Abstract

Tissue dispersion could be used as a marker of early disease changes to further improve the diagnostic potential of optical coherence tomography (OCT). However, most methods to measure dispersion, described in the literature, rely on the presence of distinct and strong reflectors and are, therefore, rarely applicable in vivo. A novel technique has been developed which estimates the dispersion-induced resolution degradation from the image speckle and, as such, is applicable in situ. This method was verified experimentally ex vivo and was applied to the classification of a set of normal and cancerous colon OCT images resulting in 96% correct classification.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effects of axial resolution improvement on optical coherence tomography (OCT) imaging of gastrointestinal tissues

Yu Chen, Aaron D. Aguirre, Pei-Lin Hsiung, Shu-Wei Huang, Hiroshi Mashimo, Joseph M. Schmitt, and James G. Fujimoto
Opt. Express 16(4) 2469-2485 (2008)

High-resolution extended source optical coherence tomography

Xiaojun Yu, Xinyu Liu, Si Chen, Yuemei Luo, Xianghong Wang, and Linbo Liu
Opt. Express 23(20) 26399-26413 (2015)

Fluorescence-guided optical coherence tomography imaging for colon cancer screening: a preliminary mouse study

Nicusor Iftimia, Arun K. Iyer, Daniel X. Hammer, Niyom Lue, Mircea Mujat, Martha Pitman, R. Daniel Ferguson, and Mansoor Amiji
Biomed. Opt. Express 3(1) 178-191 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20(13), 1486–1488 (1995).
    [Crossref] [PubMed]
  2. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
    [Crossref] [PubMed]
  3. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
    [Crossref] [PubMed]
  4. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a gratingbased phase control delay line,” Opt. Lett. 22(23), 1811–1813 (1997).
    [Crossref] [PubMed]
  5. S. Iyer, S. Coen, and F. Vanholsbeeck, “Dual-fiber stretcher as a tunable dispersion compensator for an all-fiber optical coherence tomography system,” Opt. Lett. 34(19), 2903–2905 (2009).
    [Crossref] [PubMed]
  6. L. Froehly, S. Iyer, and F. Vanholsbeeck, “Dual-fibre stretcher and coma as tools for independent 2nd and 3rd order tunable dispersion compensation in a fibre-based ‘scan-free’ time domain optical coherence tomography,” Opt. Commun. 284(16–17), 4099–4106 (2011).
    [Crossref]
  7. N. Lippok, S. Coen, P. Nielsen, and F. Vanholsbeeck, “Dispersion compensation in Fourier domain optical coherence tomography using the fractional Fourier transform,” Opt. Express 20(21), 23398–23413 (2012).
    [Crossref] [PubMed]
  8. Y. Park, T. Yamauchi, W. Choi, R. Dasari, and M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett. 34(23), 3668–3670 (2009).
    [Crossref] [PubMed]
  9. D. Fu, W. Choi, Y. Sung, Z. Yaqoob, R. R. Dasari, and M. Feld, “Quantitative dispersion microscopy,” Biomed. Opt. Express 1(2), 347–353 (2010).
    [Crossref] [PubMed]
  10. H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
    [Crossref] [PubMed]
  11. A. J. Levine, G. F. Vande-Woude, W. C. Topp, and J. D. Watson, eds., Cancer Cells, The Transformed Phenotype (Cold Spring Harbor, 1984).
  12. G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94(10), 1460–1464 (2006).
    [Crossref] [PubMed]
  13. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001), Chap. 3.
  14. M. R. Hee, Optical coherence tomography of the eye (MIT Thesis, 1997).
  15. N. Lippok, S. G. Murdoch, K. L. Wu, and F. Vanholsbeeck, “Dispersion mapping at the micrometer scale using tri-band optical frequency domain imaging,” Opt. Lett. 38(16), 3028–3031 (2013).
    [Crossref] [PubMed]
  16. S. Schlichting, T. Willemsen, H. Ehlers, U. Morgner, and D. Ristau, “Direct in situ GDD measurement in optical coating process,” Proc. SPIE 9627, 96271S (2015).
  17. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17(10), 1795–1802 (2000).
    [Crossref]
  18. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
    [Crossref] [PubMed]
  19. N. Meitav, E. N. Ribak, and S. Shoham, “Point spread function estimation from projected speckle illumination,” Light Sci. Appl. 5(3), e16048 (2015).
    [Crossref]

2015 (2)

S. Schlichting, T. Willemsen, H. Ehlers, U. Morgner, and D. Ristau, “Direct in situ GDD measurement in optical coating process,” Proc. SPIE 9627, 96271S (2015).

N. Meitav, E. N. Ribak, and S. Shoham, “Point spread function estimation from projected speckle illumination,” Light Sci. Appl. 5(3), e16048 (2015).
[Crossref]

2013 (1)

2012 (1)

2011 (1)

L. Froehly, S. Iyer, and F. Vanholsbeeck, “Dual-fibre stretcher and coma as tools for independent 2nd and 3rd order tunable dispersion compensation in a fibre-based ‘scan-free’ time domain optical coherence tomography,” Opt. Commun. 284(16–17), 4099–4106 (2011).
[Crossref]

2010 (1)

2009 (2)

2006 (2)

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[Crossref] [PubMed]

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94(10), 1460–1464 (2006).
[Crossref] [PubMed]

2001 (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

2000 (1)

1999 (1)

1997 (1)

1995 (2)

Barr, H.

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94(10), 1460–1464 (2006).
[Crossref] [PubMed]

Belabas, N.

Boppart, S. A.

Bouma, B.

Bouma, B. E.

Brezinski, M. E.

Choi, W.

Coen, S.

Dasari, R.

Dasari, R. R.

Ding, H.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[Crossref] [PubMed]

Dorrer, C.

Drexler, W.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[Crossref] [PubMed]

Ehlers, H.

S. Schlichting, T. Willemsen, H. Ehlers, U. Morgner, and D. Ristau, “Direct in situ GDD measurement in optical coating process,” Proc. SPIE 9627, 96271S (2015).

Feld, M.

Feld, M. S.

Froehly, L.

L. Froehly, S. Iyer, and F. Vanholsbeeck, “Dual-fibre stretcher and coma as tools for independent 2nd and 3rd order tunable dispersion compensation in a fibre-based ‘scan-free’ time domain optical coherence tomography,” Opt. Commun. 284(16–17), 4099–4106 (2011).
[Crossref]

Fu, D.

Fujimoto, J. G.

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Hee, M. R.

Hu, X. H.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[Crossref] [PubMed]

Ippen, E. P.

Iyer, S.

L. Froehly, S. Iyer, and F. Vanholsbeeck, “Dual-fibre stretcher and coma as tools for independent 2nd and 3rd order tunable dispersion compensation in a fibre-based ‘scan-free’ time domain optical coherence tomography,” Opt. Commun. 284(16–17), 4099–4106 (2011).
[Crossref]

S. Iyer, S. Coen, and F. Vanholsbeeck, “Dual-fiber stretcher as a tunable dispersion compensator for an all-fiber optical coherence tomography system,” Opt. Lett. 34(19), 2903–2905 (2009).
[Crossref] [PubMed]

Joffre, M.

Kärtner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[Crossref] [PubMed]

Kendall, C.

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94(10), 1460–1464 (2006).
[Crossref] [PubMed]

Kragel, P. J.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[Crossref] [PubMed]

Li, X. D.

Likforman, J. P.

Lippok, N.

Lu, J. Q.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[Crossref] [PubMed]

Meitav, N.

N. Meitav, E. N. Ribak, and S. Shoham, “Point spread function estimation from projected speckle illumination,” Light Sci. Appl. 5(3), e16048 (2015).
[Crossref]

Morgner, U.

S. Schlichting, T. Willemsen, H. Ehlers, U. Morgner, and D. Ristau, “Direct in situ GDD measurement in optical coating process,” Proc. SPIE 9627, 96271S (2015).

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[Crossref] [PubMed]

Murdoch, S. G.

Nielsen, P.

Park, Y.

Pitris, C.

Ribak, E. N.

N. Meitav, E. N. Ribak, and S. Shoham, “Point spread function estimation from projected speckle illumination,” Light Sci. Appl. 5(3), e16048 (2015).
[Crossref]

Ristau, D.

S. Schlichting, T. Willemsen, H. Ehlers, U. Morgner, and D. Ristau, “Direct in situ GDD measurement in optical coating process,” Proc. SPIE 9627, 96271S (2015).

Schlichting, S.

S. Schlichting, T. Willemsen, H. Ehlers, U. Morgner, and D. Ristau, “Direct in situ GDD measurement in optical coating process,” Proc. SPIE 9627, 96271S (2015).

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Shepherd, N.

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94(10), 1460–1464 (2006).
[Crossref] [PubMed]

Shetty, G.

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94(10), 1460–1464 (2006).
[Crossref] [PubMed]

Shoham, S.

N. Meitav, E. N. Ribak, and S. Shoham, “Point spread function estimation from projected speckle illumination,” Light Sci. Appl. 5(3), e16048 (2015).
[Crossref]

Southern, J. F.

Stone, N.

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94(10), 1460–1464 (2006).
[Crossref] [PubMed]

Sung, Y.

Tearney, G. J.

Vanholsbeeck, F.

Willemsen, T.

S. Schlichting, T. Willemsen, H. Ehlers, U. Morgner, and D. Ristau, “Direct in situ GDD measurement in optical coating process,” Proc. SPIE 9627, 96271S (2015).

Wooden, W. A.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[Crossref] [PubMed]

Wu, K. L.

Yamauchi, T.

Yaqoob, Z.

Biomed. Opt. Express (1)

Br. J. Cancer (1)

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94(10), 1460–1464 (2006).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (1)

N. Meitav, E. N. Ribak, and S. Shoham, “Point spread function estimation from projected speckle illumination,” Light Sci. Appl. 5(3), e16048 (2015).
[Crossref]

Nat. Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Opt. Commun. (1)

L. Froehly, S. Iyer, and F. Vanholsbeeck, “Dual-fibre stretcher and coma as tools for independent 2nd and 3rd order tunable dispersion compensation in a fibre-based ‘scan-free’ time domain optical coherence tomography,” Opt. Commun. 284(16–17), 4099–4106 (2011).
[Crossref]

Opt. Express (1)

Opt. Lett. (7)

Y. Park, T. Yamauchi, W. Choi, R. Dasari, and M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett. 34(23), 3668–3670 (2009).
[Crossref] [PubMed]

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a gratingbased phase control delay line,” Opt. Lett. 22(23), 1811–1813 (1997).
[Crossref] [PubMed]

S. Iyer, S. Coen, and F. Vanholsbeeck, “Dual-fiber stretcher as a tunable dispersion compensator for an all-fiber optical coherence tomography system,” Opt. Lett. 34(19), 2903–2905 (2009).
[Crossref] [PubMed]

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20(13), 1486–1488 (1995).
[Crossref] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[Crossref] [PubMed]

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
[Crossref] [PubMed]

N. Lippok, S. G. Murdoch, K. L. Wu, and F. Vanholsbeeck, “Dispersion mapping at the micrometer scale using tri-band optical frequency domain imaging,” Opt. Lett. 38(16), 3028–3031 (2013).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol. 51(6), 1479–1489 (2006).
[Crossref] [PubMed]

Proc. SPIE (1)

S. Schlichting, T. Willemsen, H. Ehlers, U. Morgner, and D. Ristau, “Direct in situ GDD measurement in optical coating process,” Proc. SPIE 9627, 96271S (2015).

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001), Chap. 3.

M. R. Hee, Optical coherence tomography of the eye (MIT Thesis, 1997).

A. J. Levine, G. F. Vande-Woude, W. C. Topp, and J. D. Watson, eds., Cancer Cells, The Transformed Phenotype (Cold Spring Harbor, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (A) OCT image of a pure collagen gel placed over a reflector (green line: top surface, red line: bottom surface, blue line: reflector, L: tissue thickness at that particular location). (B) Zoomed portion of the bottom surface (red) with the FWHM (yellow). (C) The FWHM of the reflector calculated at each of 250 A-Scan.
Fig. 2
Fig. 2 (A) OCT image of porcine muscle placed over a reflector (green line: top surface, red line: bottom surface, blue line: reflector). (B) Zoomed portion of the bottom surface (red) with the FWHM (yellow). (C) The FWHM of the reflector calculated at each of 250 A-Scan. (D) The OCT image with the GVD overlaid in a pseudo-color hue scale.
Fig. 3
Fig. 3 (A) Portion of the image (80x250 pixels) containing mainly speckle from just below the top surface (z = 0) of the sample of Fig. 1. (B) Similar portion from just above the bottom surface (z = L). (C) The SDF resulting from the deconvolution. (D) The width of the SDF for the 250 A-Scans in (C). (E) The mean SDF width as a function of depth with a linear fit (red line) illustrating the increase as a function of the depth. (F) The degraded width of the PSF as a function of depth calculated from the linear fit in (E).
Fig. 4
Fig. 4 (A) OCT image of Fig. 1. (D) The OCT image with the GVD, calculated using the speckle-based method, overlaid in a pseudo-color hue scale.
Fig. 5
Fig. 5 (A) OCT image of normal colon tissue (green line: top surface, red line: 0.5 mm depth). (B) Mean sdf width as a function of depth for (A). (C) Degraded Gaussian width, dd, as a function of depth calculated from (B). (D) Overlay of the OCT image (gray scale) and the GVD for each A-Scan in a pseudo-color hue scale. (E-H) The same as before for colon adenocarcinoma.
Fig. 6
Fig. 6 (A) Distribution of GVD values from normal and abnormal colon. (B) Distribution of the median of the GVD for each image exhibiting statistically significant differences. (C) Recombination of the statistical moments of the GVD values using MANOVA, exhibiting maximal statistical separation.

Tables (1)

Tables Icon

Table 1 GVD measured with the PSF degradation and speckle-based methods and mean index of refraction measurements

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

t d 2 = t 0 2 [ 1+ ( LGVD t 0 2 ) 2 ]
GVD= ( t d 2 t 0 2 t 0 4 ) L 2
t 0 = d 0 / ( c 4ln( 2 ) )
i s ( z )=sdf( z )* i s ( 0 )
ε(z)=E{ | i s (z)sdf(z)* i s (0) | 2 }
d rdf (z)= d o d sdf (z) d sdf (0)
d d (z)= ( d 0 ) 2 + ( d rdf (z) ) 2
n=( L ' +L )/L

Metrics