Abstract

We investigated changes in eye dimensions and retinal shape with degree of myopia, gender and race. There were 58 young adult emmetropes and myopes (range –1.25D to −8.25D), with 30 East-Asians (21 female/9 male), 23 Caucasians (16/7) and 5 South-Asians (1/4). Three-dimensional magnetic resonance imaging was undertaken with a 3.0 Tesla whole-body clinical MRI system using a 4.0 cm receive-only surface coil positioned over the eye. Automated methods determined eye length, width and height, and curve fitting procedures determined asymmetric and symmetric ellipsoid shapes to 75%, 55% and 35% of the retina. With myopia increase, eye dimensions increased in all directions such that increase in length was considerably greater than increases in width and height. Emmetropic retinas were oblate (steepening away from the vertex) but oblateness decreased with the increase in myopia, so that retinas were approximately spherical at 7 to 8D myopia. Asymmetry of eyes about the best fit visual axis was generally small, with small differences between the vertex radii of curvature and between asphericities in the axial and sagittal planes. Females had smaller eyes than males, with overall dimensions being about 0.5mm less for the former. Race appeared not to have a systematic effect.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Validation of a partial coherence interferometry method for estimating retinal shape

Pavan K. Verkicharla, Marwan Suheimat, James M. Pope, Farshid Sepehrband, Ankit Mathur, Katrina L. Schmid, and David A. Atchison
Biomed. Opt. Express 6(9) 3235-3247 (2015)

Three-dimensional OCT based guinea pig eye model: relating morphology and optics

Pablo Pérez-Merino, Miriam Velasco-Ocana, Eduardo Martinez-Enriquez, Luis Revuelta, Sally A McFadden, and Susana Marcos
Biomed. Opt. Express 8(4) 2173-2184 (2017)

Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects

Anne Seidemann, Frank Schaeffel, Antonio Guirao, Noberto Lopez-Gil, and Pablo Artal
J. Opt. Soc. Am. A 19(12) 2363-2373 (2002)

References

  • View by:
  • |
  • |
  • |

  1. B. A. Holden, M. Jong, S. Davis, D. Wilson, T. Fricke, and S. Resnikoff, “Nearly 1 billion myopes at risk of myopia-related sight-threatening conditions by 2050 - time to act now,” Clin. Exp. Optom. 98(6), 491–493 (2015).
    [Crossref] [PubMed]
  2. C. W. Pan, D. Ramamurthy, and S. M. Saw, “Worldwide prevalence and risk factors for myopia,” Ophthalmic Physiol. Opt. 32(1), 3–16 (2012).
    [Crossref] [PubMed]
  3. S. M. Saw, A. Shankar, S. B. Tan, H. Taylor, D. T. Tan, R. A. Stone, and T. Y. Wong, “A cohort study of incident myopia in Singaporean children,” Invest. Ophthalmol. Vis. Sci. 47(5), 1839–1844 (2006).
    [Crossref] [PubMed]
  4. S. M. Saw, G. Gazzard, E. C. Shih-Yen, and W. H. Chua, “Myopia and associated pathological complications,” Ophthalmic Physiol. Opt. 25(5), 381–391 (2005).
    [Crossref] [PubMed]
  5. Y. Timothy, “Retinal complications of high myopia,” The Hong Kong Medical Diary 12(9), 18–20 (2007).
  6. P. K. Verkicharla, K. Ohno-Matsui, and S. M. Saw, “Current and predicted demographics of high myopia and an update of its associated pathological changes,” Ophthalmic Physiol. Opt. 35(5), 465–475 (2015).
    [Crossref] [PubMed]
  7. A. Wilson and G. Woo, “A review of the prevalence and causes of myopia,” Singapore Med. J. 30(5), 479–484 (1989).
  8. M. Feldkämper and F. Schaeffel, “Interactions of genes and environment in myopia,” Dev. Ophthalmol. 37, 34–49 (2003).
    [Crossref] [PubMed]
  9. N. Charman, “Myopia: its prevalence, origins and control,” Ophthalmic Physiol. Opt. 31(1), 3–6 (2011).
    [Crossref] [PubMed]
  10. R. A. Stone and D. I. Flitcroft, “Ocular shape and myopia,” Ann. Acad. Med. Singapore 33(1), 7–15 (2004).
    [PubMed]
  11. M. C. M. Dunne, D. A. Barnes, and R. A. Clement, “A model for retinal shape changes in ametropia,” Ophthalmic Physiol. Opt. 7(2), 159–160 (1987).
    [Crossref] [PubMed]
  12. M. C. M. Dunne, “A computing scheme for determination of retinal contour from peripheral refraction, keratometry and A-scan ultrasonography,” Ophthalmic Physiol. Opt. 15(2), 133–143 (1995).
    [Crossref] [PubMed]
  13. N. S. Logan, B. Gilmartin, C. F. Wildsoet, and M. C. M. Dunne, “Posterior retinal contour in adult human anisomyopia,” Invest. Ophthalmol. Vis. Sci. 45(7), 2152–2162 (2004).
    [Crossref] [PubMed]
  14. G. F. Schmid, “Axial and peripheral eye length measured with optical low coherence reflectometry,” J. Biomed. Opt. 8(4), 655–662 (2003).
    [Crossref] [PubMed]
  15. G. F. Schmid, “Variability of retinal steepness at the posterior pole in children 7-15 years of age,” Curr. Eye Res. 27(1), 61–68 (2003).
    [Crossref] [PubMed]
  16. G. F. Schmid, “Association between retinal steepness and central myopic shift in children,” Optom. Vis. Sci. 88(6), 684–690 (2011).
    [Crossref] [PubMed]
  17. E. A. H. Mallen and P. Kashyap, “Technical note: Measurement of retinal contour and supine axial length using the Zeiss IOLMaster,” Ophthalmic Physiol. Opt. 27(4), 404–411 (2007).
    [Crossref] [PubMed]
  18. D. A. Atchison and W. N. Charman, “Can partial coherence interferometry be used to determine retinal shape?” Optom. Vis. Sci. 88(5), E601–E607 (2011).
    [Crossref] [PubMed]
  19. A. Ehsaei, C. M. Chisholm, I. E. Pacey, and E. A. H. Mallen, “Off-axis partial coherence interferometry in myopes and emmetropes,” Ophthalmic Physiol. Opt. 33(1), 26–34 (2013).
    [Crossref] [PubMed]
  20. M. Faria-Ribeiro, A. Queirós, D. Lopes-Ferreira, J. Jorge, and J. M. González-Méijome, “Peripheral refraction and retinal contour in stable and progressive myopia,” Optom. Vis. Sci. 90(1), 9–15 (2013).
    [Crossref] [PubMed]
  21. X. Ding, D. Wang, Q. Huang, J. Zhang, J. Chang, and M. He, “Distribution and heritability of peripheral eye length in Chinese children and adolescents: the Guangzhou Twin Eye Study,” Invest. Ophthalmol. Vis. Sci. 54(2), 1048–1053 (2013).
    [Crossref] [PubMed]
  22. P. K. Verkicharla, M. Suheimat, J. M. Pope, F. Sepehrband, A. Mathur, K. L. Schmid, and D. A. Atchison, “Validation of a partial coherence interferometry method for estimating retinal shape,” Biomed. Opt. Express 6(9), 3235–3247 (2015).
    [Crossref] [PubMed]
  23. P. K. Verkicharla, M. Suheimat, K. L. Schmid, and D. A. Atchison, “Peripheral refraction, peripheral eye length and retinal shape in myopia,” Optom. Vis. Sci. 93(9), 1072–1078 (2016).
    [Crossref] [PubMed]
  24. P. K. Verkicharla, M. Suheimat, K. L. Schmid, and D. A. Atchison, “Differences in retinal shape between East Asian and Caucasian eyes,” Ophthalmic Physiol. Opt., doi:
    [Crossref]
  25. A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
    [Crossref] [PubMed]
  26. A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior eye shape measurement with retinal OCT compared to MRI,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT196 (2016).
    [Crossref] [PubMed]
  27. J. F. Chen, A. E. Elsner, S. A. Burns, R. M. Hansen, P. L. Lou, K. K. Kwong, and A. B. Fulton, “The effect of eye shape on retinal responses,” Clin. Vis. Sci. 7(6), 521–530 (1992).
  28. D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
    [Crossref] [PubMed]
  29. B. Gilmartin, M. Nagra, and N. S. Logan, “Shape of the posterior vitreous chamber in human emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 54(12), 7240–7251 (2013).
    [Crossref] [PubMed]
  30. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
    [Crossref] [PubMed]
  31. P. K. Verkicharla, A. Mathur, E. A. H. Mallen, J. M. Pope, and D. A. Atchison, “Eye shape and retinal shape, and their relation to peripheral refraction,” Ophthalmic Physiol. Opt. 32(3), 184–199 (2012).
    [Crossref] [PubMed]
  32. D. A. Atchison, “Optical models for human myopic eyes,” Vision Res. 46(14), 2236–2250 (2006).
    [Crossref] [PubMed]
  33. D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye shape in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 45(10), 3380–3386 (2004).
    [Crossref] [PubMed]
  34. D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
    [Crossref] [PubMed]
  35. D. A. Berntsen, D. O. Mutti, and K. Zadnik, “Study of theories about myopia progression (STAMP) design and baseline data,” Optom. Vis. Sci. 87(11), 823–832 (2010).
    [Crossref] [PubMed]

2016 (2)

P. K. Verkicharla, M. Suheimat, K. L. Schmid, and D. A. Atchison, “Peripheral refraction, peripheral eye length and retinal shape in myopia,” Optom. Vis. Sci. 93(9), 1072–1078 (2016).
[Crossref] [PubMed]

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior eye shape measurement with retinal OCT compared to MRI,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT196 (2016).
[Crossref] [PubMed]

2015 (3)

P. K. Verkicharla, M. Suheimat, J. M. Pope, F. Sepehrband, A. Mathur, K. L. Schmid, and D. A. Atchison, “Validation of a partial coherence interferometry method for estimating retinal shape,” Biomed. Opt. Express 6(9), 3235–3247 (2015).
[Crossref] [PubMed]

B. A. Holden, M. Jong, S. Davis, D. Wilson, T. Fricke, and S. Resnikoff, “Nearly 1 billion myopes at risk of myopia-related sight-threatening conditions by 2050 - time to act now,” Clin. Exp. Optom. 98(6), 491–493 (2015).
[Crossref] [PubMed]

P. K. Verkicharla, K. Ohno-Matsui, and S. M. Saw, “Current and predicted demographics of high myopia and an update of its associated pathological changes,” Ophthalmic Physiol. Opt. 35(5), 465–475 (2015).
[Crossref] [PubMed]

2013 (5)

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

A. Ehsaei, C. M. Chisholm, I. E. Pacey, and E. A. H. Mallen, “Off-axis partial coherence interferometry in myopes and emmetropes,” Ophthalmic Physiol. Opt. 33(1), 26–34 (2013).
[Crossref] [PubMed]

M. Faria-Ribeiro, A. Queirós, D. Lopes-Ferreira, J. Jorge, and J. M. González-Méijome, “Peripheral refraction and retinal contour in stable and progressive myopia,” Optom. Vis. Sci. 90(1), 9–15 (2013).
[Crossref] [PubMed]

X. Ding, D. Wang, Q. Huang, J. Zhang, J. Chang, and M. He, “Distribution and heritability of peripheral eye length in Chinese children and adolescents: the Guangzhou Twin Eye Study,” Invest. Ophthalmol. Vis. Sci. 54(2), 1048–1053 (2013).
[Crossref] [PubMed]

B. Gilmartin, M. Nagra, and N. S. Logan, “Shape of the posterior vitreous chamber in human emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 54(12), 7240–7251 (2013).
[Crossref] [PubMed]

2012 (2)

P. K. Verkicharla, A. Mathur, E. A. H. Mallen, J. M. Pope, and D. A. Atchison, “Eye shape and retinal shape, and their relation to peripheral refraction,” Ophthalmic Physiol. Opt. 32(3), 184–199 (2012).
[Crossref] [PubMed]

C. W. Pan, D. Ramamurthy, and S. M. Saw, “Worldwide prevalence and risk factors for myopia,” Ophthalmic Physiol. Opt. 32(1), 3–16 (2012).
[Crossref] [PubMed]

2011 (3)

N. Charman, “Myopia: its prevalence, origins and control,” Ophthalmic Physiol. Opt. 31(1), 3–6 (2011).
[Crossref] [PubMed]

G. F. Schmid, “Association between retinal steepness and central myopic shift in children,” Optom. Vis. Sci. 88(6), 684–690 (2011).
[Crossref] [PubMed]

D. A. Atchison and W. N. Charman, “Can partial coherence interferometry be used to determine retinal shape?” Optom. Vis. Sci. 88(5), E601–E607 (2011).
[Crossref] [PubMed]

2010 (1)

D. A. Berntsen, D. O. Mutti, and K. Zadnik, “Study of theories about myopia progression (STAMP) design and baseline data,” Optom. Vis. Sci. 87(11), 823–832 (2010).
[Crossref] [PubMed]

2008 (1)

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

2007 (2)

E. A. H. Mallen and P. Kashyap, “Technical note: Measurement of retinal contour and supine axial length using the Zeiss IOLMaster,” Ophthalmic Physiol. Opt. 27(4), 404–411 (2007).
[Crossref] [PubMed]

Y. Timothy, “Retinal complications of high myopia,” The Hong Kong Medical Diary 12(9), 18–20 (2007).

2006 (3)

S. M. Saw, A. Shankar, S. B. Tan, H. Taylor, D. T. Tan, R. A. Stone, and T. Y. Wong, “A cohort study of incident myopia in Singaporean children,” Invest. Ophthalmol. Vis. Sci. 47(5), 1839–1844 (2006).
[Crossref] [PubMed]

D. A. Atchison, “Optical models for human myopic eyes,” Vision Res. 46(14), 2236–2250 (2006).
[Crossref] [PubMed]

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
[Crossref] [PubMed]

2005 (2)

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[Crossref] [PubMed]

S. M. Saw, G. Gazzard, E. C. Shih-Yen, and W. H. Chua, “Myopia and associated pathological complications,” Ophthalmic Physiol. Opt. 25(5), 381–391 (2005).
[Crossref] [PubMed]

2004 (3)

R. A. Stone and D. I. Flitcroft, “Ocular shape and myopia,” Ann. Acad. Med. Singapore 33(1), 7–15 (2004).
[PubMed]

N. S. Logan, B. Gilmartin, C. F. Wildsoet, and M. C. M. Dunne, “Posterior retinal contour in adult human anisomyopia,” Invest. Ophthalmol. Vis. Sci. 45(7), 2152–2162 (2004).
[Crossref] [PubMed]

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye shape in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 45(10), 3380–3386 (2004).
[Crossref] [PubMed]

2003 (3)

G. F. Schmid, “Axial and peripheral eye length measured with optical low coherence reflectometry,” J. Biomed. Opt. 8(4), 655–662 (2003).
[Crossref] [PubMed]

G. F. Schmid, “Variability of retinal steepness at the posterior pole in children 7-15 years of age,” Curr. Eye Res. 27(1), 61–68 (2003).
[Crossref] [PubMed]

M. Feldkämper and F. Schaeffel, “Interactions of genes and environment in myopia,” Dev. Ophthalmol. 37, 34–49 (2003).
[Crossref] [PubMed]

1995 (1)

M. C. M. Dunne, “A computing scheme for determination of retinal contour from peripheral refraction, keratometry and A-scan ultrasonography,” Ophthalmic Physiol. Opt. 15(2), 133–143 (1995).
[Crossref] [PubMed]

1992 (1)

J. F. Chen, A. E. Elsner, S. A. Burns, R. M. Hansen, P. L. Lou, K. K. Kwong, and A. B. Fulton, “The effect of eye shape on retinal responses,” Clin. Vis. Sci. 7(6), 521–530 (1992).

1989 (1)

A. Wilson and G. Woo, “A review of the prevalence and causes of myopia,” Singapore Med. J. 30(5), 479–484 (1989).

1987 (1)

M. C. M. Dunne, D. A. Barnes, and R. A. Clement, “A model for retinal shape changes in ametropia,” Ophthalmic Physiol. Opt. 7(2), 159–160 (1987).
[Crossref] [PubMed]

Atchison, D. A.

P. K. Verkicharla, M. Suheimat, K. L. Schmid, and D. A. Atchison, “Peripheral refraction, peripheral eye length and retinal shape in myopia,” Optom. Vis. Sci. 93(9), 1072–1078 (2016).
[Crossref] [PubMed]

P. K. Verkicharla, M. Suheimat, J. M. Pope, F. Sepehrband, A. Mathur, K. L. Schmid, and D. A. Atchison, “Validation of a partial coherence interferometry method for estimating retinal shape,” Biomed. Opt. Express 6(9), 3235–3247 (2015).
[Crossref] [PubMed]

P. K. Verkicharla, A. Mathur, E. A. H. Mallen, J. M. Pope, and D. A. Atchison, “Eye shape and retinal shape, and their relation to peripheral refraction,” Ophthalmic Physiol. Opt. 32(3), 184–199 (2012).
[Crossref] [PubMed]

D. A. Atchison and W. N. Charman, “Can partial coherence interferometry be used to determine retinal shape?” Optom. Vis. Sci. 88(5), E601–E607 (2011).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
[Crossref] [PubMed]

D. A. Atchison, “Optical models for human myopic eyes,” Vision Res. 46(14), 2236–2250 (2006).
[Crossref] [PubMed]

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[Crossref] [PubMed]

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye shape in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 45(10), 3380–3386 (2004).
[Crossref] [PubMed]

P. K. Verkicharla, M. Suheimat, K. L. Schmid, and D. A. Atchison, “Differences in retinal shape between East Asian and Caucasian eyes,” Ophthalmic Physiol. Opt., doi:
[Crossref]

Barnes, D. A.

M. C. M. Dunne, D. A. Barnes, and R. A. Clement, “A model for retinal shape changes in ametropia,” Ophthalmic Physiol. Opt. 7(2), 159–160 (1987).
[Crossref] [PubMed]

Berntsen, D. A.

D. A. Berntsen, D. O. Mutti, and K. Zadnik, “Study of theories about myopia progression (STAMP) design and baseline data,” Optom. Vis. Sci. 87(11), 823–832 (2010).
[Crossref] [PubMed]

Burns, S. A.

J. F. Chen, A. E. Elsner, S. A. Burns, R. M. Hansen, P. L. Lou, K. K. Kwong, and A. B. Fulton, “The effect of eye shape on retinal responses,” Clin. Vis. Sci. 7(6), 521–530 (1992).

Chang, J.

X. Ding, D. Wang, Q. Huang, J. Zhang, J. Chang, and M. He, “Distribution and heritability of peripheral eye length in Chinese children and adolescents: the Guangzhou Twin Eye Study,” Invest. Ophthalmol. Vis. Sci. 54(2), 1048–1053 (2013).
[Crossref] [PubMed]

Charman, N.

N. Charman, “Myopia: its prevalence, origins and control,” Ophthalmic Physiol. Opt. 31(1), 3–6 (2011).
[Crossref] [PubMed]

Charman, W. N.

D. A. Atchison and W. N. Charman, “Can partial coherence interferometry be used to determine retinal shape?” Optom. Vis. Sci. 88(5), E601–E607 (2011).
[Crossref] [PubMed]

Chen, C.

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior eye shape measurement with retinal OCT compared to MRI,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT196 (2016).
[Crossref] [PubMed]

Chen, J. F.

J. F. Chen, A. E. Elsner, S. A. Burns, R. M. Hansen, P. L. Lou, K. K. Kwong, and A. B. Fulton, “The effect of eye shape on retinal responses,” Clin. Vis. Sci. 7(6), 521–530 (1992).

Cheng, C. Y.

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior eye shape measurement with retinal OCT compared to MRI,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT196 (2016).
[Crossref] [PubMed]

Cheung, C. Y.

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior eye shape measurement with retinal OCT compared to MRI,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT196 (2016).
[Crossref] [PubMed]

Chisholm, C. M.

A. Ehsaei, C. M. Chisholm, I. E. Pacey, and E. A. H. Mallen, “Off-axis partial coherence interferometry in myopes and emmetropes,” Ophthalmic Physiol. Opt. 33(1), 26–34 (2013).
[Crossref] [PubMed]

Chiu, S. J.

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

Chua, W. H.

S. M. Saw, G. Gazzard, E. C. Shih-Yen, and W. H. Chua, “Myopia and associated pathological complications,” Ophthalmic Physiol. Opt. 25(5), 381–391 (2005).
[Crossref] [PubMed]

Clement, R. A.

M. C. M. Dunne, D. A. Barnes, and R. A. Clement, “A model for retinal shape changes in ametropia,” Ophthalmic Physiol. Opt. 7(2), 159–160 (1987).
[Crossref] [PubMed]

Davis, S.

B. A. Holden, M. Jong, S. Davis, D. Wilson, T. Fricke, and S. Resnikoff, “Nearly 1 billion myopes at risk of myopia-related sight-threatening conditions by 2050 - time to act now,” Clin. Exp. Optom. 98(6), 491–493 (2015).
[Crossref] [PubMed]

Ding, X.

X. Ding, D. Wang, Q. Huang, J. Zhang, J. Chang, and M. He, “Distribution and heritability of peripheral eye length in Chinese children and adolescents: the Guangzhou Twin Eye Study,” Invest. Ophthalmol. Vis. Sci. 54(2), 1048–1053 (2013).
[Crossref] [PubMed]

Dunne, M. C. M.

N. S. Logan, B. Gilmartin, C. F. Wildsoet, and M. C. M. Dunne, “Posterior retinal contour in adult human anisomyopia,” Invest. Ophthalmol. Vis. Sci. 45(7), 2152–2162 (2004).
[Crossref] [PubMed]

M. C. M. Dunne, “A computing scheme for determination of retinal contour from peripheral refraction, keratometry and A-scan ultrasonography,” Ophthalmic Physiol. Opt. 15(2), 133–143 (1995).
[Crossref] [PubMed]

M. C. M. Dunne, D. A. Barnes, and R. A. Clement, “A model for retinal shape changes in ametropia,” Ophthalmic Physiol. Opt. 7(2), 159–160 (1987).
[Crossref] [PubMed]

Ehsaei, A.

A. Ehsaei, C. M. Chisholm, I. E. Pacey, and E. A. H. Mallen, “Off-axis partial coherence interferometry in myopes and emmetropes,” Ophthalmic Physiol. Opt. 33(1), 26–34 (2013).
[Crossref] [PubMed]

El-Dairi, M. A.

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

Elsner, A. E.

J. F. Chen, A. E. Elsner, S. A. Burns, R. M. Hansen, P. L. Lou, K. K. Kwong, and A. B. Fulton, “The effect of eye shape on retinal responses,” Clin. Vis. Sci. 7(6), 521–530 (1992).

Faria-Ribeiro, M.

M. Faria-Ribeiro, A. Queirós, D. Lopes-Ferreira, J. Jorge, and J. M. González-Méijome, “Peripheral refraction and retinal contour in stable and progressive myopia,” Optom. Vis. Sci. 90(1), 9–15 (2013).
[Crossref] [PubMed]

Farsiu, S.

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior eye shape measurement with retinal OCT compared to MRI,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT196 (2016).
[Crossref] [PubMed]

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

Feldkämper, M.

M. Feldkämper and F. Schaeffel, “Interactions of genes and environment in myopia,” Dev. Ophthalmol. 37, 34–49 (2003).
[Crossref] [PubMed]

Flitcroft, D. I.

R. A. Stone and D. I. Flitcroft, “Ocular shape and myopia,” Ann. Acad. Med. Singapore 33(1), 7–15 (2004).
[PubMed]

Fricke, T.

B. A. Holden, M. Jong, S. Davis, D. Wilson, T. Fricke, and S. Resnikoff, “Nearly 1 billion myopes at risk of myopia-related sight-threatening conditions by 2050 - time to act now,” Clin. Exp. Optom. 98(6), 491–493 (2015).
[Crossref] [PubMed]

Fulton, A. B.

J. F. Chen, A. E. Elsner, S. A. Burns, R. M. Hansen, P. L. Lou, K. K. Kwong, and A. B. Fulton, “The effect of eye shape on retinal responses,” Clin. Vis. Sci. 7(6), 521–530 (1992).

Gazzard, G.

S. M. Saw, G. Gazzard, E. C. Shih-Yen, and W. H. Chua, “Myopia and associated pathological complications,” Ophthalmic Physiol. Opt. 25(5), 381–391 (2005).
[Crossref] [PubMed]

Gilmartin, B.

B. Gilmartin, M. Nagra, and N. S. Logan, “Shape of the posterior vitreous chamber in human emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 54(12), 7240–7251 (2013).
[Crossref] [PubMed]

N. S. Logan, B. Gilmartin, C. F. Wildsoet, and M. C. M. Dunne, “Posterior retinal contour in adult human anisomyopia,” Invest. Ophthalmol. Vis. Sci. 45(7), 2152–2162 (2004).
[Crossref] [PubMed]

González-Méijome, J. M.

M. Faria-Ribeiro, A. Queirós, D. Lopes-Ferreira, J. Jorge, and J. M. González-Méijome, “Peripheral refraction and retinal contour in stable and progressive myopia,” Optom. Vis. Sci. 90(1), 9–15 (2013).
[Crossref] [PubMed]

Hansen, R. M.

J. F. Chen, A. E. Elsner, S. A. Burns, R. M. Hansen, P. L. Lou, K. K. Kwong, and A. B. Fulton, “The effect of eye shape on retinal responses,” Clin. Vis. Sci. 7(6), 521–530 (1992).

He, M.

X. Ding, D. Wang, Q. Huang, J. Zhang, J. Chang, and M. He, “Distribution and heritability of peripheral eye length in Chinese children and adolescents: the Guangzhou Twin Eye Study,” Invest. Ophthalmol. Vis. Sci. 54(2), 1048–1053 (2013).
[Crossref] [PubMed]

Hilal, S.

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior eye shape measurement with retinal OCT compared to MRI,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT196 (2016).
[Crossref] [PubMed]

Holden, B. A.

B. A. Holden, M. Jong, S. Davis, D. Wilson, T. Fricke, and S. Resnikoff, “Nearly 1 billion myopes at risk of myopia-related sight-threatening conditions by 2050 - time to act now,” Clin. Exp. Optom. 98(6), 491–493 (2015).
[Crossref] [PubMed]

Huang, Q.

X. Ding, D. Wang, Q. Huang, J. Zhang, J. Chang, and M. He, “Distribution and heritability of peripheral eye length in Chinese children and adolescents: the Guangzhou Twin Eye Study,” Invest. Ophthalmol. Vis. Sci. 54(2), 1048–1053 (2013).
[Crossref] [PubMed]

Ikram, M. K.

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior eye shape measurement with retinal OCT compared to MRI,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT196 (2016).
[Crossref] [PubMed]

Izatt, J. A.

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior eye shape measurement with retinal OCT compared to MRI,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT196 (2016).
[Crossref] [PubMed]

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

Jones, C. E.

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[Crossref] [PubMed]

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye shape in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 45(10), 3380–3386 (2004).
[Crossref] [PubMed]

Jong, M.

B. A. Holden, M. Jong, S. Davis, D. Wilson, T. Fricke, and S. Resnikoff, “Nearly 1 billion myopes at risk of myopia-related sight-threatening conditions by 2050 - time to act now,” Clin. Exp. Optom. 98(6), 491–493 (2015).
[Crossref] [PubMed]

Jorge, J.

M. Faria-Ribeiro, A. Queirós, D. Lopes-Ferreira, J. Jorge, and J. M. González-Méijome, “Peripheral refraction and retinal contour in stable and progressive myopia,” Optom. Vis. Sci. 90(1), 9–15 (2013).
[Crossref] [PubMed]

Kashyap, P.

E. A. H. Mallen and P. Kashyap, “Technical note: Measurement of retinal contour and supine axial length using the Zeiss IOLMaster,” Ophthalmic Physiol. Opt. 27(4), 404–411 (2007).
[Crossref] [PubMed]

Kasthurirangan, S.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

Kuo, A. N.

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior eye shape measurement with retinal OCT compared to MRI,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT196 (2016).
[Crossref] [PubMed]

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

Kwong, K. K.

J. F. Chen, A. E. Elsner, S. A. Burns, R. M. Hansen, P. L. Lou, K. K. Kwong, and A. B. Fulton, “The effect of eye shape on retinal responses,” Clin. Vis. Sci. 7(6), 521–530 (1992).

Logan, N. S.

B. Gilmartin, M. Nagra, and N. S. Logan, “Shape of the posterior vitreous chamber in human emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 54(12), 7240–7251 (2013).
[Crossref] [PubMed]

N. S. Logan, B. Gilmartin, C. F. Wildsoet, and M. C. M. Dunne, “Posterior retinal contour in adult human anisomyopia,” Invest. Ophthalmol. Vis. Sci. 45(7), 2152–2162 (2004).
[Crossref] [PubMed]

Lopes-Ferreira, D.

M. Faria-Ribeiro, A. Queirós, D. Lopes-Ferreira, J. Jorge, and J. M. González-Méijome, “Peripheral refraction and retinal contour in stable and progressive myopia,” Optom. Vis. Sci. 90(1), 9–15 (2013).
[Crossref] [PubMed]

Lou, P. L.

J. F. Chen, A. E. Elsner, S. A. Burns, R. M. Hansen, P. L. Lou, K. K. Kwong, and A. B. Fulton, “The effect of eye shape on retinal responses,” Clin. Vis. Sci. 7(6), 521–530 (1992).

Mallen, E. A. H.

A. Ehsaei, C. M. Chisholm, I. E. Pacey, and E. A. H. Mallen, “Off-axis partial coherence interferometry in myopes and emmetropes,” Ophthalmic Physiol. Opt. 33(1), 26–34 (2013).
[Crossref] [PubMed]

P. K. Verkicharla, A. Mathur, E. A. H. Mallen, J. M. Pope, and D. A. Atchison, “Eye shape and retinal shape, and their relation to peripheral refraction,” Ophthalmic Physiol. Opt. 32(3), 184–199 (2012).
[Crossref] [PubMed]

E. A. H. Mallen and P. Kashyap, “Technical note: Measurement of retinal contour and supine axial length using the Zeiss IOLMaster,” Ophthalmic Physiol. Opt. 27(4), 404–411 (2007).
[Crossref] [PubMed]

Markwell, E. L.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

Mathur, A.

P. K. Verkicharla, M. Suheimat, J. M. Pope, F. Sepehrband, A. Mathur, K. L. Schmid, and D. A. Atchison, “Validation of a partial coherence interferometry method for estimating retinal shape,” Biomed. Opt. Express 6(9), 3235–3247 (2015).
[Crossref] [PubMed]

P. K. Verkicharla, A. Mathur, E. A. H. Mallen, J. M. Pope, and D. A. Atchison, “Eye shape and retinal shape, and their relation to peripheral refraction,” Ophthalmic Physiol. Opt. 32(3), 184–199 (2012).
[Crossref] [PubMed]

McNabb, R. P.

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior eye shape measurement with retinal OCT compared to MRI,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT196 (2016).
[Crossref] [PubMed]

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

Mutti, D. O.

D. A. Berntsen, D. O. Mutti, and K. Zadnik, “Study of theories about myopia progression (STAMP) design and baseline data,” Optom. Vis. Sci. 87(11), 823–832 (2010).
[Crossref] [PubMed]

Nagra, M.

B. Gilmartin, M. Nagra, and N. S. Logan, “Shape of the posterior vitreous chamber in human emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 54(12), 7240–7251 (2013).
[Crossref] [PubMed]

Ohno-Matsui, K.

P. K. Verkicharla, K. Ohno-Matsui, and S. M. Saw, “Current and predicted demographics of high myopia and an update of its associated pathological changes,” Ophthalmic Physiol. Opt. 35(5), 465–475 (2015).
[Crossref] [PubMed]

Pacey, I. E.

A. Ehsaei, C. M. Chisholm, I. E. Pacey, and E. A. H. Mallen, “Off-axis partial coherence interferometry in myopes and emmetropes,” Ophthalmic Physiol. Opt. 33(1), 26–34 (2013).
[Crossref] [PubMed]

Pan, C. W.

C. W. Pan, D. Ramamurthy, and S. M. Saw, “Worldwide prevalence and risk factors for myopia,” Ophthalmic Physiol. Opt. 32(1), 3–16 (2012).
[Crossref] [PubMed]

Pope, J. M.

P. K. Verkicharla, M. Suheimat, J. M. Pope, F. Sepehrband, A. Mathur, K. L. Schmid, and D. A. Atchison, “Validation of a partial coherence interferometry method for estimating retinal shape,” Biomed. Opt. Express 6(9), 3235–3247 (2015).
[Crossref] [PubMed]

P. K. Verkicharla, A. Mathur, E. A. H. Mallen, J. M. Pope, and D. A. Atchison, “Eye shape and retinal shape, and their relation to peripheral refraction,” Ophthalmic Physiol. Opt. 32(3), 184–199 (2012).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[Crossref] [PubMed]

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye shape in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 45(10), 3380–3386 (2004).
[Crossref] [PubMed]

Pritchard, N.

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
[Crossref] [PubMed]

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[Crossref] [PubMed]

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye shape in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 45(10), 3380–3386 (2004).
[Crossref] [PubMed]

Queirós, A.

M. Faria-Ribeiro, A. Queirós, D. Lopes-Ferreira, J. Jorge, and J. M. González-Méijome, “Peripheral refraction and retinal contour in stable and progressive myopia,” Optom. Vis. Sci. 90(1), 9–15 (2013).
[Crossref] [PubMed]

Ramamurthy, D.

C. W. Pan, D. Ramamurthy, and S. M. Saw, “Worldwide prevalence and risk factors for myopia,” Ophthalmic Physiol. Opt. 32(1), 3–16 (2012).
[Crossref] [PubMed]

Resnikoff, S.

B. A. Holden, M. Jong, S. Davis, D. Wilson, T. Fricke, and S. Resnikoff, “Nearly 1 billion myopes at risk of myopia-related sight-threatening conditions by 2050 - time to act now,” Clin. Exp. Optom. 98(6), 491–493 (2015).
[Crossref] [PubMed]

Riley, R. A.

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye shape in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 45(10), 3380–3386 (2004).
[Crossref] [PubMed]

Saw, S. M.

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior eye shape measurement with retinal OCT compared to MRI,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT196 (2016).
[Crossref] [PubMed]

P. K. Verkicharla, K. Ohno-Matsui, and S. M. Saw, “Current and predicted demographics of high myopia and an update of its associated pathological changes,” Ophthalmic Physiol. Opt. 35(5), 465–475 (2015).
[Crossref] [PubMed]

C. W. Pan, D. Ramamurthy, and S. M. Saw, “Worldwide prevalence and risk factors for myopia,” Ophthalmic Physiol. Opt. 32(1), 3–16 (2012).
[Crossref] [PubMed]

S. M. Saw, A. Shankar, S. B. Tan, H. Taylor, D. T. Tan, R. A. Stone, and T. Y. Wong, “A cohort study of incident myopia in Singaporean children,” Invest. Ophthalmol. Vis. Sci. 47(5), 1839–1844 (2006).
[Crossref] [PubMed]

S. M. Saw, G. Gazzard, E. C. Shih-Yen, and W. H. Chua, “Myopia and associated pathological complications,” Ophthalmic Physiol. Opt. 25(5), 381–391 (2005).
[Crossref] [PubMed]

Schaeffel, F.

M. Feldkämper and F. Schaeffel, “Interactions of genes and environment in myopia,” Dev. Ophthalmol. 37, 34–49 (2003).
[Crossref] [PubMed]

Schmid, G. F.

G. F. Schmid, “Association between retinal steepness and central myopic shift in children,” Optom. Vis. Sci. 88(6), 684–690 (2011).
[Crossref] [PubMed]

G. F. Schmid, “Variability of retinal steepness at the posterior pole in children 7-15 years of age,” Curr. Eye Res. 27(1), 61–68 (2003).
[Crossref] [PubMed]

G. F. Schmid, “Axial and peripheral eye length measured with optical low coherence reflectometry,” J. Biomed. Opt. 8(4), 655–662 (2003).
[Crossref] [PubMed]

Schmid, K. L.

P. K. Verkicharla, M. Suheimat, K. L. Schmid, and D. A. Atchison, “Peripheral refraction, peripheral eye length and retinal shape in myopia,” Optom. Vis. Sci. 93(9), 1072–1078 (2016).
[Crossref] [PubMed]

P. K. Verkicharla, M. Suheimat, J. M. Pope, F. Sepehrband, A. Mathur, K. L. Schmid, and D. A. Atchison, “Validation of a partial coherence interferometry method for estimating retinal shape,” Biomed. Opt. Express 6(9), 3235–3247 (2015).
[Crossref] [PubMed]

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
[Crossref] [PubMed]

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[Crossref] [PubMed]

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye shape in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 45(10), 3380–3386 (2004).
[Crossref] [PubMed]

P. K. Verkicharla, M. Suheimat, K. L. Schmid, and D. A. Atchison, “Differences in retinal shape between East Asian and Caucasian eyes,” Ophthalmic Physiol. Opt., doi:
[Crossref]

Scott, D. H.

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[Crossref] [PubMed]

Sepehrband, F.

Shankar, A.

S. M. Saw, A. Shankar, S. B. Tan, H. Taylor, D. T. Tan, R. A. Stone, and T. Y. Wong, “A cohort study of incident myopia in Singaporean children,” Invest. Ophthalmol. Vis. Sci. 47(5), 1839–1844 (2006).
[Crossref] [PubMed]

Shih-Yen, E. C.

S. M. Saw, G. Gazzard, E. C. Shih-Yen, and W. H. Chua, “Myopia and associated pathological complications,” Ophthalmic Physiol. Opt. 25(5), 381–391 (2005).
[Crossref] [PubMed]

Stone, R. A.

S. M. Saw, A. Shankar, S. B. Tan, H. Taylor, D. T. Tan, R. A. Stone, and T. Y. Wong, “A cohort study of incident myopia in Singaporean children,” Invest. Ophthalmol. Vis. Sci. 47(5), 1839–1844 (2006).
[Crossref] [PubMed]

R. A. Stone and D. I. Flitcroft, “Ocular shape and myopia,” Ann. Acad. Med. Singapore 33(1), 7–15 (2004).
[PubMed]

Strugnell, W. E.

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye shape in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 45(10), 3380–3386 (2004).
[Crossref] [PubMed]

Suheimat, M.

P. K. Verkicharla, M. Suheimat, K. L. Schmid, and D. A. Atchison, “Peripheral refraction, peripheral eye length and retinal shape in myopia,” Optom. Vis. Sci. 93(9), 1072–1078 (2016).
[Crossref] [PubMed]

P. K. Verkicharla, M. Suheimat, J. M. Pope, F. Sepehrband, A. Mathur, K. L. Schmid, and D. A. Atchison, “Validation of a partial coherence interferometry method for estimating retinal shape,” Biomed. Opt. Express 6(9), 3235–3247 (2015).
[Crossref] [PubMed]

P. K. Verkicharla, M. Suheimat, K. L. Schmid, and D. A. Atchison, “Differences in retinal shape between East Asian and Caucasian eyes,” Ophthalmic Physiol. Opt., doi:
[Crossref]

Tan, D. T.

S. M. Saw, A. Shankar, S. B. Tan, H. Taylor, D. T. Tan, R. A. Stone, and T. Y. Wong, “A cohort study of incident myopia in Singaporean children,” Invest. Ophthalmol. Vis. Sci. 47(5), 1839–1844 (2006).
[Crossref] [PubMed]

Tan, S. B.

S. M. Saw, A. Shankar, S. B. Tan, H. Taylor, D. T. Tan, R. A. Stone, and T. Y. Wong, “A cohort study of incident myopia in Singaporean children,” Invest. Ophthalmol. Vis. Sci. 47(5), 1839–1844 (2006).
[Crossref] [PubMed]

Taylor, H.

S. M. Saw, A. Shankar, S. B. Tan, H. Taylor, D. T. Tan, R. A. Stone, and T. Y. Wong, “A cohort study of incident myopia in Singaporean children,” Invest. Ophthalmol. Vis. Sci. 47(5), 1839–1844 (2006).
[Crossref] [PubMed]

Timothy, Y.

Y. Timothy, “Retinal complications of high myopia,” The Hong Kong Medical Diary 12(9), 18–20 (2007).

Toth, C. A.

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

Verkicharla, P. K.

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior eye shape measurement with retinal OCT compared to MRI,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT196 (2016).
[Crossref] [PubMed]

P. K. Verkicharla, M. Suheimat, K. L. Schmid, and D. A. Atchison, “Peripheral refraction, peripheral eye length and retinal shape in myopia,” Optom. Vis. Sci. 93(9), 1072–1078 (2016).
[Crossref] [PubMed]

P. K. Verkicharla, K. Ohno-Matsui, and S. M. Saw, “Current and predicted demographics of high myopia and an update of its associated pathological changes,” Ophthalmic Physiol. Opt. 35(5), 465–475 (2015).
[Crossref] [PubMed]

P. K. Verkicharla, M. Suheimat, J. M. Pope, F. Sepehrband, A. Mathur, K. L. Schmid, and D. A. Atchison, “Validation of a partial coherence interferometry method for estimating retinal shape,” Biomed. Opt. Express 6(9), 3235–3247 (2015).
[Crossref] [PubMed]

P. K. Verkicharla, A. Mathur, E. A. H. Mallen, J. M. Pope, and D. A. Atchison, “Eye shape and retinal shape, and their relation to peripheral refraction,” Ophthalmic Physiol. Opt. 32(3), 184–199 (2012).
[Crossref] [PubMed]

P. K. Verkicharla, M. Suheimat, K. L. Schmid, and D. A. Atchison, “Differences in retinal shape between East Asian and Caucasian eyes,” Ophthalmic Physiol. Opt., doi:
[Crossref]

Wang, D.

X. Ding, D. Wang, Q. Huang, J. Zhang, J. Chang, and M. He, “Distribution and heritability of peripheral eye length in Chinese children and adolescents: the Guangzhou Twin Eye Study,” Invest. Ophthalmol. Vis. Sci. 54(2), 1048–1053 (2013).
[Crossref] [PubMed]

Wildsoet, C. F.

N. S. Logan, B. Gilmartin, C. F. Wildsoet, and M. C. M. Dunne, “Posterior retinal contour in adult human anisomyopia,” Invest. Ophthalmol. Vis. Sci. 45(7), 2152–2162 (2004).
[Crossref] [PubMed]

Wilson, A.

A. Wilson and G. Woo, “A review of the prevalence and causes of myopia,” Singapore Med. J. 30(5), 479–484 (1989).

Wilson, D.

B. A. Holden, M. Jong, S. Davis, D. Wilson, T. Fricke, and S. Resnikoff, “Nearly 1 billion myopes at risk of myopia-related sight-threatening conditions by 2050 - time to act now,” Clin. Exp. Optom. 98(6), 491–493 (2015).
[Crossref] [PubMed]

Wong, T. Y.

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior eye shape measurement with retinal OCT compared to MRI,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT196 (2016).
[Crossref] [PubMed]

S. M. Saw, A. Shankar, S. B. Tan, H. Taylor, D. T. Tan, R. A. Stone, and T. Y. Wong, “A cohort study of incident myopia in Singaporean children,” Invest. Ophthalmol. Vis. Sci. 47(5), 1839–1844 (2006).
[Crossref] [PubMed]

Woo, G.

A. Wilson and G. Woo, “A review of the prevalence and causes of myopia,” Singapore Med. J. 30(5), 479–484 (1989).

Young, T. L.

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior eye shape measurement with retinal OCT compared to MRI,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT196 (2016).
[Crossref] [PubMed]

Zadnik, K.

D. A. Berntsen, D. O. Mutti, and K. Zadnik, “Study of theories about myopia progression (STAMP) design and baseline data,” Optom. Vis. Sci. 87(11), 823–832 (2010).
[Crossref] [PubMed]

Zhang, J.

X. Ding, D. Wang, Q. Huang, J. Zhang, J. Chang, and M. He, “Distribution and heritability of peripheral eye length in Chinese children and adolescents: the Guangzhou Twin Eye Study,” Invest. Ophthalmol. Vis. Sci. 54(2), 1048–1053 (2013).
[Crossref] [PubMed]

Am. J. Ophthalmol. (1)

A. N. Kuo, R. P. McNabb, S. J. Chiu, M. A. El-Dairi, S. Farsiu, C. A. Toth, and J. A. Izatt, “Correction of ocular shape in retinal optical coherence tomography and effect on current clinical measures,” Am. J. Ophthalmol. 156(2), 304–311 (2013).
[Crossref] [PubMed]

Ann. Acad. Med. Singapore (1)

R. A. Stone and D. I. Flitcroft, “Ocular shape and myopia,” Ann. Acad. Med. Singapore 33(1), 7–15 (2004).
[PubMed]

Biomed. Opt. Express (1)

Clin. Exp. Optom. (1)

B. A. Holden, M. Jong, S. Davis, D. Wilson, T. Fricke, and S. Resnikoff, “Nearly 1 billion myopes at risk of myopia-related sight-threatening conditions by 2050 - time to act now,” Clin. Exp. Optom. 98(6), 491–493 (2015).
[Crossref] [PubMed]

Clin. Vis. Sci. (1)

J. F. Chen, A. E. Elsner, S. A. Burns, R. M. Hansen, P. L. Lou, K. K. Kwong, and A. B. Fulton, “The effect of eye shape on retinal responses,” Clin. Vis. Sci. 7(6), 521–530 (1992).

Curr. Eye Res. (1)

G. F. Schmid, “Variability of retinal steepness at the posterior pole in children 7-15 years of age,” Curr. Eye Res. 27(1), 61–68 (2003).
[Crossref] [PubMed]

Dev. Ophthalmol. (1)

M. Feldkämper and F. Schaeffel, “Interactions of genes and environment in myopia,” Dev. Ophthalmol. 37, 34–49 (2003).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (8)

S. M. Saw, A. Shankar, S. B. Tan, H. Taylor, D. T. Tan, R. A. Stone, and T. Y. Wong, “A cohort study of incident myopia in Singaporean children,” Invest. Ophthalmol. Vis. Sci. 47(5), 1839–1844 (2006).
[Crossref] [PubMed]

N. S. Logan, B. Gilmartin, C. F. Wildsoet, and M. C. M. Dunne, “Posterior retinal contour in adult human anisomyopia,” Invest. Ophthalmol. Vis. Sci. 45(7), 2152–2162 (2004).
[Crossref] [PubMed]

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 46(8), 2698–2707 (2005).
[Crossref] [PubMed]

B. Gilmartin, M. Nagra, and N. S. Logan, “Shape of the posterior vitreous chamber in human emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 54(12), 7240–7251 (2013).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

A. N. Kuo, P. K. Verkicharla, R. P. McNabb, C. Y. Cheung, S. Hilal, S. Farsiu, C. Chen, T. Y. Wong, M. K. Ikram, C. Y. Cheng, T. L. Young, S. M. Saw, and J. A. Izatt, “Posterior eye shape measurement with retinal OCT compared to MRI,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT196 (2016).
[Crossref] [PubMed]

D. A. Atchison, C. E. Jones, K. L. Schmid, N. Pritchard, J. M. Pope, W. E. Strugnell, and R. A. Riley, “Eye shape in emmetropia and myopia,” Invest. Ophthalmol. Vis. Sci. 45(10), 3380–3386 (2004).
[Crossref] [PubMed]

X. Ding, D. Wang, Q. Huang, J. Zhang, J. Chang, and M. He, “Distribution and heritability of peripheral eye length in Chinese children and adolescents: the Guangzhou Twin Eye Study,” Invest. Ophthalmol. Vis. Sci. 54(2), 1048–1053 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

G. F. Schmid, “Axial and peripheral eye length measured with optical low coherence reflectometry,” J. Biomed. Opt. 8(4), 655–662 (2003).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (9)

M. C. M. Dunne, D. A. Barnes, and R. A. Clement, “A model for retinal shape changes in ametropia,” Ophthalmic Physiol. Opt. 7(2), 159–160 (1987).
[Crossref] [PubMed]

M. C. M. Dunne, “A computing scheme for determination of retinal contour from peripheral refraction, keratometry and A-scan ultrasonography,” Ophthalmic Physiol. Opt. 15(2), 133–143 (1995).
[Crossref] [PubMed]

E. A. H. Mallen and P. Kashyap, “Technical note: Measurement of retinal contour and supine axial length using the Zeiss IOLMaster,” Ophthalmic Physiol. Opt. 27(4), 404–411 (2007).
[Crossref] [PubMed]

S. M. Saw, G. Gazzard, E. C. Shih-Yen, and W. H. Chua, “Myopia and associated pathological complications,” Ophthalmic Physiol. Opt. 25(5), 381–391 (2005).
[Crossref] [PubMed]

C. W. Pan, D. Ramamurthy, and S. M. Saw, “Worldwide prevalence and risk factors for myopia,” Ophthalmic Physiol. Opt. 32(1), 3–16 (2012).
[Crossref] [PubMed]

N. Charman, “Myopia: its prevalence, origins and control,” Ophthalmic Physiol. Opt. 31(1), 3–6 (2011).
[Crossref] [PubMed]

P. K. Verkicharla, K. Ohno-Matsui, and S. M. Saw, “Current and predicted demographics of high myopia and an update of its associated pathological changes,” Ophthalmic Physiol. Opt. 35(5), 465–475 (2015).
[Crossref] [PubMed]

P. K. Verkicharla, A. Mathur, E. A. H. Mallen, J. M. Pope, and D. A. Atchison, “Eye shape and retinal shape, and their relation to peripheral refraction,” Ophthalmic Physiol. Opt. 32(3), 184–199 (2012).
[Crossref] [PubMed]

A. Ehsaei, C. M. Chisholm, I. E. Pacey, and E. A. H. Mallen, “Off-axis partial coherence interferometry in myopes and emmetropes,” Ophthalmic Physiol. Opt. 33(1), 26–34 (2013).
[Crossref] [PubMed]

Optom. Vis. Sci. (5)

M. Faria-Ribeiro, A. Queirós, D. Lopes-Ferreira, J. Jorge, and J. M. González-Méijome, “Peripheral refraction and retinal contour in stable and progressive myopia,” Optom. Vis. Sci. 90(1), 9–15 (2013).
[Crossref] [PubMed]

P. K. Verkicharla, M. Suheimat, K. L. Schmid, and D. A. Atchison, “Peripheral refraction, peripheral eye length and retinal shape in myopia,” Optom. Vis. Sci. 93(9), 1072–1078 (2016).
[Crossref] [PubMed]

D. A. Berntsen, D. O. Mutti, and K. Zadnik, “Study of theories about myopia progression (STAMP) design and baseline data,” Optom. Vis. Sci. 87(11), 823–832 (2010).
[Crossref] [PubMed]

D. A. Atchison and W. N. Charman, “Can partial coherence interferometry be used to determine retinal shape?” Optom. Vis. Sci. 88(5), E601–E607 (2011).
[Crossref] [PubMed]

G. F. Schmid, “Association between retinal steepness and central myopic shift in children,” Optom. Vis. Sci. 88(6), 684–690 (2011).
[Crossref] [PubMed]

Singapore Med. J. (1)

A. Wilson and G. Woo, “A review of the prevalence and causes of myopia,” Singapore Med. J. 30(5), 479–484 (1989).

The Hong Kong Medical Diary (1)

Y. Timothy, “Retinal complications of high myopia,” The Hong Kong Medical Diary 12(9), 18–20 (2007).

Vision Res. (2)

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46(8-9), 1450–1458 (2006).
[Crossref] [PubMed]

D. A. Atchison, “Optical models for human myopic eyes,” Vision Res. 46(14), 2236–2250 (2006).
[Crossref] [PubMed]

Other (1)

P. K. Verkicharla, M. Suheimat, K. L. Schmid, and D. A. Atchison, “Differences in retinal shape between East Asian and Caucasian eyes,” Ophthalmic Physiol. Opt., doi:
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Eye length and width measurements from 3D HASTE image data (0.5 mm isotropic resolution).
Fig. 2
Fig. 2 a) Eye length, width and height as a function of refraction. b). Ratios width/length, height/length and height/width as functions of refraction. Linear regression coefficients are given in Table 2.
Fig. 3
Fig. 3 Retinal shape parameters as a function of refraction for different retina fractions for all participants. Column A: principal radii RX, RY and RZ; Column B: vertex radii of curvature Rxv and Ryv; Column C: Asphericities Qx and Qy. Note different vertical scales for the 35% fraction than for the other two fractions for principal radius. Linear regression coefficients are given in Table 2.

Tables (3)

Tables Icon

Table 1 Participant characteristics (right eyes)

Tables Icon

Table 2 Simple linear regressions with spherical refraction for all participants.

Tables Icon

Table 3 Multiple linear regressions including only East Asians and Caucasians.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

F( % ) = 100[1 cos(θ/2)]/2
C X 2 X 2 + C Y 2 Y 2 + C Z 2 Z 2 2 C Z Z= 0
Z= C X 2 X 2 + C Y 2 Y 2 C Z [ 1± 1 C X 2 X 2 C Y 2 Y 2 ]
X 2 + Y 2 + ( 1 +Q ) Z 2 2Z R v = 0
R Xv = R X 2 / R Z , R Yv = R Y 2 / R Z
Q X = C Z 2 / C x 2 1, Q Y = C Z 2 / C Y 2 1

Metrics