Abstract

We demonstrate a novel approach to enhance the precision of surgical needle shape tracking based on distributed strain sensing using optical frequency domain reflectometry (OFDR). The precision enhancement is provided by using optical fibers with high scattering properties. Shape tracking of surgical tools using strain sensing properties of optical fibers has seen increased attention in recent years. Most of the investigations made in this field use fiber Bragg gratings (FBG), which can be used as discrete or quasi-distributed strain sensors. By using a truly distributed sensing approach (OFDR), preliminary results show that the attainable accuracy is comparable to accuracies reported in the literature using FBG sensors for tracking applications (~1mm). We propose a technique that enhanced our accuracy by 47% using UV exposed fibers, which have higher light scattering compared to un-exposed standard single mode fibers. Improving the experimental setup will enhance the accuracy provided by shape tracking using OFDR and will contribute significantly to clinical applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Distributed fiber optics 3D shape sensing by means of high scattering NP-doped fibers simultaneous spatial multiplexing

Aidana Beisenova, Aizhan Issatayeva, Iulian Iordachita, Wilfried Blanc, Carlo Molardi, and Daniele Tosi
Opt. Express 27(16) 22074-22087 (2019)

Distributed refractive index sensing based on tapered fibers in optical frequency domain reflectometry

Zhenyang Ding, Keliang Sun, Kun Liu, Junfeng Jiang, Di Yang, Zhe Yu, Jing Li, and Tiegen Liu
Opt. Express 26(10) 13042-13054 (2018)

High-resolution distributed shape sensing using phase-sensitive optical time-domain reflectometry and multicore fibers

Łukasz Szostkiewicz, Marcelo A. Soto, Zhisheng Yang, Alejandro Dominguez-Lopez, Itxaso Parola, Krzysztof Markiewicz, Anna Pytel, Agnieszka Kołakowska, Marek Napierała, Tomasz Nasiłowski, and Luc Thevenaz
Opt. Express 27(15) 20763-20773 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. K. Lee, A. Mariampillai, M. Haque, B. A. Standish, V. X. Yang, and P. R. Herman, “Temperature-compensated fiber-optic 3D shape sensor based on femtosecond laser direct-written Bragg grating waveguides,” Opt. Express 21(20), 24076–24086 (2013).
    [Crossref] [PubMed]
  2. M. S. van der Heiden, K. R. Henken, L. K. Cheng, B. G. van den Bosch, R. van den Braber, J. Dankelman, and J. J. van den Dobbelsteen, “Accurate and efficient fiber optical shape sensor for MRI compatible minimally invasive instruments,” in SPIE Optical Systems Design, Barcelona, Spain, 2012.
  3. P. M. Novotny, J. A. Stoll, N. V. Vasilyev, P. J. del Nido, P. E. Dupont, T. E. Zickler, and R. D. Howe, “GPU based real-time instrument tracking with three-dimensional ultrasound,” Med. Image Anal. 11(5), 458–464 (2007).
    [Crossref] [PubMed]
  4. J. Stoll, P. Novotny, R. Howe, and P. Dupont, “Real-time 3D ultrasound-based servoing of a surgical instrument,” in Robotics and Automation,2006. ICRA 2006.Proceedings 2006 IEEE International Conference on, 2006, pp. 613–618.
    [Crossref]
  5. J. N. Welch, J. A. Johnson, M. R. Bax, R. Badr, and R. Shahidi, “A real-time freehand 3D ultrasound system for image-guided surgery,” in Ultrasonics Symposium,2000IEEE, 2000, pp. 1601–16042.
    [Crossref]
  6. N. D. Inc, (2016, 15 Janvier 2016). Medical Aurora - Medical. Available: http://www.ndigital.com/medical/products/aurora/
  7. T. Bien, M. Li, Z. Salah, and G. Rose, “Electromagnetic tracking system with reduced distortion using quadratic excitation,” Int. J. CARS 9(2), 323–332 (2014).
    [Crossref] [PubMed]
  8. Z. Yaniv, E. Wilson, D. Lindisch, and K. Cleary, “Electromagnetic tracking in the clinical environment,” Med. Phys. 36(3), 876–892 (2009).
    [Crossref] [PubMed]
  9. W. Birkfellner, F. Watzinger, F. Wanschitz, G. Enislidis, M. Truppe, R. Ewers, and H. Bergmann, “Concepts and results in the development of a hybrid tracking system for CAS,” in Medical Image Computing and Computer-Assisted Interventation — MICCAI’98: First International Conference Cambridge, MA, USA, October 11–13, 1998 Proceedings, W. M. Wells, A. Colchester, and S. Delp, eds. (Springer, 1998), pp. 343–351.
    [Crossref]
  10. R. Khadem, C. C. Yeh, M. Sadeghi-Tehrani, M. R. Bax, J. A. Johnson, J. N. Welch, E. P. Wilkinson, and R. Shahidi, “Comparative tracking error analysis of five different optical tracking systems,” Comput. Aided Surg. 5(2), 98–107 (2000).
    [Crossref] [PubMed]
  11. K. Mandal, F. Parent, S. Martel, R. Kashyap, and S. Kadoury, “Vessel-based registration of an optical shape sensing catheter for MR navigation,” Int. J. CARS 11(6), 1025–1034 (2016).
    [Crossref] [PubMed]
  12. Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
    [PubMed]
  13. S. Elayaperumal, J. C. Plata, A. B. Holbrook, Y.-L. Park, K. B. Pauly, B. L. Daniel, and M. R. Cutkosky, “Autonomous real-time interventional scan plane control with a 3-D shape-sensing needle,” IEEE Trans. Med. Imag.  33, 2128–2138 (2014).
  14. R. J. Roesthuis, M. Kemp, and J. J. van den Dobbelsteen, S. Misra “Three-dimensional needle shape reconstruction using an array of fiber Bragg grating sensors,” IEEE/ASME Trans. Mechatron 19, 1115–1126 (2014).
  15. J. Qian, Q. Zheng, Y. Zhang, L.-Y. Shen, and Y.-N Zhang, “Deformation sensing and incremental shape reconstruction for intelligent colonoscopy,” Optics and Precision Engineering 12, 518–524 (2004).
  16. L. Zhang, J. Qian, L. Shen, and Y. Zhang, “FBG sensor devices for spatial shape detection of intelligent colonoscope,” in Robotics and Automation,2004. Proceedings. ICRA '04. 2004 IEEE International Conference on, pp. 834–840 (2004).
  17. K. Henken, D. Van Gerwen, J. Dankelman, and J. Van Den Dobbelsteen, “Accuracy of needle position measurements using fiber Bragg gratings,” Minim. Invasive Ther. Allied Technol. 21, 408–414 (2012).
  18. K. K. Mandal, F. Parent, S. Martel, R. Kashyap, and S. Kadoury, “Calibration of a needle tracking device with fiber Bragg grating sensors,” Proc. SPIE 9415, 94150 (2015).
  19. X. Yi, J. Qian, L. Shen, Y. Zhang, and Z. Zhang, “An Innovative 3D Colonoscope Shape Sensing Sensor Based on FBG Sensor Array,” in Information Acquisition,2007. ICIA '07. International Conference on, 2007, pp. 227–232.
    [Crossref]
  20. K. Henken, D. V. Gerwen, J. Dankelman, and J. van den Dobbelsteen, “Accuracy of needle position measurements using fiber Bragg gratings,” Minim. Invasive Ther. Allied Technol. 21, 408–414 (2012).
  21. R. G. Duncan, M. E. Froggatt, S. T. Kreger, R. J. Seeley, D. K. Gifford, A. K. Sang, and M. S. Wolfe, “High-accuracy fiber-optic shape sensing,” SPIE Proc. 6530, 65301 (2007).
  22. S. Loranger, M. Gagné, V. Lambin-Iezzi, and R. Kashyap, “Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre,” Sci. Rep. 5, 5 (2015).
  23. M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter,” Appl. Opt. 37, 1735–1740 (1998).
  24. M. E. Froggatt and R. G. Duncan, “Fiber optic position and/or shape sensing based on Rayleigh scatter,” Google Patents, 2010.
  25. M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22(1), 387–398 (2014).
    [Crossref] [PubMed]

2016 (1)

K. Mandal, F. Parent, S. Martel, R. Kashyap, and S. Kadoury, “Vessel-based registration of an optical shape sensing catheter for MR navigation,” Int. J. CARS 11(6), 1025–1034 (2016).
[Crossref] [PubMed]

2015 (2)

K. K. Mandal, F. Parent, S. Martel, R. Kashyap, and S. Kadoury, “Calibration of a needle tracking device with fiber Bragg grating sensors,” Proc. SPIE 9415, 94150 (2015).

S. Loranger, M. Gagné, V. Lambin-Iezzi, and R. Kashyap, “Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre,” Sci. Rep. 5, 5 (2015).

2014 (3)

M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22(1), 387–398 (2014).
[Crossref] [PubMed]

T. Bien, M. Li, Z. Salah, and G. Rose, “Electromagnetic tracking system with reduced distortion using quadratic excitation,” Int. J. CARS 9(2), 323–332 (2014).
[Crossref] [PubMed]

S. Elayaperumal, J. C. Plata, A. B. Holbrook, Y.-L. Park, K. B. Pauly, B. L. Daniel, and M. R. Cutkosky, “Autonomous real-time interventional scan plane control with a 3-D shape-sensing needle,” IEEE Trans. Med. Imag.  33, 2128–2138 (2014).

2013 (1)

2012 (2)

K. Henken, D. V. Gerwen, J. Dankelman, and J. van den Dobbelsteen, “Accuracy of needle position measurements using fiber Bragg gratings,” Minim. Invasive Ther. Allied Technol. 21, 408–414 (2012).

K. Henken, D. Van Gerwen, J. Dankelman, and J. Van Den Dobbelsteen, “Accuracy of needle position measurements using fiber Bragg gratings,” Minim. Invasive Ther. Allied Technol. 21, 408–414 (2012).

2010 (1)

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[PubMed]

2009 (1)

Z. Yaniv, E. Wilson, D. Lindisch, and K. Cleary, “Electromagnetic tracking in the clinical environment,” Med. Phys. 36(3), 876–892 (2009).
[Crossref] [PubMed]

2007 (1)

P. M. Novotny, J. A. Stoll, N. V. Vasilyev, P. J. del Nido, P. E. Dupont, T. E. Zickler, and R. D. Howe, “GPU based real-time instrument tracking with three-dimensional ultrasound,” Med. Image Anal. 11(5), 458–464 (2007).
[Crossref] [PubMed]

2004 (1)

J. Qian, Q. Zheng, Y. Zhang, L.-Y. Shen, and Y.-N Zhang, “Deformation sensing and incremental shape reconstruction for intelligent colonoscopy,” Optics and Precision Engineering 12, 518–524 (2004).

2000 (1)

R. Khadem, C. C. Yeh, M. Sadeghi-Tehrani, M. R. Bax, J. A. Johnson, J. N. Welch, E. P. Wilkinson, and R. Shahidi, “Comparative tracking error analysis of five different optical tracking systems,” Comput. Aided Surg. 5(2), 98–107 (2000).
[Crossref] [PubMed]

1998 (1)

Badr, R.

J. N. Welch, J. A. Johnson, M. R. Bax, R. Badr, and R. Shahidi, “A real-time freehand 3D ultrasound system for image-guided surgery,” in Ultrasonics Symposium,2000IEEE, 2000, pp. 1601–16042.
[Crossref]

Bax, M. R.

R. Khadem, C. C. Yeh, M. Sadeghi-Tehrani, M. R. Bax, J. A. Johnson, J. N. Welch, E. P. Wilkinson, and R. Shahidi, “Comparative tracking error analysis of five different optical tracking systems,” Comput. Aided Surg. 5(2), 98–107 (2000).
[Crossref] [PubMed]

J. N. Welch, J. A. Johnson, M. R. Bax, R. Badr, and R. Shahidi, “A real-time freehand 3D ultrasound system for image-guided surgery,” in Ultrasonics Symposium,2000IEEE, 2000, pp. 1601–16042.
[Crossref]

Bien, T.

T. Bien, M. Li, Z. Salah, and G. Rose, “Electromagnetic tracking system with reduced distortion using quadratic excitation,” Int. J. CARS 9(2), 323–332 (2014).
[Crossref] [PubMed]

Black, R. J.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[PubMed]

Cleary, K.

Z. Yaniv, E. Wilson, D. Lindisch, and K. Cleary, “Electromagnetic tracking in the clinical environment,” Med. Phys. 36(3), 876–892 (2009).
[Crossref] [PubMed]

Cutkosky, M. R.

S. Elayaperumal, J. C. Plata, A. B. Holbrook, Y.-L. Park, K. B. Pauly, B. L. Daniel, and M. R. Cutkosky, “Autonomous real-time interventional scan plane control with a 3-D shape-sensing needle,” IEEE Trans. Med. Imag.  33, 2128–2138 (2014).

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[PubMed]

Daniel, B.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[PubMed]

Daniel, B. L.

S. Elayaperumal, J. C. Plata, A. B. Holbrook, Y.-L. Park, K. B. Pauly, B. L. Daniel, and M. R. Cutkosky, “Autonomous real-time interventional scan plane control with a 3-D shape-sensing needle,” IEEE Trans. Med. Imag.  33, 2128–2138 (2014).

Dankelman, J.

K. Henken, D. Van Gerwen, J. Dankelman, and J. Van Den Dobbelsteen, “Accuracy of needle position measurements using fiber Bragg gratings,” Minim. Invasive Ther. Allied Technol. 21, 408–414 (2012).

K. Henken, D. V. Gerwen, J. Dankelman, and J. van den Dobbelsteen, “Accuracy of needle position measurements using fiber Bragg gratings,” Minim. Invasive Ther. Allied Technol. 21, 408–414 (2012).

del Nido, P. J.

P. M. Novotny, J. A. Stoll, N. V. Vasilyev, P. J. del Nido, P. E. Dupont, T. E. Zickler, and R. D. Howe, “GPU based real-time instrument tracking with three-dimensional ultrasound,” Med. Image Anal. 11(5), 458–464 (2007).
[Crossref] [PubMed]

Dupont, P. E.

P. M. Novotny, J. A. Stoll, N. V. Vasilyev, P. J. del Nido, P. E. Dupont, T. E. Zickler, and R. D. Howe, “GPU based real-time instrument tracking with three-dimensional ultrasound,” Med. Image Anal. 11(5), 458–464 (2007).
[Crossref] [PubMed]

Elayaperumal, S.

S. Elayaperumal, J. C. Plata, A. B. Holbrook, Y.-L. Park, K. B. Pauly, B. L. Daniel, and M. R. Cutkosky, “Autonomous real-time interventional scan plane control with a 3-D shape-sensing needle,” IEEE Trans. Med. Imag.  33, 2128–2138 (2014).

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[PubMed]

Froggatt, M.

Gagné, M.

S. Loranger, M. Gagné, V. Lambin-Iezzi, and R. Kashyap, “Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre,” Sci. Rep. 5, 5 (2015).

M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22(1), 387–398 (2014).
[Crossref] [PubMed]

Gerwen, D. V.

K. Henken, D. V. Gerwen, J. Dankelman, and J. van den Dobbelsteen, “Accuracy of needle position measurements using fiber Bragg gratings,” Minim. Invasive Ther. Allied Technol. 21, 408–414 (2012).

Haque, M.

Henken, K.

K. Henken, D. V. Gerwen, J. Dankelman, and J. van den Dobbelsteen, “Accuracy of needle position measurements using fiber Bragg gratings,” Minim. Invasive Ther. Allied Technol. 21, 408–414 (2012).

K. Henken, D. Van Gerwen, J. Dankelman, and J. Van Den Dobbelsteen, “Accuracy of needle position measurements using fiber Bragg gratings,” Minim. Invasive Ther. Allied Technol. 21, 408–414 (2012).

Herman, P. R.

Holbrook, A. B.

S. Elayaperumal, J. C. Plata, A. B. Holbrook, Y.-L. Park, K. B. Pauly, B. L. Daniel, and M. R. Cutkosky, “Autonomous real-time interventional scan plane control with a 3-D shape-sensing needle,” IEEE Trans. Med. Imag.  33, 2128–2138 (2014).

Howe, R. D.

P. M. Novotny, J. A. Stoll, N. V. Vasilyev, P. J. del Nido, P. E. Dupont, T. E. Zickler, and R. D. Howe, “GPU based real-time instrument tracking with three-dimensional ultrasound,” Med. Image Anal. 11(5), 458–464 (2007).
[Crossref] [PubMed]

Johnson, J. A.

R. Khadem, C. C. Yeh, M. Sadeghi-Tehrani, M. R. Bax, J. A. Johnson, J. N. Welch, E. P. Wilkinson, and R. Shahidi, “Comparative tracking error analysis of five different optical tracking systems,” Comput. Aided Surg. 5(2), 98–107 (2000).
[Crossref] [PubMed]

J. N. Welch, J. A. Johnson, M. R. Bax, R. Badr, and R. Shahidi, “A real-time freehand 3D ultrasound system for image-guided surgery,” in Ultrasonics Symposium,2000IEEE, 2000, pp. 1601–16042.
[Crossref]

Kadoury, S.

K. Mandal, F. Parent, S. Martel, R. Kashyap, and S. Kadoury, “Vessel-based registration of an optical shape sensing catheter for MR navigation,” Int. J. CARS 11(6), 1025–1034 (2016).
[Crossref] [PubMed]

K. K. Mandal, F. Parent, S. Martel, R. Kashyap, and S. Kadoury, “Calibration of a needle tracking device with fiber Bragg grating sensors,” Proc. SPIE 9415, 94150 (2015).

Kashyap, R.

K. Mandal, F. Parent, S. Martel, R. Kashyap, and S. Kadoury, “Vessel-based registration of an optical shape sensing catheter for MR navigation,” Int. J. CARS 11(6), 1025–1034 (2016).
[Crossref] [PubMed]

K. K. Mandal, F. Parent, S. Martel, R. Kashyap, and S. Kadoury, “Calibration of a needle tracking device with fiber Bragg grating sensors,” Proc. SPIE 9415, 94150 (2015).

S. Loranger, M. Gagné, V. Lambin-Iezzi, and R. Kashyap, “Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre,” Sci. Rep. 5, 5 (2015).

M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22(1), 387–398 (2014).
[Crossref] [PubMed]

Khadem, R.

R. Khadem, C. C. Yeh, M. Sadeghi-Tehrani, M. R. Bax, J. A. Johnson, J. N. Welch, E. P. Wilkinson, and R. Shahidi, “Comparative tracking error analysis of five different optical tracking systems,” Comput. Aided Surg. 5(2), 98–107 (2000).
[Crossref] [PubMed]

Lambin-Iezzi, V.

S. Loranger, M. Gagné, V. Lambin-Iezzi, and R. Kashyap, “Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre,” Sci. Rep. 5, 5 (2015).

Lapointe, J.

Lee, K. K.

Li, M.

T. Bien, M. Li, Z. Salah, and G. Rose, “Electromagnetic tracking system with reduced distortion using quadratic excitation,” Int. J. CARS 9(2), 323–332 (2014).
[Crossref] [PubMed]

Lindisch, D.

Z. Yaniv, E. Wilson, D. Lindisch, and K. Cleary, “Electromagnetic tracking in the clinical environment,” Med. Phys. 36(3), 876–892 (2009).
[Crossref] [PubMed]

Loranger, S.

S. Loranger, M. Gagné, V. Lambin-Iezzi, and R. Kashyap, “Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre,” Sci. Rep. 5, 5 (2015).

M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap, “Fabrication of high quality, ultra-long fiber Bragg gratings: up to 2 million periods in phase,” Opt. Express 22(1), 387–398 (2014).
[Crossref] [PubMed]

Mandal, K.

K. Mandal, F. Parent, S. Martel, R. Kashyap, and S. Kadoury, “Vessel-based registration of an optical shape sensing catheter for MR navigation,” Int. J. CARS 11(6), 1025–1034 (2016).
[Crossref] [PubMed]

Mandal, K. K.

K. K. Mandal, F. Parent, S. Martel, R. Kashyap, and S. Kadoury, “Calibration of a needle tracking device with fiber Bragg grating sensors,” Proc. SPIE 9415, 94150 (2015).

Mariampillai, A.

Martel, S.

K. Mandal, F. Parent, S. Martel, R. Kashyap, and S. Kadoury, “Vessel-based registration of an optical shape sensing catheter for MR navigation,” Int. J. CARS 11(6), 1025–1034 (2016).
[Crossref] [PubMed]

K. K. Mandal, F. Parent, S. Martel, R. Kashyap, and S. Kadoury, “Calibration of a needle tracking device with fiber Bragg grating sensors,” Proc. SPIE 9415, 94150 (2015).

Moore, J.

Moslehi, B.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[PubMed]

Novotny, P. M.

P. M. Novotny, J. A. Stoll, N. V. Vasilyev, P. J. del Nido, P. E. Dupont, T. E. Zickler, and R. D. Howe, “GPU based real-time instrument tracking with three-dimensional ultrasound,” Med. Image Anal. 11(5), 458–464 (2007).
[Crossref] [PubMed]

Parent, F.

K. Mandal, F. Parent, S. Martel, R. Kashyap, and S. Kadoury, “Vessel-based registration of an optical shape sensing catheter for MR navigation,” Int. J. CARS 11(6), 1025–1034 (2016).
[Crossref] [PubMed]

K. K. Mandal, F. Parent, S. Martel, R. Kashyap, and S. Kadoury, “Calibration of a needle tracking device with fiber Bragg grating sensors,” Proc. SPIE 9415, 94150 (2015).

Park, Y. L.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[PubMed]

Park, Y.-L.

S. Elayaperumal, J. C. Plata, A. B. Holbrook, Y.-L. Park, K. B. Pauly, B. L. Daniel, and M. R. Cutkosky, “Autonomous real-time interventional scan plane control with a 3-D shape-sensing needle,” IEEE Trans. Med. Imag.  33, 2128–2138 (2014).

Pauly, K. B.

S. Elayaperumal, J. C. Plata, A. B. Holbrook, Y.-L. Park, K. B. Pauly, B. L. Daniel, and M. R. Cutkosky, “Autonomous real-time interventional scan plane control with a 3-D shape-sensing needle,” IEEE Trans. Med. Imag.  33, 2128–2138 (2014).

Plata, J. C.

S. Elayaperumal, J. C. Plata, A. B. Holbrook, Y.-L. Park, K. B. Pauly, B. L. Daniel, and M. R. Cutkosky, “Autonomous real-time interventional scan plane control with a 3-D shape-sensing needle,” IEEE Trans. Med. Imag.  33, 2128–2138 (2014).

Qian, J.

J. Qian, Q. Zheng, Y. Zhang, L.-Y. Shen, and Y.-N Zhang, “Deformation sensing and incremental shape reconstruction for intelligent colonoscopy,” Optics and Precision Engineering 12, 518–524 (2004).

Rose, G.

T. Bien, M. Li, Z. Salah, and G. Rose, “Electromagnetic tracking system with reduced distortion using quadratic excitation,” Int. J. CARS 9(2), 323–332 (2014).
[Crossref] [PubMed]

Ryu, S. C.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[PubMed]

Sadeghi-Tehrani, M.

R. Khadem, C. C. Yeh, M. Sadeghi-Tehrani, M. R. Bax, J. A. Johnson, J. N. Welch, E. P. Wilkinson, and R. Shahidi, “Comparative tracking error analysis of five different optical tracking systems,” Comput. Aided Surg. 5(2), 98–107 (2000).
[Crossref] [PubMed]

Salah, Z.

T. Bien, M. Li, Z. Salah, and G. Rose, “Electromagnetic tracking system with reduced distortion using quadratic excitation,” Int. J. CARS 9(2), 323–332 (2014).
[Crossref] [PubMed]

Savall, J.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[PubMed]

Shahidi, R.

R. Khadem, C. C. Yeh, M. Sadeghi-Tehrani, M. R. Bax, J. A. Johnson, J. N. Welch, E. P. Wilkinson, and R. Shahidi, “Comparative tracking error analysis of five different optical tracking systems,” Comput. Aided Surg. 5(2), 98–107 (2000).
[Crossref] [PubMed]

J. N. Welch, J. A. Johnson, M. R. Bax, R. Badr, and R. Shahidi, “A real-time freehand 3D ultrasound system for image-guided surgery,” in Ultrasonics Symposium,2000IEEE, 2000, pp. 1601–16042.
[Crossref]

Shen, L.-Y.

J. Qian, Q. Zheng, Y. Zhang, L.-Y. Shen, and Y.-N Zhang, “Deformation sensing and incremental shape reconstruction for intelligent colonoscopy,” Optics and Precision Engineering 12, 518–524 (2004).

Shin, M.

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[PubMed]

Standish, B. A.

Stoll, J. A.

P. M. Novotny, J. A. Stoll, N. V. Vasilyev, P. J. del Nido, P. E. Dupont, T. E. Zickler, and R. D. Howe, “GPU based real-time instrument tracking with three-dimensional ultrasound,” Med. Image Anal. 11(5), 458–464 (2007).
[Crossref] [PubMed]

Van Den Dobbelsteen, J.

K. Henken, D. Van Gerwen, J. Dankelman, and J. Van Den Dobbelsteen, “Accuracy of needle position measurements using fiber Bragg gratings,” Minim. Invasive Ther. Allied Technol. 21, 408–414 (2012).

K. Henken, D. V. Gerwen, J. Dankelman, and J. van den Dobbelsteen, “Accuracy of needle position measurements using fiber Bragg gratings,” Minim. Invasive Ther. Allied Technol. 21, 408–414 (2012).

Van Gerwen, D.

K. Henken, D. Van Gerwen, J. Dankelman, and J. Van Den Dobbelsteen, “Accuracy of needle position measurements using fiber Bragg gratings,” Minim. Invasive Ther. Allied Technol. 21, 408–414 (2012).

Vasilyev, N. V.

P. M. Novotny, J. A. Stoll, N. V. Vasilyev, P. J. del Nido, P. E. Dupont, T. E. Zickler, and R. D. Howe, “GPU based real-time instrument tracking with three-dimensional ultrasound,” Med. Image Anal. 11(5), 458–464 (2007).
[Crossref] [PubMed]

Welch, J. N.

R. Khadem, C. C. Yeh, M. Sadeghi-Tehrani, M. R. Bax, J. A. Johnson, J. N. Welch, E. P. Wilkinson, and R. Shahidi, “Comparative tracking error analysis of five different optical tracking systems,” Comput. Aided Surg. 5(2), 98–107 (2000).
[Crossref] [PubMed]

J. N. Welch, J. A. Johnson, M. R. Bax, R. Badr, and R. Shahidi, “A real-time freehand 3D ultrasound system for image-guided surgery,” in Ultrasonics Symposium,2000IEEE, 2000, pp. 1601–16042.
[Crossref]

Wilkinson, E. P.

R. Khadem, C. C. Yeh, M. Sadeghi-Tehrani, M. R. Bax, J. A. Johnson, J. N. Welch, E. P. Wilkinson, and R. Shahidi, “Comparative tracking error analysis of five different optical tracking systems,” Comput. Aided Surg. 5(2), 98–107 (2000).
[Crossref] [PubMed]

Wilson, E.

Z. Yaniv, E. Wilson, D. Lindisch, and K. Cleary, “Electromagnetic tracking in the clinical environment,” Med. Phys. 36(3), 876–892 (2009).
[Crossref] [PubMed]

Yang, V. X.

Yaniv, Z.

Z. Yaniv, E. Wilson, D. Lindisch, and K. Cleary, “Electromagnetic tracking in the clinical environment,” Med. Phys. 36(3), 876–892 (2009).
[Crossref] [PubMed]

Yeh, C. C.

R. Khadem, C. C. Yeh, M. Sadeghi-Tehrani, M. R. Bax, J. A. Johnson, J. N. Welch, E. P. Wilkinson, and R. Shahidi, “Comparative tracking error analysis of five different optical tracking systems,” Comput. Aided Surg. 5(2), 98–107 (2000).
[Crossref] [PubMed]

Zhang, Y.

J. Qian, Q. Zheng, Y. Zhang, L.-Y. Shen, and Y.-N Zhang, “Deformation sensing and incremental shape reconstruction for intelligent colonoscopy,” Optics and Precision Engineering 12, 518–524 (2004).

Zhang, Y.-N

J. Qian, Q. Zheng, Y. Zhang, L.-Y. Shen, and Y.-N Zhang, “Deformation sensing and incremental shape reconstruction for intelligent colonoscopy,” Optics and Precision Engineering 12, 518–524 (2004).

Zheng, Q.

J. Qian, Q. Zheng, Y. Zhang, L.-Y. Shen, and Y.-N Zhang, “Deformation sensing and incremental shape reconstruction for intelligent colonoscopy,” Optics and Precision Engineering 12, 518–524 (2004).

Zickler, T. E.

P. M. Novotny, J. A. Stoll, N. V. Vasilyev, P. J. del Nido, P. E. Dupont, T. E. Zickler, and R. D. Howe, “GPU based real-time instrument tracking with three-dimensional ultrasound,” Med. Image Anal. 11(5), 458–464 (2007).
[Crossref] [PubMed]

Appl. Opt. (1)

Comput. Aided Surg. (1)

R. Khadem, C. C. Yeh, M. Sadeghi-Tehrani, M. R. Bax, J. A. Johnson, J. N. Welch, E. P. Wilkinson, and R. Shahidi, “Comparative tracking error analysis of five different optical tracking systems,” Comput. Aided Surg. 5(2), 98–107 (2000).
[Crossref] [PubMed]

IEEE Trans. Med. Imag (1)

S. Elayaperumal, J. C. Plata, A. B. Holbrook, Y.-L. Park, K. B. Pauly, B. L. Daniel, and M. R. Cutkosky, “Autonomous real-time interventional scan plane control with a 3-D shape-sensing needle,” IEEE Trans. Med. Imag.  33, 2128–2138 (2014).

IEEE/ASME Trans. Mechatron. (1)

Y. L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall, R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions,” IEEE/ASME Trans. Mechatron. 15(6), 906–915 (2010).
[PubMed]

Int. J. CARS (2)

K. Mandal, F. Parent, S. Martel, R. Kashyap, and S. Kadoury, “Vessel-based registration of an optical shape sensing catheter for MR navigation,” Int. J. CARS 11(6), 1025–1034 (2016).
[Crossref] [PubMed]

T. Bien, M. Li, Z. Salah, and G. Rose, “Electromagnetic tracking system with reduced distortion using quadratic excitation,” Int. J. CARS 9(2), 323–332 (2014).
[Crossref] [PubMed]

Med. Image Anal. (1)

P. M. Novotny, J. A. Stoll, N. V. Vasilyev, P. J. del Nido, P. E. Dupont, T. E. Zickler, and R. D. Howe, “GPU based real-time instrument tracking with three-dimensional ultrasound,” Med. Image Anal. 11(5), 458–464 (2007).
[Crossref] [PubMed]

Med. Phys. (1)

Z. Yaniv, E. Wilson, D. Lindisch, and K. Cleary, “Electromagnetic tracking in the clinical environment,” Med. Phys. 36(3), 876–892 (2009).
[Crossref] [PubMed]

Minim. Invasive Ther. Allied Technol. (2)

K. Henken, D. Van Gerwen, J. Dankelman, and J. Van Den Dobbelsteen, “Accuracy of needle position measurements using fiber Bragg gratings,” Minim. Invasive Ther. Allied Technol. 21, 408–414 (2012).

K. Henken, D. V. Gerwen, J. Dankelman, and J. van den Dobbelsteen, “Accuracy of needle position measurements using fiber Bragg gratings,” Minim. Invasive Ther. Allied Technol. 21, 408–414 (2012).

Opt. Express (2)

Optics and Precision Engineering (1)

J. Qian, Q. Zheng, Y. Zhang, L.-Y. Shen, and Y.-N Zhang, “Deformation sensing and incremental shape reconstruction for intelligent colonoscopy,” Optics and Precision Engineering 12, 518–524 (2004).

Proc. SPIE (1)

K. K. Mandal, F. Parent, S. Martel, R. Kashyap, and S. Kadoury, “Calibration of a needle tracking device with fiber Bragg grating sensors,” Proc. SPIE 9415, 94150 (2015).

Sci. Rep. (1)

S. Loranger, M. Gagné, V. Lambin-Iezzi, and R. Kashyap, “Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre,” Sci. Rep. 5, 5 (2015).

Other (10)

M. E. Froggatt and R. G. Duncan, “Fiber optic position and/or shape sensing based on Rayleigh scatter,” Google Patents, 2010.

R. G. Duncan, M. E. Froggatt, S. T. Kreger, R. J. Seeley, D. K. Gifford, A. K. Sang, and M. S. Wolfe, “High-accuracy fiber-optic shape sensing,” SPIE Proc. 6530, 65301 (2007).

X. Yi, J. Qian, L. Shen, Y. Zhang, and Z. Zhang, “An Innovative 3D Colonoscope Shape Sensing Sensor Based on FBG Sensor Array,” in Information Acquisition,2007. ICIA '07. International Conference on, 2007, pp. 227–232.
[Crossref]

L. Zhang, J. Qian, L. Shen, and Y. Zhang, “FBG sensor devices for spatial shape detection of intelligent colonoscope,” in Robotics and Automation,2004. Proceedings. ICRA '04. 2004 IEEE International Conference on, pp. 834–840 (2004).

M. S. van der Heiden, K. R. Henken, L. K. Cheng, B. G. van den Bosch, R. van den Braber, J. Dankelman, and J. J. van den Dobbelsteen, “Accurate and efficient fiber optical shape sensor for MRI compatible minimally invasive instruments,” in SPIE Optical Systems Design, Barcelona, Spain, 2012.

R. J. Roesthuis, M. Kemp, and J. J. van den Dobbelsteen, S. Misra “Three-dimensional needle shape reconstruction using an array of fiber Bragg grating sensors,” IEEE/ASME Trans. Mechatron 19, 1115–1126 (2014).

W. Birkfellner, F. Watzinger, F. Wanschitz, G. Enislidis, M. Truppe, R. Ewers, and H. Bergmann, “Concepts and results in the development of a hybrid tracking system for CAS,” in Medical Image Computing and Computer-Assisted Interventation — MICCAI’98: First International Conference Cambridge, MA, USA, October 11–13, 1998 Proceedings, W. M. Wells, A. Colchester, and S. Delp, eds. (Springer, 1998), pp. 343–351.
[Crossref]

J. Stoll, P. Novotny, R. Howe, and P. Dupont, “Real-time 3D ultrasound-based servoing of a surgical instrument,” in Robotics and Automation,2006. ICRA 2006.Proceedings 2006 IEEE International Conference on, 2006, pp. 613–618.
[Crossref]

J. N. Welch, J. A. Johnson, M. R. Bax, R. Badr, and R. Shahidi, “A real-time freehand 3D ultrasound system for image-guided surgery,” in Ultrasonics Symposium,2000IEEE, 2000, pp. 1601–16042.
[Crossref]

N. D. Inc, (2016, 15 Janvier 2016). Medical Aurora - Medical. Available: http://www.ndigital.com/medical/products/aurora/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Qualitative illustration of the data process to use OFDR as a distributed strain sensor. a) represents de spectrum of the backscattering signal. b) is the intensity backscattered along the fiber, resulting from a FFT of a). c) is the spectrum of the selected region of interest define by the spatial resolution (Δx), resulting from an inverse FFT. d) is the crosscorrelation (applied in the time domain) obtain by comparing the spectra of the unstrained and strained FUT. e) represents the strain values at the determined (graph b) region of interest on the fiber.
Fig. 2
Fig. 2 a) Illustration of a deflected needle separated in i-segments. Each segment is defined within its own (xi’,yi’,zi’) frame can then be expressed in the laboratory frame (x,y,z). b) Schematic of a (xi’,yi’,zi’) frame cross-section showing the angle between xi’ and the rotational axis (αi), the distance between the center of the fiber triplet and the rotational axis (ri) as well as the angle between each fiber (φijk), Figure adapted from [24].
Fig. 3
Fig. 3 a) Schematic of the custom setup built to glue 3 fibers into a fiber triplet. b) Experimental setup used to induce a controlled deflection on the needle. c) Schematic representation of all the instruments used during measurements.
Fig. 4
Fig. 4 Characterization of each fiber triplets used for shape sensing. The full lines represent the measured value and the dashed lines are acting as error bars. The ideal (and aimed) configuration would be 120° between each fiber (from each core to the triplet center).
Fig. 5
Fig. 5 a - Needle shape reconstruction using the SMF-28 triplet. Each line corresponds to a specific hole circled in the tip displacement phantom (b). c – Precision reached (average RMS errors) on shape sensing as a function of the distance from the unstrained tip position. The error bars shown illustrate variation of the error from different holes.
Fig. 6
Fig. 6 Demonstration of the shape tracking efficiency on three different arbitrary needle shape, including one with 2 deflection points (red line). The dash lines represent the expected shape evaluated using millimetric paper and the full lines are resulting from shape reconsctruction using OFDR.
Fig. 7
Fig. 7 Backscattering amplitude as a function of the position along the fibers used measured for all three type of fiber. Underneath the graph, a scheme shows the positions where two different type of fibers are spliced together, explaining the abrupt peaks in the signal measured. The other peaks are due to reflections at fiber connectors (FC-APC).
Fig. 8
Fig. 8 Comparison of the precision reached for all three type of triplet used, which is SMF-28, Germanium-boron doped fiber (Redfurn) and UV exposed hydrogen loaded SMF-28.
Fig. 9
Fig. 9 Analysis of the spatial resolution impact regarding shape sensing precision.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Ψ d (β)= E 0 β 2i Δε(z) ε e 2iβz dz+r E 0 e 2iβz
ΔxΔε= λ 4n
tan( α i )= ε i13 sin( ϕ i12 )+ ε i12 sin( ϕ i13 ) ε i23 ε i13 cos( ϕ i12 )+ ε i12 cos( ϕ i13 )
r i = a i ε i12 ( σ i1 sin( α i + ϕ i12 ) σ i2 sin( α i ) )

Metrics