate chondrogenesis,” Endocrinology 143(5), 1851–1857 (2002).
[Crossref] [PubMed]

Miura, H.

Miyazaki, T.

Nadiarnykh, O.

R. LaComb, O. Nadiarnykh, S. S. Townsend, and P. J. Campagnola, “Phase matching considerations in Second Harmonic Generation from tissues: Effects on emission directionality, conversion efficiency and observed morphology,” Opt. Commun. 281(7), 1823–1832 (2008).
[Crossref] [PubMed]

Netter, P.

E. Werkmeister, N. de Isla, P. Netter, J. F. Stoltz, and D. Dumas, “Collagenous extracellular matrix of cartilage submitted to mechanical forces studied by second harmonic generation microscopy,” Photochem. Photobiol. 86(2), 302–310 (2010).
[Crossref] [PubMed]

Nikitin, A. Y.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

Nilsson, O.

V. Abad, J. L. Meyers, M. Weise, R. I. Gafni, K. M. Barnes, O. Nilsson, J. D. Bacher, and J. Baron, “The role of the resting zone in growth plate chondrogenesis,” Endocrinology 143(5), 1851–1857 (2002).
[Crossref] [PubMed]

Oshima, Y.

Peavy, G. M.

A. T. Yeh, M. J. Hammer-Wilson, D. C. Van Sickle, H. P. Benton, A. Zoumi, B. J. Tromberg, and G. M. Peavy, “Nonlinear optical microscopy of articular cartilage,” Osteoarthritis Cartilage 13(4), 345–352 (2005).
[Crossref] [PubMed]

Pohl, U.

M. Rehberg, F. Krombach, U. Pohl, and S. Dietzel, “Label-free 3D visualization of cellular and tissue structures in intact muscle with second and third harmonic generation microscopy,” PLoS One 6(11), e28237 (2011).
[Crossref] [PubMed]

Proulx, A. M.

A. M. Proulx and T. W. Zryd, “Costochondritis: diagnosis and treatment,” Am. Fam. Physician 80(6), 617–620 (2009).
[PubMed]

Qu, J. Y.

Ralphs, J. R.

M. Benjamin and J. R. Ralphs, “Fibrocartilage in tendons and ligaments--an adaptation to compressive load,” J. Anat. 193(4), 481–494 (1998).
[Crossref] [PubMed]

Rao, R. A. R.

Rehberg, M.

M. Rehberg, F. Krombach, U. Pohl, and S. Dietzel, “Label-free 3D visualization of cellular and tissue structures in intact muscle with second and third harmonic generation microscopy,” PLoS One 6(11), e28237 (2011).
[Crossref] [PubMed]

Rezakhaniha, R.

R. Rezakhaniha, A. Agianniotis, J. T. C. Schrauwen, A. Griffa, D. Sage, C. V. Bouten, F. N. van de Vosse, M. Unser, and N. Stergiopulos, “Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy,” Biomech. Model. Mechanobiol. 11(3-4), 461–473 (2012).
[Crossref] [PubMed]

Rodeo, S. A.

A. J. Sophia Fox, A. Bedi, and S. A. Rodeo, “The basic science of articular cartilage: structure, composition, and function,” Sports Health 1(6), 461–468 (2009).
[Crossref] [PubMed]

Sage, D.

R. Rezakhaniha, A. Agianniotis, J. T. C. Schrauwen, A. Griffa, D. Sage, C. V. Bouten, F. N. van de Vosse, M. Unser, and N. Stergiopulos, “Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy,” Biomech. Model. Mechanobiol. 11(3-4), 461–473 (2012).
[Crossref] [PubMed]

Saitou, T.

Sandell, L. J.

L. J. Sandell and T. Aigner, “Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis,” Arthritis Res. 3(2), 107–113 (2001).
[Crossref] [PubMed]

Sannasgala, S. S.

S. S. Sannasgala and D. R. Johnson, “Kinetic parameters in the growth plate of normal and achondroplastic (cn/cn) mice,” J. Anat. 172, 245–258 (1990).
[PubMed]

Schenke-Layland, K.

K. G. Brockbank, W. R. MacLellan, J. Xie, S. F. Hamm-Alvarez, Z. Z. Chen, and K. Schenke-Layland, “Quantitative second harmonic generation imaging of cartilage damage,” Cell Tissue Bank. 9(4), 299–307 (2008).
[Crossref] [PubMed]

Schrauwen, J. T. C.

R. Rezakhaniha, A. Agianniotis, J. T. C. Schrauwen, A. Griffa, D. Sage, C. V. Bouten, F. N. van de Vosse, M. Unser, and N. Stergiopulos, “Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy,” Biomech. Model. Mechanobiol. 11(3-4), 461–473 (2012).
[Crossref] [PubMed]

Shieh, D. B.

Silberberg, R.

R. Silberberg, M. Hasler, and P. Lesker, “Ultrastructure of articular cartilage of achondroplastic mice,” Acta Anat. (Basel) 96(2), 162–175 (1976).
[Crossref] [PubMed]

Sophia Fox, A. J.

A. J. Sophia Fox, A. Bedi, and S. A. Rodeo, “The basic science of articular cartilage: structure, composition, and function,” Sports Health 1(6), 461–468 (2009).
[Crossref] [PubMed]

Stergiopulos, N.

R. Rezakhaniha, A. Agianniotis, J. T. C. Schrauwen, A. Griffa, D. Sage, C. V. Bouten, F. N. van de Vosse, M. Unser, and N. Stergiopulos, “Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy,” Biomech. Model. Mechanobiol. 11(3-4), 461–473 (2012).
[Crossref] [PubMed]

Stoltz, J. F.

E. Werkmeister, N. de Isla, P. Netter, J. F. Stoltz, and D. Dumas, “Collagenous extracellular matrix of cartilage submitted to mechanical forces studied by second harmonic generation microscopy,” Photochem. Photobiol. 86(2), 302–310 (2010).
[Crossref] [PubMed]

Sun, C. K.

S. W. Chu, S. P. Tai, T. M. Liu, C. K. Sun, and C. H. Lin, “Selective imaging in second-harmonic-generation microscopy with anisotropic radiation,” J. Biomed. Opt. 14(1), 010504 (2009).
[Crossref] [PubMed]

S. P. Tai, T. H. Tsai, W. J. Lee, D. B. Shieh, Y. H. Liao, H. Y. Huang, K. Zhang, H. L. Liu, and C. K. Sun, “Optical biopsy of fixed human skin with backward-collected optical harmonics signals,” Opt. Express 13(20), 8231–8242 (2005).
[Crossref] [PubMed]

Sun, Q.

Tai, S. P.

S. W. Chu, S. P. Tai, T. M. Liu, C. K. Sun, and C. H. Lin, “Selective imaging in second-harmonic-generation microscopy with anisotropic radiation,” J. Biomed. Opt. 14(1), 010504 (2009).
[Crossref] [PubMed]

S. P. Tai, T. H. Tsai, W. J. Lee, D. B. Shieh, Y. H. Liao, H. Y. Huang, K. Zhang, H. L. Liu, and C. K. Sun, “Optical biopsy of fixed human skin with backward-collected optical harmonics signals,” Opt. Express 13(20), 8231–8242 (2005).
[Crossref] [PubMed]

Tanner, J. A.

Z. Wang, J. Cui, W. M. Wong, X. Li, W. Xue, R. Lin, J. Wang, P. Wang, J. A. Tanner, K. S. Cheah, W. Wu, and J. D. Huang, “Kif5b controls the localization of myofibril components for their assembly and linkage to the myotendinous junctions,” Development 140(3), 617–626 (2013).
[Crossref] [PubMed]

Toussaint, K. C.

Townsend, S. S.

R. LaComb, O. Nadiarnykh, S. S. Townsend, and P. J. Campagnola, “Phase matching considerations in Second Harmonic Generation from tissues: Effects on emission directionality, conversion efficiency and observed morphology,” Opt. Commun. 281(7), 1823–1832 (2008).
[Crossref] [PubMed]

Tromberg, B. J.

A. T. Yeh, M. J. Hammer-Wilson, D. C. Van Sickle, H. P. Benton, A. Zoumi, B. J. Tromberg, and G. M. Peavy, “Nonlinear optical microscopy of articular cartilage,” Osteoarthritis Cartilage 13(4), 345–352 (2005).
[Crossref] [PubMed]

A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 11014–11019 (2002).
[Crossref] [PubMed]

Tsai, T. H.

Unser, M.

R. Rezakhaniha, A. Agianniotis, J. T. C. Schrauwen, A. Griffa, D. Sage, C. V. Bouten, F. N. van de Vosse, M. Unser, and N. Stergiopulos, “Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy,” Biomech. Model. Mechanobiol. 11(3-4), 461–473 (2012).
[Crossref] [PubMed]

van de Vosse, F. N.

R. Rezakhaniha, A. Agianniotis, J. T. C. Schrauwen, A. Griffa, D. Sage, C. V. Bouten, F. N. van de Vosse, M. Unser, and N. Stergiopulos, “Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy,” Biomech. Model. Mechanobiol. 11(3-4), 461–473 (2012).
[Crossref] [PubMed]

Van Sickle, D. C.

A. T. Yeh, M. J. Hammer-Wilson, D. C. Van Sickle, H. P. Benton, A. Zoumi, B. J. Tromberg, and G. M. Peavy, “Nonlinear optical microscopy of articular cartilage,” Osteoarthritis Cartilage 13(4), 345–352 (2005).
[Crossref] [PubMed]

Wang, J.

Z. Wang, J. Cui, W. M. Wong, X. Li, W. Xue, R. Lin, J. Wang, P. Wang, J. A. Tanner, K. S. Cheah, W. Wu, and J. D. Huang, “Kif5b controls the localization of myofibril components for their assembly and linkage to the myotendinous junctions,” Development 140(3), 617–626 (2013).
[Crossref] [PubMed]

Wang, P.

Z. Wang, J. Cui, W. M. Wong, X. Li, W. Xue, R. Lin, J. Wang, P. Wang, J. A. Tanner, K. S. Cheah, W. Wu, and J. D. Huang, “Kif5b controls the localization of myofibril components for their assembly and linkage to the myotendinous junctions,” Development 140(3), 617–626 (2013).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, J. Cui, W. M. Wong, X. Li, W. Xue, R. Lin, J. Wang, P. Wang, J. A. Tanner, K. S. Cheah, W. Wu, and J. D. Huang, “Kif5b controls the localization of myofibril components for their assembly and linkage to the myotendinous junctions,” Development 140(3), 617–626 (2013).
[Crossref] [PubMed]

J. Cui, Z. Wang, Q. Cheng, R. Lin, X. M. Zhang, P. S. Leung, N. G. Copeland, N. A. Jenkins, K. M. Yao, and J. D. Huang, “Targeted inactivation of kinesin-1 in pancreatic β-cells in vivo leads to insulin secretory deficiency,” Diabetes 60(1), 320–330 (2011).
[Crossref] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

Weise, M.

V. Abad, J. L. Meyers, M. Weise, R. I. Gafni, K. M. Barnes, O. Nilsson, J. D. Bacher, and J. Baron, “The role of the resting zone in growth plate chondrogenesis,” Endocrinology 143(5), 1851–1857 (2002).
[Crossref] [PubMed]

Werkmeister, E.

E. Werkmeister, N. de Isla, P. Netter, J. F. Stoltz, and D. Dumas, “Collagenous extracellular matrix of cartilage submitted to mechanical forces studied by second harmonic generation microscopy,” Photochem. Photobiol. 86(2), 302–310 (2010).
[Crossref] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

Wong, W. M.

Z. Wang, J. Cui, W. M. Wong, X. Li, W. Xue, R. Lin, J. Wang, P. Wang, J. A. Tanner, K. S. Cheah, W. Wu, and J. D. Huang, “Kif5b controls the localization of myofibril components for their assembly and linkage to the myotendinous junctions,” Development 140(3), 617–626 (2013).
[Crossref] [PubMed]

Wu, J. P.

B. He, J. P. Wu, T. B. Kirk, J. A. Carrino, C. Xiang, and J. Xu, “High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential,” Arthritis Res. Ther. 16(2), 205 (2014).
[Crossref] [PubMed]

Wu, W.

Z. Wang, J. Cui, W. M. Wong, X. Li, W. Xue, R. Lin, J. Wang, P. Wang, J. A. Tanner, K. S. Cheah, W. Wu, and J. D. Huang, “Kif5b controls the localization of myofibril components for their assembly and linkage to the myotendinous junctions,” Development 140(3), 617–626 (2013).
[Crossref] [PubMed]

Xiang, C.

B. He, J. P. Wu, T. B. Kirk, J. A. Carrino, C. Xiang, and J. Xu, “High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential,” Arthritis Res. Ther. 16(2), 205 (2014).
[Crossref] [PubMed]

Xie, J.

K. G. Brockbank, W. R. MacLellan, J. Xie, S. F. Hamm-Alvarez, Z. Z. Chen, and K. Schenke-Layland, “Quantitative second harmonic generation imaging of cartilage damage,” Cell Tissue Bank. 9(4), 299–307 (2008).
[Crossref] [PubMed]

Xie, X. S.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

Xu, J.

B. He, J. P. Wu, T. B. Kirk, J. A. Carrino, C. Xiang, and J. Xu, “High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential,” Arthritis Res. Ther. 16(2), 205 (2014).
[Crossref] [PubMed]

Xue, W.

Z. Wang, J. Cui, W. M. Wong, X. Li, W. Xue, R. Lin, J. Wang, P. Wang, J. A. Tanner, K. S. Cheah, W. Wu, and J. D. Huang, “Kif5b controls the localization of myofibril components for their assembly and linkage to the myotendinous junctions,” Development 140(3), 617–626 (2013).
[Crossref] [PubMed]

Yao, K. M.

J. Cui, Z. Wang, Q. Cheng, R. Lin, X. M. Zhang, P. S. Leung, N. G. Copeland, N. A. Jenkins, K. M. Yao, and J. D. Huang, “Targeted inactivation of kinesin-1 in pancreatic β-cells in vivo leads to insulin secretory deficiency,” Diabetes 60(1), 320–330 (2011).
[Crossref] [PubMed]

Ye, C.

Yeh, A.

A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 11014–11019 (2002).
[Crossref] [PubMed]

Yeh, A. T.

A. T. Yeh, M. J. Hammer-Wilson, D. C. Van Sickle, H. P. Benton, A. Zoumi, B. J. Tromberg, and G. M. Peavy, “Nonlinear optical microscopy of articular cartilage,” Osteoarthritis Cartilage 13(4), 345–352 (2005).
[Crossref] [PubMed]

Zhang, K.

Zhang, X.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

Zhang, X. M.

J. Cui, Z. Wang, Q. Cheng, R. Lin, X. M. Zhang, P. S. Leung, N. G. Copeland, N. A. Jenkins, K. M. Yao, and J. D. Huang, “Targeted inactivation of kinesin-1 in pancreatic β-cells in vivo leads to insulin secretory deficiency,” Diabetes 60(1), 320–330 (2011).
[Crossref] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

Zoumi, A.

A. T. Yeh, M. J. Hammer-Wilson, D. C. Van Sickle, H. P. Benton, A. Zoumi, B. J. Tromberg, and G. M. Peavy, “Nonlinear optical microscopy of articular cartilage,” Osteoarthritis Cartilage 13(4), 345–352 (2005).
[Crossref] [PubMed]

A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 11014–11019 (2002).
[Crossref] [PubMed]

Zryd, T. W.

A. M. Proulx and T. W. Zryd, “Costochondritis: diagnosis and treatment,” Am. Fam. Physician 80(6), 617–620 (2009).
[PubMed]

Acta Anat. (Basel) (1)

R. Silberberg, M. Hasler, and P. Lesker, “Ultrastructure of articular cartilage of achondroplastic mice,” Acta Anat. (Basel) 96(2), 162–175 (1976).
[Crossref] [PubMed]

Am. Fam. Physician (1)

A. M. Proulx and T. W. Zryd, “Costochondritis: diagnosis and treatment,” Am. Fam. Physician 80(6), 617–620 (2009).
[PubMed]

Ann. N. Y. Acad. Sci. (1)

M. B. Goldring and S. R. Goldring, “Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis,” Ann. N. Y. Acad. Sci. 1192(1), 230–237 (2010).
[Crossref] [PubMed]

Arthritis Res. (1)

L. J. Sandell and T. Aigner, “Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis,” Arthritis Res. 3(2), 107–113 (2001).
[Crossref] [PubMed]

Arthritis Res. Ther. (2)

D. Eyre, “Articular cartilage and changes in arthritis: collagen of articular cartilage,” Arthritis Res. Ther. 4, 1 (2001).

B. He, J. P. Wu, T. B. Kirk, J. A. Carrino, C. Xiang, and J. Xu, “High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential,” Arthritis Res. Ther. 16(2), 205 (2014).
[Crossref] [PubMed]

Biomech. Model. Mechanobiol. (1)

R. Rezakhaniha, A. Agianniotis, J. T. C. Schrauwen, A. Griffa, D. Sage, C. V. Bouten, F. N. van de Vosse, M. Unser, and N. Stergiopulos, “Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy,” Biomech. Model. Mechanobiol. 11(3-4), 461–473 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Cell Tissue Bank. (1)

K. G. Brockbank, W. R. MacLellan, J. Xie, S. F. Hamm-Alvarez, Z. Z. Chen, and K. Schenke-Layland, “Quantitative second harmonic generation imaging of cartilage damage,” Cell Tissue Bank. 9(4), 299–307 (2008).
[Crossref] [PubMed]

Development (1)

Z. Wang, J. Cui, W. M. Wong, X. Li, W. Xue, R. Lin, J. Wang, P. Wang, J. A. Tanner, K. S. Cheah, W. Wu, and J. D. Huang, “Kif5b controls the localization of myofibril components for their assembly and linkage to the myotendinous junctions,” Development 140(3), 617–626 (2013).
[Crossref] [PubMed]

Diabetes (1)

J. Cui, Z. Wang, Q. Cheng, R. Lin, X. M. Zhang, P. S. Leung, N. G. Copeland, N. A. Jenkins, K. M. Yao, and J. D. Huang, “Targeted inactivation of kinesin-1 in pancreatic β-cells in vivo leads to insulin secretory deficiency,” Diabetes 60(1), 320–330 (2011).
[Crossref] [PubMed]

Endocrinology (1)

V. Abad, J. L. Meyers, M. Weise, R. I. Gafni, K. M. Barnes, O. Nilsson, J. D. Bacher, and J. Baron, “The role of the resting zone in growth plate chondrogenesis,” Endocrinology 143(5), 1851–1857 (2002).
[Crossref] [PubMed]

Eur. Cell. Mater. (1)

L. C. Hughes, C. W. Archer, and I. ap Gwynn, “The ultrastructure of mouse articular cartilage: collagen orientation and implications for tissue functionality. A polarised light and scanning electron microscope study and review,” Eur. Cell. Mater. 9, 68–84 (2005).
[Crossref] [PubMed]

Instr. Course Lect. (1)

J. A. Buckwalter and H. J. Mankin, “Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation,” Instr. Course Lect. 47, 487–504 (1998).
[PubMed]

J. Anat. (2)

S. S. Sannasgala and D. R. Johnson, “Kinetic parameters in the growth plate of normal and achondroplastic (cn/cn) mice,” J. Anat. 172, 245–258 (1990).
[PubMed]

M. Benjamin and J. R. Ralphs, “Fibrocartilage in tendons and ligaments--an adaptation to compressive load,” J. Anat. 193(4), 481–494 (1998).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

S. W. Chu, S. P. Tai, T. M. Liu, C. K. Sun, and C. H. Lin, “Selective imaging in second-harmonic-generation microscopy with anisotropic radiation,” J. Biomed. Opt. 14(1), 010504 (2009).
[Crossref] [PubMed]

J. Biophotonics (1)

P. Bianchini and A. Diaspro, “Three-dimensional (3D) backward and forward second harmonic generation (SHG) microscopy of biological tissues,” J. Biophotonics 1(6), 443–450 (2008).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

Knee Surg. Sports Traumatol. Arthrosc. (1)

H. Madry, F. P. Luyten, and A. Facchini, “Biological aspects of early osteoarthritis,” Knee Surg. Sports Traumatol. Arthrosc. 20(3), 407–422 (2012).
[Crossref] [PubMed]

Microsc. Res. Tech. (1)

E. B. Hunziker, “Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes,” Microsc. Res. Tech. 28(6), 505–519 (1994).
[Crossref] [PubMed]

Opt. Commun. (1)

R. LaComb, O. Nadiarnykh, S. S. Townsend, and P. J. Campagnola, “Phase matching considerations in Second Harmonic Generation from tissues: Effects on emission directionality, conversion efficiency and observed morphology,” Opt. Commun. 281(7), 1823–1832 (2008).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Osteoarthritis Cartilage (1)

A. T. Yeh, M. J. Hammer-Wilson, D. C. Van Sickle, H. P. Benton, A. Zoumi, B. J. Tromberg, and G. M. Peavy, “Nonlinear optical microscopy of articular cartilage,” Osteoarthritis Cartilage 13(4), 345–352 (2005).
[Crossref] [PubMed]

Photochem. Photobiol. (1)

E. Werkmeister, N. de Isla, P. Netter, J. F. Stoltz, and D. Dumas, “Collagenous extracellular matrix of cartilage submitted to mechanical forces studied by second harmonic generation microscopy,” Photochem. Photobiol. 86(2), 302–310 (2010).
[Crossref] [PubMed]

PLoS One (1)

M. Rehberg, F. Krombach, U. Pohl, and S. Dietzel, “Label-free 3D visualization of cellular and tissue structures in intact muscle with second and third harmonic generation microscopy,” PLoS One 6(11), e28237 (2011).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 11014–11019 (2002).
[Crossref] [PubMed]

Sports Health (1)

A. J. Sophia Fox, A. Bedi, and S. A. Rodeo, “The basic science of articular cartilage: structure, composition, and function,” Sports Health 1(6), 461–468 (2009).
[Crossref] [PubMed]

Other (3)

R. Wilson, E. L. Norris, B. Brachvogel, C. Angelucci, S. Zivkovic, L. Gordon, B. C. Bernardo, J. Stermann, K. Sekiguchi, J. J. Gorman, and J. F. Bateman, “Changes in the chondrocyte and extracellular matrix proteome during post-natal mouse cartilage development,” Mol. Cell. Proteomics 11, M111.014159 (2012).

J. Chan, J. Huang, and K. Lai, ”The kinesin motor protein KIF5B regulates RNA trafficking and dendritic spine morphologenesis in hippocampal neuron” in Neuroscience Symposium & Annual Scientific Conference ofthe Hong KongSociety of NeurosciencesAnonymous (The University of Hong Kong., 2016).

G. Zhu, “Study of the function of Kinesin-1 (KIF5B) in long bone development,” (Open Dissertation Press, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Representative photographs of post-natal day 10 (P10) Kif5bfl/+ (left) and Kif5bfl/-: Col2a1-Cre (right) mice. The mutant mice exhibit smaller body sizes than those of controls; (b) Representative X-ray photographs of control (left) and mutant (right) mice at six week stage. The mutant mice display shortening in femur, tibia and phalangeal bones. Arrows: tibial cortical bone.
Fig. 2
Fig. 2 Immunostaining for Kif5b on the tibial cartilage of the P15 mice (brown: Kif5b protein; blue: nuclei). (a) control mouse; (b) mutant mouse. Scale bar: 200 µm. Red arrows: articular surface. Green arrows: growth plate cartilage.
Fig. 3
Fig. 3 Representative multimodal NLO images of tibial cartilage. (a) SRS, FSHG and TPEF&BSHG mosaics of a whole cartilage sample from a post-natal day 5 (P5) wild-type C57BL6 mouse (scale bar: 100 µm); (b) Left column: SRS images from different sub-zones in cartilage, right column: merged TPEF (green) and BSHG (red) images from corresponding zones (scale bar: 20 µm) (c) SHG and SRS intensities of the ECM in each zone calculated from 30 regions of interest in three P5 wild-type C57BL6 mice.
Fig. 4
Fig. 4 Representative FSHG and BSHG signals in the PA and SZ of articular cartilage in wild-type, control and mutant mice. (a1)-(a2) FSHG and BSHG images of SZ from a P15 control mouse (excitation: 780 nm; field of view: 100 µm × 100 µm); (b1)-(b2) FSHG and BSHG images of SZ from a P15 control mouse (excitation: 1100 nm; field of view: 100 µm × 100 µm); (c) FSHG signal distributions at P5, P10 and P15 stages from wild-type (WT), control (Ctrl) and mutant (Mut) mice; (d) BSHG signal distributions at P5, P10 and P15 stages from wild-type (WT), control (Ctrl) and mutant (Mut) mice. Each statistical distribution curve in (c)-(d) is shown in terms of average with standard deviation over the measurements from six specimens.
Fig. 5
Fig. 5 Representative TPEF mosaics of control and mutant cartilage at P5, P10 and P15 (scale bar: 50 µm). Green dashed lines: the boundary between articular cartilage and growth plate cartilage. Red arrows: distorted chondrocytes in the growth plate of mutant cartilages.
Fig. 6
Fig. 6 Accumulated intracellular collagen in mutant cartilage. (a) Representative FSHG mosaic of P15 mutant cartilage section (scale bar: 100 µm). Intracellular collagen is highlighted by strong SHG signal (red arrows); (b) Representative TPEF image (b1), BSHG image (b2) and merged image (b3) of a region with accumulated intracellular collagen (field of view: 100 µm × 100 µm); (c) Coherency values calculated from the FSHG and BSHG of the MDZ of P10 and P15 mice from 30 sites (3 mice for each group). ICM: intracellular matrix.

Metrics