Abstract

This paper presents an investigation about the effects of mental stress on prefrontal cortex (PFC) subregions using simultaneous measurement of functional Near-Infrared Spectroscopy (fNIRS) and Electroencephalography (EEG) signals. The aim is to explore canonical correlation analysis (CCA) technique to study the relationship among the bi-modality signals in mental stress assessment, and how we could fuse the signals for better accuracy in stress detection. Twenty-five male healthy subjects participated in the study while performing mental arithmetic task under control and stress (under time pressure with negative feedback) conditions. The fusion of brain signals acquired by fNIRS-EEG was performed at feature-level using CCA by maximizing the inter-subject covariance across modalities. The CCA result discovered the associations across the modalities and estimated the components responsible for these associations. The experiment results showed that mental stress experienced by this cohort of subjects is subregion specific and localized to the right ventrolateral PFC subregion. These suggest the right ventrolateral PFC as a suitable candidate region to extract biomarkers as performance indicators of neurofeedback training in stress coping.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mental stress assessment using simultaneous measurement of EEG and fNIRS

Fares Al-Shargie, Masashi Kiguchi, Nasreen Badruddin, Sarat C. Dass, Ahmad Fadzil Mohammad Hani, and Tong Boon Tang
Biomed. Opt. Express 7(10) 3882-3898 (2016)

Gender-related effects of prefrontal cortex connectivity: a resting-state functional optical tomography study

Ching-Cheng Chuang and Chia-Wei Sun
Biomed. Opt. Express 5(8) 2503-2516 (2014)

Optical imaging of the prefrontal activity in joint attention experience

Lina Qiu, Xiao Zhang, and Jun Li
Biomed. Opt. Express 6(9) 3437-3448 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Bishop, J. Duncan, M. Brett, and A. D. Lawrence, “Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli,” Nat. Neurosci. 7(2), 184–188 (2004).
    [Crossref] [PubMed]
  2. C. Hammen, “Stress and depression,” Annu. Rev. Clin. Psychol. 1(1), 293–319 (2005).
    [Crossref] [PubMed]
  3. A. F. Arnsten, “Prefrontal cortical network connections: key site of vulnerability in stress and schizophrenia,” Int. J. Dev. Neurosci. 29(3), 215–223 (2011).
    [Crossref] [PubMed]
  4. C. Liston, B. S. McEwen, and B. J. Casey, “Psychosocial stress reversibly disrupts prefrontal processing and attentional control,” Proc. Natl. Acad. Sci. U.S.A. 106(3), 912–917 (2009).
    [Crossref] [PubMed]
  5. A. F. Arnsten, “Stress weakens prefrontal networks: molecular insults to higher cognition,” Nat. Neurosci. 18(10), 1376–1385 (2015).
    [Crossref] [PubMed]
  6. K. Starcke and M. Brand, “Decision making under stress: a selective review,” Neurosci. Biobehav. Rev. 36(4), 1228–1248 (2012).
    [Crossref] [PubMed]
  7. A. F. Arnsten, “Stress signalling pathways that impair prefrontal cortex structure and function,” Nat. Rev. Neurosci. 10(6), 410–422 (2009).
    [Crossref] [PubMed]
  8. K. Dedovic, C. D’Aguiar, and J. C. Pruessner, “What stress does to your brain: a review of neuroimaging studies,” Can. J. Psychiatry 54(1), 6–15 (2009).
    [Crossref] [PubMed]
  9. B. Leuner and T. J. Shors, “Stress, anxiety, and dendritic spines: what are the connections?” Neuroscience 251(1), 108–119 (2013).
    [Crossref] [PubMed]
  10. J.-A. Micoulaud-Franchi, A. McGonigal, R. Lopez, C. Daudet, I. Kotwas, and F. Bartolomei, “Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice,” Neurophysiol. Clin. 45(6), 423–433 (2015).
    [Crossref] [PubMed]
  11. R. T. Thibault, M. Lifshitz, and A. Raz, “The self-regulating brain and neurofeedback: Experimental science and clinical promise,” Cortex 74(1), 247–261 (2016).
    [Crossref] [PubMed]
  12. M. S. Sherwood, J. H. Kane, M. P. Weisend, and J. G. Parker, “Enhanced control of dorsolateral prefrontal cortex neurophysiology with real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback training and working memory practice,” Neuroimage 124(Pt A), 214–223 (2016).
    [Crossref] [PubMed]
  13. J. Wang, H. Rao, G. S. Wetmore, P. M. Furlan, M. Korczykowski, D. F. Dinges, and J. A. Detre, “Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17804–17809 (2005).
    [Crossref] [PubMed]
  14. J. C. Pruessner, K. Dedovic, N. Khalili-Mahani, V. Engert, M. Pruessner, C. Buss, R. Renwick, A. Dagher, M. J. Meaney, and S. Lupien, “Deactivation of the limbic system during acute psychosocial stress: evidence from positron emission tomography and functional magnetic resonance imaging studies,” Biol. Psychiatry 63(2), 234–240 (2008).
    [Crossref] [PubMed]
  15. M. L. Schroeter, T. Kupka, T. Mildner, K. Uludağ, and D. Y. von Cramon, “Investigating the post-stimulus undershoot of the BOLD signal--a simultaneous fMRI and fNIRS study,” Neuroimage 30(2), 349–358 (2006).
    [Crossref] [PubMed]
  16. J. A. Noah, Y. Ono, Y. Nomoto, S. Shimada, A. Tachibana, X. Zhang, S. Bronner, and J. Hirsch, “fMRI validation of fNIRS measurements during a naturalistic task,” J. Vis. Exp. (100): e52116 (2015).
    [PubMed]
  17. S. Heinzel, F. B. Haeussinger, T. Hahn, A.-C. Ehlis, M. M. Plichta, and A. J. Fallgatter, “Variability of (functional) hemodynamics as measured with simultaneous fNIRS and fMRI during intertemporal choice,” Neuroimage 71(1), 125–134 (2013).
    [Crossref] [PubMed]
  18. H. Sato, N. Yahata, T. Funane, R. Takizawa, T. Katura, H. Atsumori, Y. Nishimura, A. Kinoshita, M. Kiguchi, H. Koizumi, M. Fukuda, and K. Kasai, “A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task,” Neuroimage 83(1), 158–173 (2013).
    [Crossref] [PubMed]
  19. D. Mantini, M. G. Perrucci, C. Del Gratta, G. L. Romani, and M. Corbetta, “Electrophysiological signatures of resting state networks in the human brain,” Proc. Natl. Acad. Sci. U.S.A. 104(32), 13170–13175 (2007).
    [Crossref] [PubMed]
  20. K.-Q. Shen, C.-J. Ong, X.-P. Li, Z. Hui, and E. P. Wilder-Smith, “A feature selection method for multilevel mental fatigue EEG classification,” IEEE Trans. Biomed. Eng. 54(7), 1231–1237 (2007).
    [Crossref] [PubMed]
  21. Z. Wang, R. M. Hope, Z. Wang, Q. Ji, and W. D. Gray, “Cross-subject workload classification with a hierarchical Bayes model,” Neuroimage 59(1), 64–69 (2012).
    [Crossref] [PubMed]
  22. C. Zhao, M. Zhao, J. Liu, and C. Zheng, “Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator,” Accid. Anal. Prev. 45, 83–90 (2012).
    [Crossref] [PubMed]
  23. A. C. Rencher, Methods of Multivariate Analysis (John Wiley & Sons, 2003), Vol. 492.
  24. Q.-S. Sun, S.-G. Zeng, Y. Liu, P.-A. Heng, and D.-S. Xia, “A new method of feature fusion and its application in image recognition,” Pattern Recognit. 38(12), 2437–2448 (2005).
    [Crossref]
  25. Y.-O. Li, T. Adalı, W. Wang, and V. D. Calhoun, “Joint blind source separation by multiset canonical correlation analysis,” IEEE Trans. Signal Process. 57(10), 3918–3929 (2009).
    [Crossref] [PubMed]
  26. N. M. Correa, T. Adali, Y.-O. Li, and V. D. Calhoun, “Canonical correlation analysis for data fusion and group inferences,” IEEE Signal Process. Mag. 27(4), 39–50 (2010).
    [Crossref] [PubMed]
  27. A. M. Hansen, A. H. Garde, and R. Persson, “Sources of biological and methodological variation in salivary cortisol and their impact on measurement among healthy adults: a review,” Scand. J. Clin. Lab. Invest. 68(6), 448–458 (2008).
    [Crossref] [PubMed]
  28. K. Dedovic, R. Renwick, N. K. Mahani, V. Engert, S. J. Lupien, and J. C. Pruessner, “The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain,” J. Psychiatry Neurosci. 30(5), 319–325 (2005).
    [PubMed]
  29. L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
    [Crossref] [PubMed]
  30. A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis,” J. Neurosci. Methods 134(1), 9–21 (2004).
    [Crossref] [PubMed]
  31. F. Putze, S. Hesslinger, C. Y. Tse, Y. Huang, C. Herff, C. Guan, and T. Schultz, “Hybrid fNIRS-EEG based classification of auditory and visual perception processes,” Front. Neurosci. 8, 373 (2014).
    [Crossref] [PubMed]
  32. T. Gandhi, B. K. Panigrahi, and S. Anand, “A comparative study of wavelet families for EEG signal classification,” Neurocomputing 74(17), 3051–3057 (2011).
    [Crossref]
  33. F. Al-Shargie, M. Kiguchi, N. Badruddin, S. C. Dass, A. F. M. Hani, and T. B. Tang, “Mental stress assessment using simultaneous measurement of EEG and fNIRS,” Biomed. Opt. Express 7(10), 3882–3898 (2016).
    [Crossref] [PubMed]
  34. J. Voss and K. Paller, Neural Substrates of Remembering: Electroencephalographic Studies. in Learning and Memory: a Comperhensive Reference (ed. Byrne, J.H.) 79–97 (Elsevier, Oxford, 2008).
  35. S. Sutoko, H. Sato, A. Maki, M. Kiguchi, Y. Hirabayashi, H. Atsumori, A. Obata, T. Funane, and T. Katura, “Tutorial on platform for optical topography analysis tools,” Neurophotonics 3(1), 010801 (2016).
    [Crossref] [PubMed]
  36. I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3(3), 031405 (2016).
    [Crossref] [PubMed]
  37. D. Weenink, “Canonical correlation analysis,” in Proceedings of the Institute of Phonetic Sciences of the University of Amsterdam, (Citeseer, 2003), 81–99.
  38. W. Krzanowski, Principles of Multivariate Analysis (OUP Oxford, 2000).
  39. N. M. Correa, Y.-O. Li, T. Adalı, and V. D. Calhoun, “Canonical correlation analysis for feature-based fusion of biomedical imaging modalities and its application to detection of associative networks in schizophrenia,” IEEE J. Sel. Top. Signal Process. 2(6), 998–1007 (2008).
    [Crossref] [PubMed]
  40. V. N. Vapnik and V. Vapnik, Statistical Learning Theory (Wiley New York, 1998), Vol. 1.
  41. C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011).
    [Crossref]
  42. R. Thibodeau, R. S. Jorgensen, and S. Kim, “Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review,” J. Abnorm. Psychol. 115(4), 715–729 (2006).
    [Crossref] [PubMed]
  43. R. E. Wheeler, R. J. Davidson, and A. J. Tomarken, “Frontal brain asymmetry and emotional reactivity: a biological substrate of affective style,” Psychophysiology 30(1), 82–89 (1993).
    [Crossref] [PubMed]
  44. R. S. Lewis, N. Y. Weekes, and T. H. Wang, “The effect of a naturalistic stressor on frontal EEG asymmetry, stress, and health,” Biol. Psychol. 75(3), 239–247 (2007).
    [Crossref] [PubMed]
  45. M. Tops, J. M. van Peer, A. E. Wester, A. A. Wijers, and J. Korf, “State-dependent regulation of cortical activity by cortisol: an EEG study,” Neurosci. Lett. 404(1-2), 39–43 (2006).
    [Crossref] [PubMed]
  46. C. W. Quaedflieg, T. Meyer, F. T. Smulders, and T. Smeets, “The functional role of individual-alpha based frontal asymmetry in stress responding,” Biol. Psychol. 104, 75–81 (2015).
    [Crossref] [PubMed]
  47. S. Qin, E. J. Hermans, H. J. van Marle, J. Luo, and G. Fernández, “Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex,” Biol. Psychiatry 66(1), 25–32 (2009).
    [Crossref] [PubMed]
  48. L. Ossewaarde, S. Qin, H. J. Van Marle, G. A. van Wingen, G. Fernández, and E. J. Hermans, “Stress-induced reduction in reward-related prefrontal cortex function,” Neuroimage 55(1), 345–352 (2011).
    [Crossref] [PubMed]
  49. A. F. Arnsten and P. S. Goldman-Rakic, “Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism,” Arch. Gen. Psychiatry 55(4), 362–368 (1998).
    [Crossref] [PubMed]
  50. F. Tian, A. Yennu, A. Smith-Osborne, F. Gonzalez-Lima, C. S. North, and H. Liu, “Prefrontal responses to digit span memory phases in patients with post-traumatic stress disorder (PTSD): a functional near infrared spectroscopy study,” Neuroimage Clin. 4, 808–819 (2014).
    [Crossref] [PubMed]
  51. A. F. Arnsten, M. A. Raskind, F. B. Taylor, and D. F. Connor, “The effects of stress exposure on prefrontal cortex: translating basic research into successful treatments for post-traumatic stress disorder,” Neurobiol. Stress 1, 89–99 (2015).
    [Crossref] [PubMed]
  52. T. Jovanovic, T. Ely, N. Fani, E. M. Glover, D. Gutman, E. B. Tone, S. D. Norrholm, B. Bradley, and K. J. Ressler, “Reduced neural activation during an inhibition task is associated with impaired fear inhibition in a traumatized civilian sample,” Cortex 49(7), 1884–1891 (2013).
    [Crossref] [PubMed]
  53. H. Ayaz, P. A. Shewokis, S. Bunce, K. Izzetoglu, B. Willems, and B. Onaral, “Optical brain monitoring for operator training and mental workload assessment,” Neuroimage 59(1), 36–47 (2012).
    [Crossref] [PubMed]
  54. A. W. Gaillard, “Comparing the concepts of mental load and stress,” Ergonomics 36(9), 991–1005 (1993).
    [Crossref] [PubMed]
  55. M. M. Plichta, S. Heinzel, A.-C. Ehlis, P. Pauli, and A. J. Fallgatter, “Model-based analysis of rapid event-related functional near-infrared spectroscopy (NIRS) data: a parametric validation study,” Neuroimage 35(2), 625–634 (2007).
    [Crossref] [PubMed]

2016 (5)

R. T. Thibault, M. Lifshitz, and A. Raz, “The self-regulating brain and neurofeedback: Experimental science and clinical promise,” Cortex 74(1), 247–261 (2016).
[Crossref] [PubMed]

M. S. Sherwood, J. H. Kane, M. P. Weisend, and J. G. Parker, “Enhanced control of dorsolateral prefrontal cortex neurophysiology with real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback training and working memory practice,” Neuroimage 124(Pt A), 214–223 (2016).
[Crossref] [PubMed]

F. Al-Shargie, M. Kiguchi, N. Badruddin, S. C. Dass, A. F. M. Hani, and T. B. Tang, “Mental stress assessment using simultaneous measurement of EEG and fNIRS,” Biomed. Opt. Express 7(10), 3882–3898 (2016).
[Crossref] [PubMed]

S. Sutoko, H. Sato, A. Maki, M. Kiguchi, Y. Hirabayashi, H. Atsumori, A. Obata, T. Funane, and T. Katura, “Tutorial on platform for optical topography analysis tools,” Neurophotonics 3(1), 010801 (2016).
[Crossref] [PubMed]

I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3(3), 031405 (2016).
[Crossref] [PubMed]

2015 (4)

J.-A. Micoulaud-Franchi, A. McGonigal, R. Lopez, C. Daudet, I. Kotwas, and F. Bartolomei, “Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice,” Neurophysiol. Clin. 45(6), 423–433 (2015).
[Crossref] [PubMed]

A. F. Arnsten, “Stress weakens prefrontal networks: molecular insults to higher cognition,” Nat. Neurosci. 18(10), 1376–1385 (2015).
[Crossref] [PubMed]

C. W. Quaedflieg, T. Meyer, F. T. Smulders, and T. Smeets, “The functional role of individual-alpha based frontal asymmetry in stress responding,” Biol. Psychol. 104, 75–81 (2015).
[Crossref] [PubMed]

A. F. Arnsten, M. A. Raskind, F. B. Taylor, and D. F. Connor, “The effects of stress exposure on prefrontal cortex: translating basic research into successful treatments for post-traumatic stress disorder,” Neurobiol. Stress 1, 89–99 (2015).
[Crossref] [PubMed]

2014 (2)

F. Tian, A. Yennu, A. Smith-Osborne, F. Gonzalez-Lima, C. S. North, and H. Liu, “Prefrontal responses to digit span memory phases in patients with post-traumatic stress disorder (PTSD): a functional near infrared spectroscopy study,” Neuroimage Clin. 4, 808–819 (2014).
[Crossref] [PubMed]

F. Putze, S. Hesslinger, C. Y. Tse, Y. Huang, C. Herff, C. Guan, and T. Schultz, “Hybrid fNIRS-EEG based classification of auditory and visual perception processes,” Front. Neurosci. 8, 373 (2014).
[Crossref] [PubMed]

2013 (4)

B. Leuner and T. J. Shors, “Stress, anxiety, and dendritic spines: what are the connections?” Neuroscience 251(1), 108–119 (2013).
[Crossref] [PubMed]

S. Heinzel, F. B. Haeussinger, T. Hahn, A.-C. Ehlis, M. M. Plichta, and A. J. Fallgatter, “Variability of (functional) hemodynamics as measured with simultaneous fNIRS and fMRI during intertemporal choice,” Neuroimage 71(1), 125–134 (2013).
[Crossref] [PubMed]

H. Sato, N. Yahata, T. Funane, R. Takizawa, T. Katura, H. Atsumori, Y. Nishimura, A. Kinoshita, M. Kiguchi, H. Koizumi, M. Fukuda, and K. Kasai, “A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task,” Neuroimage 83(1), 158–173 (2013).
[Crossref] [PubMed]

T. Jovanovic, T. Ely, N. Fani, E. M. Glover, D. Gutman, E. B. Tone, S. D. Norrholm, B. Bradley, and K. J. Ressler, “Reduced neural activation during an inhibition task is associated with impaired fear inhibition in a traumatized civilian sample,” Cortex 49(7), 1884–1891 (2013).
[Crossref] [PubMed]

2012 (4)

H. Ayaz, P. A. Shewokis, S. Bunce, K. Izzetoglu, B. Willems, and B. Onaral, “Optical brain monitoring for operator training and mental workload assessment,” Neuroimage 59(1), 36–47 (2012).
[Crossref] [PubMed]

K. Starcke and M. Brand, “Decision making under stress: a selective review,” Neurosci. Biobehav. Rev. 36(4), 1228–1248 (2012).
[Crossref] [PubMed]

Z. Wang, R. M. Hope, Z. Wang, Q. Ji, and W. D. Gray, “Cross-subject workload classification with a hierarchical Bayes model,” Neuroimage 59(1), 64–69 (2012).
[Crossref] [PubMed]

C. Zhao, M. Zhao, J. Liu, and C. Zheng, “Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator,” Accid. Anal. Prev. 45, 83–90 (2012).
[Crossref] [PubMed]

2011 (4)

T. Gandhi, B. K. Panigrahi, and S. Anand, “A comparative study of wavelet families for EEG signal classification,” Neurocomputing 74(17), 3051–3057 (2011).
[Crossref]

C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011).
[Crossref]

A. F. Arnsten, “Prefrontal cortical network connections: key site of vulnerability in stress and schizophrenia,” Int. J. Dev. Neurosci. 29(3), 215–223 (2011).
[Crossref] [PubMed]

L. Ossewaarde, S. Qin, H. J. Van Marle, G. A. van Wingen, G. Fernández, and E. J. Hermans, “Stress-induced reduction in reward-related prefrontal cortex function,” Neuroimage 55(1), 345–352 (2011).
[Crossref] [PubMed]

2010 (1)

N. M. Correa, T. Adali, Y.-O. Li, and V. D. Calhoun, “Canonical correlation analysis for data fusion and group inferences,” IEEE Signal Process. Mag. 27(4), 39–50 (2010).
[Crossref] [PubMed]

2009 (6)

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

C. Liston, B. S. McEwen, and B. J. Casey, “Psychosocial stress reversibly disrupts prefrontal processing and attentional control,” Proc. Natl. Acad. Sci. U.S.A. 106(3), 912–917 (2009).
[Crossref] [PubMed]

A. F. Arnsten, “Stress signalling pathways that impair prefrontal cortex structure and function,” Nat. Rev. Neurosci. 10(6), 410–422 (2009).
[Crossref] [PubMed]

K. Dedovic, C. D’Aguiar, and J. C. Pruessner, “What stress does to your brain: a review of neuroimaging studies,” Can. J. Psychiatry 54(1), 6–15 (2009).
[Crossref] [PubMed]

Y.-O. Li, T. Adalı, W. Wang, and V. D. Calhoun, “Joint blind source separation by multiset canonical correlation analysis,” IEEE Trans. Signal Process. 57(10), 3918–3929 (2009).
[Crossref] [PubMed]

S. Qin, E. J. Hermans, H. J. van Marle, J. Luo, and G. Fernández, “Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex,” Biol. Psychiatry 66(1), 25–32 (2009).
[Crossref] [PubMed]

2008 (3)

A. M. Hansen, A. H. Garde, and R. Persson, “Sources of biological and methodological variation in salivary cortisol and their impact on measurement among healthy adults: a review,” Scand. J. Clin. Lab. Invest. 68(6), 448–458 (2008).
[Crossref] [PubMed]

J. C. Pruessner, K. Dedovic, N. Khalili-Mahani, V. Engert, M. Pruessner, C. Buss, R. Renwick, A. Dagher, M. J. Meaney, and S. Lupien, “Deactivation of the limbic system during acute psychosocial stress: evidence from positron emission tomography and functional magnetic resonance imaging studies,” Biol. Psychiatry 63(2), 234–240 (2008).
[Crossref] [PubMed]

N. M. Correa, Y.-O. Li, T. Adalı, and V. D. Calhoun, “Canonical correlation analysis for feature-based fusion of biomedical imaging modalities and its application to detection of associative networks in schizophrenia,” IEEE J. Sel. Top. Signal Process. 2(6), 998–1007 (2008).
[Crossref] [PubMed]

2007 (4)

D. Mantini, M. G. Perrucci, C. Del Gratta, G. L. Romani, and M. Corbetta, “Electrophysiological signatures of resting state networks in the human brain,” Proc. Natl. Acad. Sci. U.S.A. 104(32), 13170–13175 (2007).
[Crossref] [PubMed]

K.-Q. Shen, C.-J. Ong, X.-P. Li, Z. Hui, and E. P. Wilder-Smith, “A feature selection method for multilevel mental fatigue EEG classification,” IEEE Trans. Biomed. Eng. 54(7), 1231–1237 (2007).
[Crossref] [PubMed]

R. S. Lewis, N. Y. Weekes, and T. H. Wang, “The effect of a naturalistic stressor on frontal EEG asymmetry, stress, and health,” Biol. Psychol. 75(3), 239–247 (2007).
[Crossref] [PubMed]

M. M. Plichta, S. Heinzel, A.-C. Ehlis, P. Pauli, and A. J. Fallgatter, “Model-based analysis of rapid event-related functional near-infrared spectroscopy (NIRS) data: a parametric validation study,” Neuroimage 35(2), 625–634 (2007).
[Crossref] [PubMed]

2006 (3)

M. Tops, J. M. van Peer, A. E. Wester, A. A. Wijers, and J. Korf, “State-dependent regulation of cortical activity by cortisol: an EEG study,” Neurosci. Lett. 404(1-2), 39–43 (2006).
[Crossref] [PubMed]

R. Thibodeau, R. S. Jorgensen, and S. Kim, “Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review,” J. Abnorm. Psychol. 115(4), 715–729 (2006).
[Crossref] [PubMed]

M. L. Schroeter, T. Kupka, T. Mildner, K. Uludağ, and D. Y. von Cramon, “Investigating the post-stimulus undershoot of the BOLD signal--a simultaneous fMRI and fNIRS study,” Neuroimage 30(2), 349–358 (2006).
[Crossref] [PubMed]

2005 (4)

Q.-S. Sun, S.-G. Zeng, Y. Liu, P.-A. Heng, and D.-S. Xia, “A new method of feature fusion and its application in image recognition,” Pattern Recognit. 38(12), 2437–2448 (2005).
[Crossref]

K. Dedovic, R. Renwick, N. K. Mahani, V. Engert, S. J. Lupien, and J. C. Pruessner, “The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain,” J. Psychiatry Neurosci. 30(5), 319–325 (2005).
[PubMed]

J. Wang, H. Rao, G. S. Wetmore, P. M. Furlan, M. Korczykowski, D. F. Dinges, and J. A. Detre, “Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17804–17809 (2005).
[Crossref] [PubMed]

C. Hammen, “Stress and depression,” Annu. Rev. Clin. Psychol. 1(1), 293–319 (2005).
[Crossref] [PubMed]

2004 (2)

S. Bishop, J. Duncan, M. Brett, and A. D. Lawrence, “Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli,” Nat. Neurosci. 7(2), 184–188 (2004).
[Crossref] [PubMed]

A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis,” J. Neurosci. Methods 134(1), 9–21 (2004).
[Crossref] [PubMed]

1998 (1)

A. F. Arnsten and P. S. Goldman-Rakic, “Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism,” Arch. Gen. Psychiatry 55(4), 362–368 (1998).
[Crossref] [PubMed]

1993 (2)

A. W. Gaillard, “Comparing the concepts of mental load and stress,” Ergonomics 36(9), 991–1005 (1993).
[Crossref] [PubMed]

R. E. Wheeler, R. J. Davidson, and A. J. Tomarken, “Frontal brain asymmetry and emotional reactivity: a biological substrate of affective style,” Psychophysiology 30(1), 82–89 (1993).
[Crossref] [PubMed]

Adali, T.

N. M. Correa, T. Adali, Y.-O. Li, and V. D. Calhoun, “Canonical correlation analysis for data fusion and group inferences,” IEEE Signal Process. Mag. 27(4), 39–50 (2010).
[Crossref] [PubMed]

Y.-O. Li, T. Adalı, W. Wang, and V. D. Calhoun, “Joint blind source separation by multiset canonical correlation analysis,” IEEE Trans. Signal Process. 57(10), 3918–3929 (2009).
[Crossref] [PubMed]

N. M. Correa, Y.-O. Li, T. Adalı, and V. D. Calhoun, “Canonical correlation analysis for feature-based fusion of biomedical imaging modalities and its application to detection of associative networks in schizophrenia,” IEEE J. Sel. Top. Signal Process. 2(6), 998–1007 (2008).
[Crossref] [PubMed]

Al-Shargie, F.

Anand, S.

T. Gandhi, B. K. Panigrahi, and S. Anand, “A comparative study of wavelet families for EEG signal classification,” Neurocomputing 74(17), 3051–3057 (2011).
[Crossref]

Arnsten, A. F.

A. F. Arnsten, M. A. Raskind, F. B. Taylor, and D. F. Connor, “The effects of stress exposure on prefrontal cortex: translating basic research into successful treatments for post-traumatic stress disorder,” Neurobiol. Stress 1, 89–99 (2015).
[Crossref] [PubMed]

A. F. Arnsten, “Stress weakens prefrontal networks: molecular insults to higher cognition,” Nat. Neurosci. 18(10), 1376–1385 (2015).
[Crossref] [PubMed]

A. F. Arnsten, “Prefrontal cortical network connections: key site of vulnerability in stress and schizophrenia,” Int. J. Dev. Neurosci. 29(3), 215–223 (2011).
[Crossref] [PubMed]

A. F. Arnsten, “Stress signalling pathways that impair prefrontal cortex structure and function,” Nat. Rev. Neurosci. 10(6), 410–422 (2009).
[Crossref] [PubMed]

A. F. Arnsten and P. S. Goldman-Rakic, “Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism,” Arch. Gen. Psychiatry 55(4), 362–368 (1998).
[Crossref] [PubMed]

Atsumori, H.

S. Sutoko, H. Sato, A. Maki, M. Kiguchi, Y. Hirabayashi, H. Atsumori, A. Obata, T. Funane, and T. Katura, “Tutorial on platform for optical topography analysis tools,” Neurophotonics 3(1), 010801 (2016).
[Crossref] [PubMed]

H. Sato, N. Yahata, T. Funane, R. Takizawa, T. Katura, H. Atsumori, Y. Nishimura, A. Kinoshita, M. Kiguchi, H. Koizumi, M. Fukuda, and K. Kasai, “A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task,” Neuroimage 83(1), 158–173 (2013).
[Crossref] [PubMed]

Ayaz, H.

H. Ayaz, P. A. Shewokis, S. Bunce, K. Izzetoglu, B. Willems, and B. Onaral, “Optical brain monitoring for operator training and mental workload assessment,” Neuroimage 59(1), 36–47 (2012).
[Crossref] [PubMed]

Badruddin, N.

Bartolomei, F.

J.-A. Micoulaud-Franchi, A. McGonigal, R. Lopez, C. Daudet, I. Kotwas, and F. Bartolomei, “Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice,” Neurophysiol. Clin. 45(6), 423–433 (2015).
[Crossref] [PubMed]

Benhadid, A.

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

Bishop, S.

S. Bishop, J. Duncan, M. Brett, and A. D. Lawrence, “Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli,” Nat. Neurosci. 7(2), 184–188 (2004).
[Crossref] [PubMed]

Bradley, B.

T. Jovanovic, T. Ely, N. Fani, E. M. Glover, D. Gutman, E. B. Tone, S. D. Norrholm, B. Bradley, and K. J. Ressler, “Reduced neural activation during an inhibition task is associated with impaired fear inhibition in a traumatized civilian sample,” Cortex 49(7), 1884–1891 (2013).
[Crossref] [PubMed]

Brand, M.

K. Starcke and M. Brand, “Decision making under stress: a selective review,” Neurosci. Biobehav. Rev. 36(4), 1228–1248 (2012).
[Crossref] [PubMed]

Braun, M.

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

Brett, M.

S. Bishop, J. Duncan, M. Brett, and A. D. Lawrence, “Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli,” Nat. Neurosci. 7(2), 184–188 (2004).
[Crossref] [PubMed]

Bronner, S.

J. A. Noah, Y. Ono, Y. Nomoto, S. Shimada, A. Tachibana, X. Zhang, S. Bronner, and J. Hirsch, “fMRI validation of fNIRS measurements during a naturalistic task,” J. Vis. Exp. (100): e52116 (2015).
[PubMed]

Bunce, S.

H. Ayaz, P. A. Shewokis, S. Bunce, K. Izzetoglu, B. Willems, and B. Onaral, “Optical brain monitoring for operator training and mental workload assessment,” Neuroimage 59(1), 36–47 (2012).
[Crossref] [PubMed]

Buss, C.

J. C. Pruessner, K. Dedovic, N. Khalili-Mahani, V. Engert, M. Pruessner, C. Buss, R. Renwick, A. Dagher, M. J. Meaney, and S. Lupien, “Deactivation of the limbic system during acute psychosocial stress: evidence from positron emission tomography and functional magnetic resonance imaging studies,” Biol. Psychiatry 63(2), 234–240 (2008).
[Crossref] [PubMed]

Calhoun, V. D.

N. M. Correa, T. Adali, Y.-O. Li, and V. D. Calhoun, “Canonical correlation analysis for data fusion and group inferences,” IEEE Signal Process. Mag. 27(4), 39–50 (2010).
[Crossref] [PubMed]

Y.-O. Li, T. Adalı, W. Wang, and V. D. Calhoun, “Joint blind source separation by multiset canonical correlation analysis,” IEEE Trans. Signal Process. 57(10), 3918–3929 (2009).
[Crossref] [PubMed]

N. M. Correa, Y.-O. Li, T. Adalı, and V. D. Calhoun, “Canonical correlation analysis for feature-based fusion of biomedical imaging modalities and its application to detection of associative networks in schizophrenia,” IEEE J. Sel. Top. Signal Process. 2(6), 998–1007 (2008).
[Crossref] [PubMed]

Casey, B. J.

C. Liston, B. S. McEwen, and B. J. Casey, “Psychosocial stress reversibly disrupts prefrontal processing and attentional control,” Proc. Natl. Acad. Sci. U.S.A. 106(3), 912–917 (2009).
[Crossref] [PubMed]

Chang, C.-C.

C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011).
[Crossref]

Connor, D. F.

A. F. Arnsten, M. A. Raskind, F. B. Taylor, and D. F. Connor, “The effects of stress exposure on prefrontal cortex: translating basic research into successful treatments for post-traumatic stress disorder,” Neurobiol. Stress 1, 89–99 (2015).
[Crossref] [PubMed]

Corbetta, M.

D. Mantini, M. G. Perrucci, C. Del Gratta, G. L. Romani, and M. Corbetta, “Electrophysiological signatures of resting state networks in the human brain,” Proc. Natl. Acad. Sci. U.S.A. 104(32), 13170–13175 (2007).
[Crossref] [PubMed]

Correa, N. M.

N. M. Correa, T. Adali, Y.-O. Li, and V. D. Calhoun, “Canonical correlation analysis for data fusion and group inferences,” IEEE Signal Process. Mag. 27(4), 39–50 (2010).
[Crossref] [PubMed]

N. M. Correa, Y.-O. Li, T. Adalı, and V. D. Calhoun, “Canonical correlation analysis for feature-based fusion of biomedical imaging modalities and its application to detection of associative networks in schizophrenia,” IEEE J. Sel. Top. Signal Process. 2(6), 998–1007 (2008).
[Crossref] [PubMed]

D’Aguiar, C.

K. Dedovic, C. D’Aguiar, and J. C. Pruessner, “What stress does to your brain: a review of neuroimaging studies,” Can. J. Psychiatry 54(1), 6–15 (2009).
[Crossref] [PubMed]

Dagher, A.

J. C. Pruessner, K. Dedovic, N. Khalili-Mahani, V. Engert, M. Pruessner, C. Buss, R. Renwick, A. Dagher, M. J. Meaney, and S. Lupien, “Deactivation of the limbic system during acute psychosocial stress: evidence from positron emission tomography and functional magnetic resonance imaging studies,” Biol. Psychiatry 63(2), 234–240 (2008).
[Crossref] [PubMed]

Dass, S. C.

Daudet, C.

J.-A. Micoulaud-Franchi, A. McGonigal, R. Lopez, C. Daudet, I. Kotwas, and F. Bartolomei, “Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice,” Neurophysiol. Clin. 45(6), 423–433 (2015).
[Crossref] [PubMed]

Davidson, R. J.

R. E. Wheeler, R. J. Davidson, and A. J. Tomarken, “Frontal brain asymmetry and emotional reactivity: a biological substrate of affective style,” Psychophysiology 30(1), 82–89 (1993).
[Crossref] [PubMed]

Dedovic, K.

K. Dedovic, C. D’Aguiar, and J. C. Pruessner, “What stress does to your brain: a review of neuroimaging studies,” Can. J. Psychiatry 54(1), 6–15 (2009).
[Crossref] [PubMed]

J. C. Pruessner, K. Dedovic, N. Khalili-Mahani, V. Engert, M. Pruessner, C. Buss, R. Renwick, A. Dagher, M. J. Meaney, and S. Lupien, “Deactivation of the limbic system during acute psychosocial stress: evidence from positron emission tomography and functional magnetic resonance imaging studies,” Biol. Psychiatry 63(2), 234–240 (2008).
[Crossref] [PubMed]

K. Dedovic, R. Renwick, N. K. Mahani, V. Engert, S. J. Lupien, and J. C. Pruessner, “The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain,” J. Psychiatry Neurosci. 30(5), 319–325 (2005).
[PubMed]

Del Gratta, C.

D. Mantini, M. G. Perrucci, C. Del Gratta, G. L. Romani, and M. Corbetta, “Electrophysiological signatures of resting state networks in the human brain,” Proc. Natl. Acad. Sci. U.S.A. 104(32), 13170–13175 (2007).
[Crossref] [PubMed]

Delorme, A.

A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis,” J. Neurosci. Methods 134(1), 9–21 (2004).
[Crossref] [PubMed]

Detre, J. A.

J. Wang, H. Rao, G. S. Wetmore, P. M. Furlan, M. Korczykowski, D. F. Dinges, and J. A. Detre, “Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17804–17809 (2005).
[Crossref] [PubMed]

Dinges, D. F.

J. Wang, H. Rao, G. S. Wetmore, P. M. Furlan, M. Korczykowski, D. F. Dinges, and J. A. Detre, “Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17804–17809 (2005).
[Crossref] [PubMed]

Duncan, J.

S. Bishop, J. Duncan, M. Brett, and A. D. Lawrence, “Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli,” Nat. Neurosci. 7(2), 184–188 (2004).
[Crossref] [PubMed]

Ehlis, A.-C.

S. Heinzel, F. B. Haeussinger, T. Hahn, A.-C. Ehlis, M. M. Plichta, and A. J. Fallgatter, “Variability of (functional) hemodynamics as measured with simultaneous fNIRS and fMRI during intertemporal choice,” Neuroimage 71(1), 125–134 (2013).
[Crossref] [PubMed]

M. M. Plichta, S. Heinzel, A.-C. Ehlis, P. Pauli, and A. J. Fallgatter, “Model-based analysis of rapid event-related functional near-infrared spectroscopy (NIRS) data: a parametric validation study,” Neuroimage 35(2), 625–634 (2007).
[Crossref] [PubMed]

Ely, T.

T. Jovanovic, T. Ely, N. Fani, E. M. Glover, D. Gutman, E. B. Tone, S. D. Norrholm, B. Bradley, and K. J. Ressler, “Reduced neural activation during an inhibition task is associated with impaired fear inhibition in a traumatized civilian sample,” Cortex 49(7), 1884–1891 (2013).
[Crossref] [PubMed]

Engert, V.

J. C. Pruessner, K. Dedovic, N. Khalili-Mahani, V. Engert, M. Pruessner, C. Buss, R. Renwick, A. Dagher, M. J. Meaney, and S. Lupien, “Deactivation of the limbic system during acute psychosocial stress: evidence from positron emission tomography and functional magnetic resonance imaging studies,” Biol. Psychiatry 63(2), 234–240 (2008).
[Crossref] [PubMed]

K. Dedovic, R. Renwick, N. K. Mahani, V. Engert, S. J. Lupien, and J. C. Pruessner, “The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain,” J. Psychiatry Neurosci. 30(5), 319–325 (2005).
[PubMed]

Fallgatter, A. J.

S. Heinzel, F. B. Haeussinger, T. Hahn, A.-C. Ehlis, M. M. Plichta, and A. J. Fallgatter, “Variability of (functional) hemodynamics as measured with simultaneous fNIRS and fMRI during intertemporal choice,” Neuroimage 71(1), 125–134 (2013).
[Crossref] [PubMed]

M. M. Plichta, S. Heinzel, A.-C. Ehlis, P. Pauli, and A. J. Fallgatter, “Model-based analysis of rapid event-related functional near-infrared spectroscopy (NIRS) data: a parametric validation study,” Neuroimage 35(2), 625–634 (2007).
[Crossref] [PubMed]

Fani, N.

T. Jovanovic, T. Ely, N. Fani, E. M. Glover, D. Gutman, E. B. Tone, S. D. Norrholm, B. Bradley, and K. J. Ressler, “Reduced neural activation during an inhibition task is associated with impaired fear inhibition in a traumatized civilian sample,” Cortex 49(7), 1884–1891 (2013).
[Crossref] [PubMed]

Felblinger, J.

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

Fernández, G.

L. Ossewaarde, S. Qin, H. J. Van Marle, G. A. van Wingen, G. Fernández, and E. J. Hermans, “Stress-induced reduction in reward-related prefrontal cortex function,” Neuroimage 55(1), 345–352 (2011).
[Crossref] [PubMed]

S. Qin, E. J. Hermans, H. J. van Marle, J. Luo, and G. Fernández, “Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex,” Biol. Psychiatry 66(1), 25–32 (2009).
[Crossref] [PubMed]

Fukuda, M.

H. Sato, N. Yahata, T. Funane, R. Takizawa, T. Katura, H. Atsumori, Y. Nishimura, A. Kinoshita, M. Kiguchi, H. Koizumi, M. Fukuda, and K. Kasai, “A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task,” Neuroimage 83(1), 158–173 (2013).
[Crossref] [PubMed]

Funane, T.

S. Sutoko, H. Sato, A. Maki, M. Kiguchi, Y. Hirabayashi, H. Atsumori, A. Obata, T. Funane, and T. Katura, “Tutorial on platform for optical topography analysis tools,” Neurophotonics 3(1), 010801 (2016).
[Crossref] [PubMed]

H. Sato, N. Yahata, T. Funane, R. Takizawa, T. Katura, H. Atsumori, Y. Nishimura, A. Kinoshita, M. Kiguchi, H. Koizumi, M. Fukuda, and K. Kasai, “A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task,” Neuroimage 83(1), 158–173 (2013).
[Crossref] [PubMed]

Furlan, P. M.

J. Wang, H. Rao, G. S. Wetmore, P. M. Furlan, M. Korczykowski, D. F. Dinges, and J. A. Detre, “Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17804–17809 (2005).
[Crossref] [PubMed]

Gaillard, A. W.

A. W. Gaillard, “Comparing the concepts of mental load and stress,” Ergonomics 36(9), 991–1005 (1993).
[Crossref] [PubMed]

Gandhi, T.

T. Gandhi, B. K. Panigrahi, and S. Anand, “A comparative study of wavelet families for EEG signal classification,” Neurocomputing 74(17), 3051–3057 (2011).
[Crossref]

Garde, A. H.

A. M. Hansen, A. H. Garde, and R. Persson, “Sources of biological and methodological variation in salivary cortisol and their impact on measurement among healthy adults: a review,” Scand. J. Clin. Lab. Invest. 68(6), 448–458 (2008).
[Crossref] [PubMed]

Glover, E. M.

T. Jovanovic, T. Ely, N. Fani, E. M. Glover, D. Gutman, E. B. Tone, S. D. Norrholm, B. Bradley, and K. J. Ressler, “Reduced neural activation during an inhibition task is associated with impaired fear inhibition in a traumatized civilian sample,” Cortex 49(7), 1884–1891 (2013).
[Crossref] [PubMed]

Goldman-Rakic, P. S.

A. F. Arnsten and P. S. Goldman-Rakic, “Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism,” Arch. Gen. Psychiatry 55(4), 362–368 (1998).
[Crossref] [PubMed]

Gonzalez-Lima, F.

F. Tian, A. Yennu, A. Smith-Osborne, F. Gonzalez-Lima, C. S. North, and H. Liu, “Prefrontal responses to digit span memory phases in patients with post-traumatic stress disorder (PTSD): a functional near infrared spectroscopy study,” Neuroimage Clin. 4, 808–819 (2014).
[Crossref] [PubMed]

Gray, W. D.

Z. Wang, R. M. Hope, Z. Wang, Q. Ji, and W. D. Gray, “Cross-subject workload classification with a hierarchical Bayes model,” Neuroimage 59(1), 64–69 (2012).
[Crossref] [PubMed]

Guan, C.

F. Putze, S. Hesslinger, C. Y. Tse, Y. Huang, C. Herff, C. Guan, and T. Schultz, “Hybrid fNIRS-EEG based classification of auditory and visual perception processes,” Front. Neurosci. 8, 373 (2014).
[Crossref] [PubMed]

Gutman, D.

T. Jovanovic, T. Ely, N. Fani, E. M. Glover, D. Gutman, E. B. Tone, S. D. Norrholm, B. Bradley, and K. J. Ressler, “Reduced neural activation during an inhibition task is associated with impaired fear inhibition in a traumatized civilian sample,” Cortex 49(7), 1884–1891 (2013).
[Crossref] [PubMed]

Haeussinger, F. B.

S. Heinzel, F. B. Haeussinger, T. Hahn, A.-C. Ehlis, M. M. Plichta, and A. J. Fallgatter, “Variability of (functional) hemodynamics as measured with simultaneous fNIRS and fMRI during intertemporal choice,” Neuroimage 71(1), 125–134 (2013).
[Crossref] [PubMed]

Hahn, T.

S. Heinzel, F. B. Haeussinger, T. Hahn, A.-C. Ehlis, M. M. Plichta, and A. J. Fallgatter, “Variability of (functional) hemodynamics as measured with simultaneous fNIRS and fMRI during intertemporal choice,” Neuroimage 71(1), 125–134 (2013).
[Crossref] [PubMed]

Hammen, C.

C. Hammen, “Stress and depression,” Annu. Rev. Clin. Psychol. 1(1), 293–319 (2005).
[Crossref] [PubMed]

Hani, A. F. M.

Hansen, A. M.

A. M. Hansen, A. H. Garde, and R. Persson, “Sources of biological and methodological variation in salivary cortisol and their impact on measurement among healthy adults: a review,” Scand. J. Clin. Lab. Invest. 68(6), 448–458 (2008).
[Crossref] [PubMed]

Heinzel, S.

S. Heinzel, F. B. Haeussinger, T. Hahn, A.-C. Ehlis, M. M. Plichta, and A. J. Fallgatter, “Variability of (functional) hemodynamics as measured with simultaneous fNIRS and fMRI during intertemporal choice,” Neuroimage 71(1), 125–134 (2013).
[Crossref] [PubMed]

M. M. Plichta, S. Heinzel, A.-C. Ehlis, P. Pauli, and A. J. Fallgatter, “Model-based analysis of rapid event-related functional near-infrared spectroscopy (NIRS) data: a parametric validation study,” Neuroimage 35(2), 625–634 (2007).
[Crossref] [PubMed]

Heng, P.-A.

Q.-S. Sun, S.-G. Zeng, Y. Liu, P.-A. Heng, and D.-S. Xia, “A new method of feature fusion and its application in image recognition,” Pattern Recognit. 38(12), 2437–2448 (2005).
[Crossref]

Herff, C.

F. Putze, S. Hesslinger, C. Y. Tse, Y. Huang, C. Herff, C. Guan, and T. Schultz, “Hybrid fNIRS-EEG based classification of auditory and visual perception processes,” Front. Neurosci. 8, 373 (2014).
[Crossref] [PubMed]

Hermans, E. J.

L. Ossewaarde, S. Qin, H. J. Van Marle, G. A. van Wingen, G. Fernández, and E. J. Hermans, “Stress-induced reduction in reward-related prefrontal cortex function,” Neuroimage 55(1), 345–352 (2011).
[Crossref] [PubMed]

S. Qin, E. J. Hermans, H. J. van Marle, J. Luo, and G. Fernández, “Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex,” Biol. Psychiatry 66(1), 25–32 (2009).
[Crossref] [PubMed]

Hesslinger, S.

F. Putze, S. Hesslinger, C. Y. Tse, Y. Huang, C. Herff, C. Guan, and T. Schultz, “Hybrid fNIRS-EEG based classification of auditory and visual perception processes,” Front. Neurosci. 8, 373 (2014).
[Crossref] [PubMed]

Hirabayashi, Y.

S. Sutoko, H. Sato, A. Maki, M. Kiguchi, Y. Hirabayashi, H. Atsumori, A. Obata, T. Funane, and T. Katura, “Tutorial on platform for optical topography analysis tools,” Neurophotonics 3(1), 010801 (2016).
[Crossref] [PubMed]

Hirsch, J.

J. A. Noah, Y. Ono, Y. Nomoto, S. Shimada, A. Tachibana, X. Zhang, S. Bronner, and J. Hirsch, “fMRI validation of fNIRS measurements during a naturalistic task,” J. Vis. Exp. (100): e52116 (2015).
[PubMed]

Hope, R. M.

Z. Wang, R. M. Hope, Z. Wang, Q. Ji, and W. D. Gray, “Cross-subject workload classification with a hierarchical Bayes model,” Neuroimage 59(1), 64–69 (2012).
[Crossref] [PubMed]

Huang, Y.

F. Putze, S. Hesslinger, C. Y. Tse, Y. Huang, C. Herff, C. Guan, and T. Schultz, “Hybrid fNIRS-EEG based classification of auditory and visual perception processes,” Front. Neurosci. 8, 373 (2014).
[Crossref] [PubMed]

Hui, Z.

K.-Q. Shen, C.-J. Ong, X.-P. Li, Z. Hui, and E. P. Wilder-Smith, “A feature selection method for multilevel mental fatigue EEG classification,” IEEE Trans. Biomed. Eng. 54(7), 1231–1237 (2007).
[Crossref] [PubMed]

Izzetoglu, K.

H. Ayaz, P. A. Shewokis, S. Bunce, K. Izzetoglu, B. Willems, and B. Onaral, “Optical brain monitoring for operator training and mental workload assessment,” Neuroimage 59(1), 36–47 (2012).
[Crossref] [PubMed]

Ji, Q.

Z. Wang, R. M. Hope, Z. Wang, Q. Ji, and W. D. Gray, “Cross-subject workload classification with a hierarchical Bayes model,” Neuroimage 59(1), 64–69 (2012).
[Crossref] [PubMed]

Jorgensen, R. S.

R. Thibodeau, R. S. Jorgensen, and S. Kim, “Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review,” J. Abnorm. Psychol. 115(4), 715–729 (2006).
[Crossref] [PubMed]

Jovanovic, T.

T. Jovanovic, T. Ely, N. Fani, E. M. Glover, D. Gutman, E. B. Tone, S. D. Norrholm, B. Bradley, and K. J. Ressler, “Reduced neural activation during an inhibition task is associated with impaired fear inhibition in a traumatized civilian sample,” Cortex 49(7), 1884–1891 (2013).
[Crossref] [PubMed]

Kane, J. H.

M. S. Sherwood, J. H. Kane, M. P. Weisend, and J. G. Parker, “Enhanced control of dorsolateral prefrontal cortex neurophysiology with real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback training and working memory practice,” Neuroimage 124(Pt A), 214–223 (2016).
[Crossref] [PubMed]

Kasai, K.

H. Sato, N. Yahata, T. Funane, R. Takizawa, T. Katura, H. Atsumori, Y. Nishimura, A. Kinoshita, M. Kiguchi, H. Koizumi, M. Fukuda, and K. Kasai, “A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task,” Neuroimage 83(1), 158–173 (2013).
[Crossref] [PubMed]

Katura, T.

S. Sutoko, H. Sato, A. Maki, M. Kiguchi, Y. Hirabayashi, H. Atsumori, A. Obata, T. Funane, and T. Katura, “Tutorial on platform for optical topography analysis tools,” Neurophotonics 3(1), 010801 (2016).
[Crossref] [PubMed]

H. Sato, N. Yahata, T. Funane, R. Takizawa, T. Katura, H. Atsumori, Y. Nishimura, A. Kinoshita, M. Kiguchi, H. Koizumi, M. Fukuda, and K. Kasai, “A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task,” Neuroimage 83(1), 158–173 (2013).
[Crossref] [PubMed]

Khalili-Mahani, N.

J. C. Pruessner, K. Dedovic, N. Khalili-Mahani, V. Engert, M. Pruessner, C. Buss, R. Renwick, A. Dagher, M. J. Meaney, and S. Lupien, “Deactivation of the limbic system during acute psychosocial stress: evidence from positron emission tomography and functional magnetic resonance imaging studies,” Biol. Psychiatry 63(2), 234–240 (2008).
[Crossref] [PubMed]

Kiguchi, M.

S. Sutoko, H. Sato, A. Maki, M. Kiguchi, Y. Hirabayashi, H. Atsumori, A. Obata, T. Funane, and T. Katura, “Tutorial on platform for optical topography analysis tools,” Neurophotonics 3(1), 010801 (2016).
[Crossref] [PubMed]

F. Al-Shargie, M. Kiguchi, N. Badruddin, S. C. Dass, A. F. M. Hani, and T. B. Tang, “Mental stress assessment using simultaneous measurement of EEG and fNIRS,” Biomed. Opt. Express 7(10), 3882–3898 (2016).
[Crossref] [PubMed]

H. Sato, N. Yahata, T. Funane, R. Takizawa, T. Katura, H. Atsumori, Y. Nishimura, A. Kinoshita, M. Kiguchi, H. Koizumi, M. Fukuda, and K. Kasai, “A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task,” Neuroimage 83(1), 158–173 (2013).
[Crossref] [PubMed]

Kim, S.

R. Thibodeau, R. S. Jorgensen, and S. Kim, “Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review,” J. Abnorm. Psychol. 115(4), 715–729 (2006).
[Crossref] [PubMed]

Kinoshita, A.

H. Sato, N. Yahata, T. Funane, R. Takizawa, T. Katura, H. Atsumori, Y. Nishimura, A. Kinoshita, M. Kiguchi, H. Koizumi, M. Fukuda, and K. Kasai, “A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task,” Neuroimage 83(1), 158–173 (2013).
[Crossref] [PubMed]

Koessler, L.

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

Koizumi, H.

H. Sato, N. Yahata, T. Funane, R. Takizawa, T. Katura, H. Atsumori, Y. Nishimura, A. Kinoshita, M. Kiguchi, H. Koizumi, M. Fukuda, and K. Kasai, “A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task,” Neuroimage 83(1), 158–173 (2013).
[Crossref] [PubMed]

Korczykowski, M.

J. Wang, H. Rao, G. S. Wetmore, P. M. Furlan, M. Korczykowski, D. F. Dinges, and J. A. Detre, “Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17804–17809 (2005).
[Crossref] [PubMed]

Korf, J.

M. Tops, J. M. van Peer, A. E. Wester, A. A. Wijers, and J. Korf, “State-dependent regulation of cortical activity by cortisol: an EEG study,” Neurosci. Lett. 404(1-2), 39–43 (2006).
[Crossref] [PubMed]

Kotwas, I.

J.-A. Micoulaud-Franchi, A. McGonigal, R. Lopez, C. Daudet, I. Kotwas, and F. Bartolomei, “Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice,” Neurophysiol. Clin. 45(6), 423–433 (2015).
[Crossref] [PubMed]

Kupka, T.

M. L. Schroeter, T. Kupka, T. Mildner, K. Uludağ, and D. Y. von Cramon, “Investigating the post-stimulus undershoot of the BOLD signal--a simultaneous fMRI and fNIRS study,” Neuroimage 30(2), 349–358 (2006).
[Crossref] [PubMed]

Lawrence, A. D.

S. Bishop, J. Duncan, M. Brett, and A. D. Lawrence, “Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli,” Nat. Neurosci. 7(2), 184–188 (2004).
[Crossref] [PubMed]

Leuner, B.

B. Leuner and T. J. Shors, “Stress, anxiety, and dendritic spines: what are the connections?” Neuroscience 251(1), 108–119 (2013).
[Crossref] [PubMed]

Lewis, R. S.

R. S. Lewis, N. Y. Weekes, and T. H. Wang, “The effect of a naturalistic stressor on frontal EEG asymmetry, stress, and health,” Biol. Psychol. 75(3), 239–247 (2007).
[Crossref] [PubMed]

Li, X.-P.

K.-Q. Shen, C.-J. Ong, X.-P. Li, Z. Hui, and E. P. Wilder-Smith, “A feature selection method for multilevel mental fatigue EEG classification,” IEEE Trans. Biomed. Eng. 54(7), 1231–1237 (2007).
[Crossref] [PubMed]

Li, Y.-O.

N. M. Correa, T. Adali, Y.-O. Li, and V. D. Calhoun, “Canonical correlation analysis for data fusion and group inferences,” IEEE Signal Process. Mag. 27(4), 39–50 (2010).
[Crossref] [PubMed]

Y.-O. Li, T. Adalı, W. Wang, and V. D. Calhoun, “Joint blind source separation by multiset canonical correlation analysis,” IEEE Trans. Signal Process. 57(10), 3918–3929 (2009).
[Crossref] [PubMed]

N. M. Correa, Y.-O. Li, T. Adalı, and V. D. Calhoun, “Canonical correlation analysis for feature-based fusion of biomedical imaging modalities and its application to detection of associative networks in schizophrenia,” IEEE J. Sel. Top. Signal Process. 2(6), 998–1007 (2008).
[Crossref] [PubMed]

Lifshitz, M.

R. T. Thibault, M. Lifshitz, and A. Raz, “The self-regulating brain and neurofeedback: Experimental science and clinical promise,” Cortex 74(1), 247–261 (2016).
[Crossref] [PubMed]

Lin, C.-J.

C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011).
[Crossref]

Liston, C.

C. Liston, B. S. McEwen, and B. J. Casey, “Psychosocial stress reversibly disrupts prefrontal processing and attentional control,” Proc. Natl. Acad. Sci. U.S.A. 106(3), 912–917 (2009).
[Crossref] [PubMed]

Liu, H.

F. Tian, A. Yennu, A. Smith-Osborne, F. Gonzalez-Lima, C. S. North, and H. Liu, “Prefrontal responses to digit span memory phases in patients with post-traumatic stress disorder (PTSD): a functional near infrared spectroscopy study,” Neuroimage Clin. 4, 808–819 (2014).
[Crossref] [PubMed]

Liu, J.

C. Zhao, M. Zhao, J. Liu, and C. Zheng, “Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator,” Accid. Anal. Prev. 45, 83–90 (2012).
[Crossref] [PubMed]

Liu, Y.

Q.-S. Sun, S.-G. Zeng, Y. Liu, P.-A. Heng, and D.-S. Xia, “A new method of feature fusion and its application in image recognition,” Pattern Recognit. 38(12), 2437–2448 (2005).
[Crossref]

Lopez, R.

J.-A. Micoulaud-Franchi, A. McGonigal, R. Lopez, C. Daudet, I. Kotwas, and F. Bartolomei, “Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice,” Neurophysiol. Clin. 45(6), 423–433 (2015).
[Crossref] [PubMed]

Luo, J.

S. Qin, E. J. Hermans, H. J. van Marle, J. Luo, and G. Fernández, “Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex,” Biol. Psychiatry 66(1), 25–32 (2009).
[Crossref] [PubMed]

Lupien, S.

J. C. Pruessner, K. Dedovic, N. Khalili-Mahani, V. Engert, M. Pruessner, C. Buss, R. Renwick, A. Dagher, M. J. Meaney, and S. Lupien, “Deactivation of the limbic system during acute psychosocial stress: evidence from positron emission tomography and functional magnetic resonance imaging studies,” Biol. Psychiatry 63(2), 234–240 (2008).
[Crossref] [PubMed]

Lupien, S. J.

K. Dedovic, R. Renwick, N. K. Mahani, V. Engert, S. J. Lupien, and J. C. Pruessner, “The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain,” J. Psychiatry Neurosci. 30(5), 319–325 (2005).
[PubMed]

Mahani, N. K.

K. Dedovic, R. Renwick, N. K. Mahani, V. Engert, S. J. Lupien, and J. C. Pruessner, “The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain,” J. Psychiatry Neurosci. 30(5), 319–325 (2005).
[PubMed]

Maillard, L.

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

Makeig, S.

A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis,” J. Neurosci. Methods 134(1), 9–21 (2004).
[Crossref] [PubMed]

Maki, A.

S. Sutoko, H. Sato, A. Maki, M. Kiguchi, Y. Hirabayashi, H. Atsumori, A. Obata, T. Funane, and T. Katura, “Tutorial on platform for optical topography analysis tools,” Neurophotonics 3(1), 010801 (2016).
[Crossref] [PubMed]

Mantini, D.

D. Mantini, M. G. Perrucci, C. Del Gratta, G. L. Romani, and M. Corbetta, “Electrophysiological signatures of resting state networks in the human brain,” Proc. Natl. Acad. Sci. U.S.A. 104(32), 13170–13175 (2007).
[Crossref] [PubMed]

McEwen, B. S.

C. Liston, B. S. McEwen, and B. J. Casey, “Psychosocial stress reversibly disrupts prefrontal processing and attentional control,” Proc. Natl. Acad. Sci. U.S.A. 106(3), 912–917 (2009).
[Crossref] [PubMed]

McGonigal, A.

J.-A. Micoulaud-Franchi, A. McGonigal, R. Lopez, C. Daudet, I. Kotwas, and F. Bartolomei, “Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice,” Neurophysiol. Clin. 45(6), 423–433 (2015).
[Crossref] [PubMed]

Meaney, M. J.

J. C. Pruessner, K. Dedovic, N. Khalili-Mahani, V. Engert, M. Pruessner, C. Buss, R. Renwick, A. Dagher, M. J. Meaney, and S. Lupien, “Deactivation of the limbic system during acute psychosocial stress: evidence from positron emission tomography and functional magnetic resonance imaging studies,” Biol. Psychiatry 63(2), 234–240 (2008).
[Crossref] [PubMed]

Meyer, T.

C. W. Quaedflieg, T. Meyer, F. T. Smulders, and T. Smeets, “The functional role of individual-alpha based frontal asymmetry in stress responding,” Biol. Psychol. 104, 75–81 (2015).
[Crossref] [PubMed]

Micoulaud-Franchi, J.-A.

J.-A. Micoulaud-Franchi, A. McGonigal, R. Lopez, C. Daudet, I. Kotwas, and F. Bartolomei, “Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice,” Neurophysiol. Clin. 45(6), 423–433 (2015).
[Crossref] [PubMed]

Mildner, T.

M. L. Schroeter, T. Kupka, T. Mildner, K. Uludağ, and D. Y. von Cramon, “Investigating the post-stimulus undershoot of the BOLD signal--a simultaneous fMRI and fNIRS study,” Neuroimage 30(2), 349–358 (2006).
[Crossref] [PubMed]

Nishimura, Y.

H. Sato, N. Yahata, T. Funane, R. Takizawa, T. Katura, H. Atsumori, Y. Nishimura, A. Kinoshita, M. Kiguchi, H. Koizumi, M. Fukuda, and K. Kasai, “A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task,” Neuroimage 83(1), 158–173 (2013).
[Crossref] [PubMed]

Noah, J. A.

J. A. Noah, Y. Ono, Y. Nomoto, S. Shimada, A. Tachibana, X. Zhang, S. Bronner, and J. Hirsch, “fMRI validation of fNIRS measurements during a naturalistic task,” J. Vis. Exp. (100): e52116 (2015).
[PubMed]

Nomoto, Y.

J. A. Noah, Y. Ono, Y. Nomoto, S. Shimada, A. Tachibana, X. Zhang, S. Bronner, and J. Hirsch, “fMRI validation of fNIRS measurements during a naturalistic task,” J. Vis. Exp. (100): e52116 (2015).
[PubMed]

Norrholm, S. D.

T. Jovanovic, T. Ely, N. Fani, E. M. Glover, D. Gutman, E. B. Tone, S. D. Norrholm, B. Bradley, and K. J. Ressler, “Reduced neural activation during an inhibition task is associated with impaired fear inhibition in a traumatized civilian sample,” Cortex 49(7), 1884–1891 (2013).
[Crossref] [PubMed]

North, C. S.

F. Tian, A. Yennu, A. Smith-Osborne, F. Gonzalez-Lima, C. S. North, and H. Liu, “Prefrontal responses to digit span memory phases in patients with post-traumatic stress disorder (PTSD): a functional near infrared spectroscopy study,” Neuroimage Clin. 4, 808–819 (2014).
[Crossref] [PubMed]

Obata, A.

S. Sutoko, H. Sato, A. Maki, M. Kiguchi, Y. Hirabayashi, H. Atsumori, A. Obata, T. Funane, and T. Katura, “Tutorial on platform for optical topography analysis tools,” Neurophotonics 3(1), 010801 (2016).
[Crossref] [PubMed]

Onaral, B.

H. Ayaz, P. A. Shewokis, S. Bunce, K. Izzetoglu, B. Willems, and B. Onaral, “Optical brain monitoring for operator training and mental workload assessment,” Neuroimage 59(1), 36–47 (2012).
[Crossref] [PubMed]

Ong, C.-J.

K.-Q. Shen, C.-J. Ong, X.-P. Li, Z. Hui, and E. P. Wilder-Smith, “A feature selection method for multilevel mental fatigue EEG classification,” IEEE Trans. Biomed. Eng. 54(7), 1231–1237 (2007).
[Crossref] [PubMed]

Ono, Y.

J. A. Noah, Y. Ono, Y. Nomoto, S. Shimada, A. Tachibana, X. Zhang, S. Bronner, and J. Hirsch, “fMRI validation of fNIRS measurements during a naturalistic task,” J. Vis. Exp. (100): e52116 (2015).
[PubMed]

Ossewaarde, L.

L. Ossewaarde, S. Qin, H. J. Van Marle, G. A. van Wingen, G. Fernández, and E. J. Hermans, “Stress-induced reduction in reward-related prefrontal cortex function,” Neuroimage 55(1), 345–352 (2011).
[Crossref] [PubMed]

Panigrahi, B. K.

T. Gandhi, B. K. Panigrahi, and S. Anand, “A comparative study of wavelet families for EEG signal classification,” Neurocomputing 74(17), 3051–3057 (2011).
[Crossref]

Parker, J. G.

M. S. Sherwood, J. H. Kane, M. P. Weisend, and J. G. Parker, “Enhanced control of dorsolateral prefrontal cortex neurophysiology with real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback training and working memory practice,” Neuroimage 124(Pt A), 214–223 (2016).
[Crossref] [PubMed]

Pauli, P.

M. M. Plichta, S. Heinzel, A.-C. Ehlis, P. Pauli, and A. J. Fallgatter, “Model-based analysis of rapid event-related functional near-infrared spectroscopy (NIRS) data: a parametric validation study,” Neuroimage 35(2), 625–634 (2007).
[Crossref] [PubMed]

Perrucci, M. G.

D. Mantini, M. G. Perrucci, C. Del Gratta, G. L. Romani, and M. Corbetta, “Electrophysiological signatures of resting state networks in the human brain,” Proc. Natl. Acad. Sci. U.S.A. 104(32), 13170–13175 (2007).
[Crossref] [PubMed]

Persson, R.

A. M. Hansen, A. H. Garde, and R. Persson, “Sources of biological and methodological variation in salivary cortisol and their impact on measurement among healthy adults: a review,” Scand. J. Clin. Lab. Invest. 68(6), 448–458 (2008).
[Crossref] [PubMed]

Plichta, M. M.

S. Heinzel, F. B. Haeussinger, T. Hahn, A.-C. Ehlis, M. M. Plichta, and A. J. Fallgatter, “Variability of (functional) hemodynamics as measured with simultaneous fNIRS and fMRI during intertemporal choice,” Neuroimage 71(1), 125–134 (2013).
[Crossref] [PubMed]

M. M. Plichta, S. Heinzel, A.-C. Ehlis, P. Pauli, and A. J. Fallgatter, “Model-based analysis of rapid event-related functional near-infrared spectroscopy (NIRS) data: a parametric validation study,” Neuroimage 35(2), 625–634 (2007).
[Crossref] [PubMed]

Pruessner, J. C.

K. Dedovic, C. D’Aguiar, and J. C. Pruessner, “What stress does to your brain: a review of neuroimaging studies,” Can. J. Psychiatry 54(1), 6–15 (2009).
[Crossref] [PubMed]

J. C. Pruessner, K. Dedovic, N. Khalili-Mahani, V. Engert, M. Pruessner, C. Buss, R. Renwick, A. Dagher, M. J. Meaney, and S. Lupien, “Deactivation of the limbic system during acute psychosocial stress: evidence from positron emission tomography and functional magnetic resonance imaging studies,” Biol. Psychiatry 63(2), 234–240 (2008).
[Crossref] [PubMed]

K. Dedovic, R. Renwick, N. K. Mahani, V. Engert, S. J. Lupien, and J. C. Pruessner, “The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain,” J. Psychiatry Neurosci. 30(5), 319–325 (2005).
[PubMed]

Pruessner, M.

J. C. Pruessner, K. Dedovic, N. Khalili-Mahani, V. Engert, M. Pruessner, C. Buss, R. Renwick, A. Dagher, M. J. Meaney, and S. Lupien, “Deactivation of the limbic system during acute psychosocial stress: evidence from positron emission tomography and functional magnetic resonance imaging studies,” Biol. Psychiatry 63(2), 234–240 (2008).
[Crossref] [PubMed]

Putze, F.

F. Putze, S. Hesslinger, C. Y. Tse, Y. Huang, C. Herff, C. Guan, and T. Schultz, “Hybrid fNIRS-EEG based classification of auditory and visual perception processes,” Front. Neurosci. 8, 373 (2014).
[Crossref] [PubMed]

Qin, S.

L. Ossewaarde, S. Qin, H. J. Van Marle, G. A. van Wingen, G. Fernández, and E. J. Hermans, “Stress-induced reduction in reward-related prefrontal cortex function,” Neuroimage 55(1), 345–352 (2011).
[Crossref] [PubMed]

S. Qin, E. J. Hermans, H. J. van Marle, J. Luo, and G. Fernández, “Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex,” Biol. Psychiatry 66(1), 25–32 (2009).
[Crossref] [PubMed]

Quaedflieg, C. W.

C. W. Quaedflieg, T. Meyer, F. T. Smulders, and T. Smeets, “The functional role of individual-alpha based frontal asymmetry in stress responding,” Biol. Psychol. 104, 75–81 (2015).
[Crossref] [PubMed]

Rao, H.

J. Wang, H. Rao, G. S. Wetmore, P. M. Furlan, M. Korczykowski, D. F. Dinges, and J. A. Detre, “Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17804–17809 (2005).
[Crossref] [PubMed]

Raskind, M. A.

A. F. Arnsten, M. A. Raskind, F. B. Taylor, and D. F. Connor, “The effects of stress exposure on prefrontal cortex: translating basic research into successful treatments for post-traumatic stress disorder,” Neurobiol. Stress 1, 89–99 (2015).
[Crossref] [PubMed]

Raz, A.

R. T. Thibault, M. Lifshitz, and A. Raz, “The self-regulating brain and neurofeedback: Experimental science and clinical promise,” Cortex 74(1), 247–261 (2016).
[Crossref] [PubMed]

Renwick, R.

J. C. Pruessner, K. Dedovic, N. Khalili-Mahani, V. Engert, M. Pruessner, C. Buss, R. Renwick, A. Dagher, M. J. Meaney, and S. Lupien, “Deactivation of the limbic system during acute psychosocial stress: evidence from positron emission tomography and functional magnetic resonance imaging studies,” Biol. Psychiatry 63(2), 234–240 (2008).
[Crossref] [PubMed]

K. Dedovic, R. Renwick, N. K. Mahani, V. Engert, S. J. Lupien, and J. C. Pruessner, “The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain,” J. Psychiatry Neurosci. 30(5), 319–325 (2005).
[PubMed]

Ressler, K. J.

T. Jovanovic, T. Ely, N. Fani, E. M. Glover, D. Gutman, E. B. Tone, S. D. Norrholm, B. Bradley, and K. J. Ressler, “Reduced neural activation during an inhibition task is associated with impaired fear inhibition in a traumatized civilian sample,” Cortex 49(7), 1884–1891 (2013).
[Crossref] [PubMed]

Romani, G. L.

D. Mantini, M. G. Perrucci, C. Del Gratta, G. L. Romani, and M. Corbetta, “Electrophysiological signatures of resting state networks in the human brain,” Proc. Natl. Acad. Sci. U.S.A. 104(32), 13170–13175 (2007).
[Crossref] [PubMed]

Sato, H.

S. Sutoko, H. Sato, A. Maki, M. Kiguchi, Y. Hirabayashi, H. Atsumori, A. Obata, T. Funane, and T. Katura, “Tutorial on platform for optical topography analysis tools,” Neurophotonics 3(1), 010801 (2016).
[Crossref] [PubMed]

H. Sato, N. Yahata, T. Funane, R. Takizawa, T. Katura, H. Atsumori, Y. Nishimura, A. Kinoshita, M. Kiguchi, H. Koizumi, M. Fukuda, and K. Kasai, “A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task,” Neuroimage 83(1), 158–173 (2013).
[Crossref] [PubMed]

Scholkmann, F.

I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3(3), 031405 (2016).
[Crossref] [PubMed]

Schroeter, M. L.

M. L. Schroeter, T. Kupka, T. Mildner, K. Uludağ, and D. Y. von Cramon, “Investigating the post-stimulus undershoot of the BOLD signal--a simultaneous fMRI and fNIRS study,” Neuroimage 30(2), 349–358 (2006).
[Crossref] [PubMed]

Schultz, T.

F. Putze, S. Hesslinger, C. Y. Tse, Y. Huang, C. Herff, C. Guan, and T. Schultz, “Hybrid fNIRS-EEG based classification of auditory and visual perception processes,” Front. Neurosci. 8, 373 (2014).
[Crossref] [PubMed]

Shen, K.-Q.

K.-Q. Shen, C.-J. Ong, X.-P. Li, Z. Hui, and E. P. Wilder-Smith, “A feature selection method for multilevel mental fatigue EEG classification,” IEEE Trans. Biomed. Eng. 54(7), 1231–1237 (2007).
[Crossref] [PubMed]

Sherwood, M. S.

M. S. Sherwood, J. H. Kane, M. P. Weisend, and J. G. Parker, “Enhanced control of dorsolateral prefrontal cortex neurophysiology with real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback training and working memory practice,” Neuroimage 124(Pt A), 214–223 (2016).
[Crossref] [PubMed]

Shewokis, P. A.

H. Ayaz, P. A. Shewokis, S. Bunce, K. Izzetoglu, B. Willems, and B. Onaral, “Optical brain monitoring for operator training and mental workload assessment,” Neuroimage 59(1), 36–47 (2012).
[Crossref] [PubMed]

Shimada, S.

J. A. Noah, Y. Ono, Y. Nomoto, S. Shimada, A. Tachibana, X. Zhang, S. Bronner, and J. Hirsch, “fMRI validation of fNIRS measurements during a naturalistic task,” J. Vis. Exp. (100): e52116 (2015).
[PubMed]

Shors, T. J.

B. Leuner and T. J. Shors, “Stress, anxiety, and dendritic spines: what are the connections?” Neuroscience 251(1), 108–119 (2013).
[Crossref] [PubMed]

Smeets, T.

C. W. Quaedflieg, T. Meyer, F. T. Smulders, and T. Smeets, “The functional role of individual-alpha based frontal asymmetry in stress responding,” Biol. Psychol. 104, 75–81 (2015).
[Crossref] [PubMed]

Smith-Osborne, A.

F. Tian, A. Yennu, A. Smith-Osborne, F. Gonzalez-Lima, C. S. North, and H. Liu, “Prefrontal responses to digit span memory phases in patients with post-traumatic stress disorder (PTSD): a functional near infrared spectroscopy study,” Neuroimage Clin. 4, 808–819 (2014).
[Crossref] [PubMed]

Smulders, F. T.

C. W. Quaedflieg, T. Meyer, F. T. Smulders, and T. Smeets, “The functional role of individual-alpha based frontal asymmetry in stress responding,” Biol. Psychol. 104, 75–81 (2015).
[Crossref] [PubMed]

Starcke, K.

K. Starcke and M. Brand, “Decision making under stress: a selective review,” Neurosci. Biobehav. Rev. 36(4), 1228–1248 (2012).
[Crossref] [PubMed]

Sun, Q.-S.

Q.-S. Sun, S.-G. Zeng, Y. Liu, P.-A. Heng, and D.-S. Xia, “A new method of feature fusion and its application in image recognition,” Pattern Recognit. 38(12), 2437–2448 (2005).
[Crossref]

Sutoko, S.

S. Sutoko, H. Sato, A. Maki, M. Kiguchi, Y. Hirabayashi, H. Atsumori, A. Obata, T. Funane, and T. Katura, “Tutorial on platform for optical topography analysis tools,” Neurophotonics 3(1), 010801 (2016).
[Crossref] [PubMed]

Tachibana, A.

J. A. Noah, Y. Ono, Y. Nomoto, S. Shimada, A. Tachibana, X. Zhang, S. Bronner, and J. Hirsch, “fMRI validation of fNIRS measurements during a naturalistic task,” J. Vis. Exp. (100): e52116 (2015).
[PubMed]

Tachtsidis, I.

I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3(3), 031405 (2016).
[Crossref] [PubMed]

Takizawa, R.

H. Sato, N. Yahata, T. Funane, R. Takizawa, T. Katura, H. Atsumori, Y. Nishimura, A. Kinoshita, M. Kiguchi, H. Koizumi, M. Fukuda, and K. Kasai, “A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task,” Neuroimage 83(1), 158–173 (2013).
[Crossref] [PubMed]

Tang, T. B.

Taylor, F. B.

A. F. Arnsten, M. A. Raskind, F. B. Taylor, and D. F. Connor, “The effects of stress exposure on prefrontal cortex: translating basic research into successful treatments for post-traumatic stress disorder,” Neurobiol. Stress 1, 89–99 (2015).
[Crossref] [PubMed]

Thibault, R. T.

R. T. Thibault, M. Lifshitz, and A. Raz, “The self-regulating brain and neurofeedback: Experimental science and clinical promise,” Cortex 74(1), 247–261 (2016).
[Crossref] [PubMed]

Thibodeau, R.

R. Thibodeau, R. S. Jorgensen, and S. Kim, “Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review,” J. Abnorm. Psychol. 115(4), 715–729 (2006).
[Crossref] [PubMed]

Tian, F.

F. Tian, A. Yennu, A. Smith-Osborne, F. Gonzalez-Lima, C. S. North, and H. Liu, “Prefrontal responses to digit span memory phases in patients with post-traumatic stress disorder (PTSD): a functional near infrared spectroscopy study,” Neuroimage Clin. 4, 808–819 (2014).
[Crossref] [PubMed]

Tomarken, A. J.

R. E. Wheeler, R. J. Davidson, and A. J. Tomarken, “Frontal brain asymmetry and emotional reactivity: a biological substrate of affective style,” Psychophysiology 30(1), 82–89 (1993).
[Crossref] [PubMed]

Tone, E. B.

T. Jovanovic, T. Ely, N. Fani, E. M. Glover, D. Gutman, E. B. Tone, S. D. Norrholm, B. Bradley, and K. J. Ressler, “Reduced neural activation during an inhibition task is associated with impaired fear inhibition in a traumatized civilian sample,” Cortex 49(7), 1884–1891 (2013).
[Crossref] [PubMed]

Tops, M.

M. Tops, J. M. van Peer, A. E. Wester, A. A. Wijers, and J. Korf, “State-dependent regulation of cortical activity by cortisol: an EEG study,” Neurosci. Lett. 404(1-2), 39–43 (2006).
[Crossref] [PubMed]

Tse, C. Y.

F. Putze, S. Hesslinger, C. Y. Tse, Y. Huang, C. Herff, C. Guan, and T. Schultz, “Hybrid fNIRS-EEG based classification of auditory and visual perception processes,” Front. Neurosci. 8, 373 (2014).
[Crossref] [PubMed]

Uludag, K.

M. L. Schroeter, T. Kupka, T. Mildner, K. Uludağ, and D. Y. von Cramon, “Investigating the post-stimulus undershoot of the BOLD signal--a simultaneous fMRI and fNIRS study,” Neuroimage 30(2), 349–358 (2006).
[Crossref] [PubMed]

Van Marle, H. J.

L. Ossewaarde, S. Qin, H. J. Van Marle, G. A. van Wingen, G. Fernández, and E. J. Hermans, “Stress-induced reduction in reward-related prefrontal cortex function,” Neuroimage 55(1), 345–352 (2011).
[Crossref] [PubMed]

S. Qin, E. J. Hermans, H. J. van Marle, J. Luo, and G. Fernández, “Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex,” Biol. Psychiatry 66(1), 25–32 (2009).
[Crossref] [PubMed]

van Peer, J. M.

M. Tops, J. M. van Peer, A. E. Wester, A. A. Wijers, and J. Korf, “State-dependent regulation of cortical activity by cortisol: an EEG study,” Neurosci. Lett. 404(1-2), 39–43 (2006).
[Crossref] [PubMed]

van Wingen, G. A.

L. Ossewaarde, S. Qin, H. J. Van Marle, G. A. van Wingen, G. Fernández, and E. J. Hermans, “Stress-induced reduction in reward-related prefrontal cortex function,” Neuroimage 55(1), 345–352 (2011).
[Crossref] [PubMed]

Vespignani, H.

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

Vignal, J. P.

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

von Cramon, D. Y.

M. L. Schroeter, T. Kupka, T. Mildner, K. Uludağ, and D. Y. von Cramon, “Investigating the post-stimulus undershoot of the BOLD signal--a simultaneous fMRI and fNIRS study,” Neuroimage 30(2), 349–358 (2006).
[Crossref] [PubMed]

Wang, J.

J. Wang, H. Rao, G. S. Wetmore, P. M. Furlan, M. Korczykowski, D. F. Dinges, and J. A. Detre, “Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17804–17809 (2005).
[Crossref] [PubMed]

Wang, T. H.

R. S. Lewis, N. Y. Weekes, and T. H. Wang, “The effect of a naturalistic stressor on frontal EEG asymmetry, stress, and health,” Biol. Psychol. 75(3), 239–247 (2007).
[Crossref] [PubMed]

Wang, W.

Y.-O. Li, T. Adalı, W. Wang, and V. D. Calhoun, “Joint blind source separation by multiset canonical correlation analysis,” IEEE Trans. Signal Process. 57(10), 3918–3929 (2009).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, R. M. Hope, Z. Wang, Q. Ji, and W. D. Gray, “Cross-subject workload classification with a hierarchical Bayes model,” Neuroimage 59(1), 64–69 (2012).
[Crossref] [PubMed]

Z. Wang, R. M. Hope, Z. Wang, Q. Ji, and W. D. Gray, “Cross-subject workload classification with a hierarchical Bayes model,” Neuroimage 59(1), 64–69 (2012).
[Crossref] [PubMed]

Weekes, N. Y.

R. S. Lewis, N. Y. Weekes, and T. H. Wang, “The effect of a naturalistic stressor on frontal EEG asymmetry, stress, and health,” Biol. Psychol. 75(3), 239–247 (2007).
[Crossref] [PubMed]

Weisend, M. P.

M. S. Sherwood, J. H. Kane, M. P. Weisend, and J. G. Parker, “Enhanced control of dorsolateral prefrontal cortex neurophysiology with real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback training and working memory practice,” Neuroimage 124(Pt A), 214–223 (2016).
[Crossref] [PubMed]

Wester, A. E.

M. Tops, J. M. van Peer, A. E. Wester, A. A. Wijers, and J. Korf, “State-dependent regulation of cortical activity by cortisol: an EEG study,” Neurosci. Lett. 404(1-2), 39–43 (2006).
[Crossref] [PubMed]

Wetmore, G. S.

J. Wang, H. Rao, G. S. Wetmore, P. M. Furlan, M. Korczykowski, D. F. Dinges, and J. A. Detre, “Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17804–17809 (2005).
[Crossref] [PubMed]

Wheeler, R. E.

R. E. Wheeler, R. J. Davidson, and A. J. Tomarken, “Frontal brain asymmetry and emotional reactivity: a biological substrate of affective style,” Psychophysiology 30(1), 82–89 (1993).
[Crossref] [PubMed]

Wijers, A. A.

M. Tops, J. M. van Peer, A. E. Wester, A. A. Wijers, and J. Korf, “State-dependent regulation of cortical activity by cortisol: an EEG study,” Neurosci. Lett. 404(1-2), 39–43 (2006).
[Crossref] [PubMed]

Wilder-Smith, E. P.

K.-Q. Shen, C.-J. Ong, X.-P. Li, Z. Hui, and E. P. Wilder-Smith, “A feature selection method for multilevel mental fatigue EEG classification,” IEEE Trans. Biomed. Eng. 54(7), 1231–1237 (2007).
[Crossref] [PubMed]

Willems, B.

H. Ayaz, P. A. Shewokis, S. Bunce, K. Izzetoglu, B. Willems, and B. Onaral, “Optical brain monitoring for operator training and mental workload assessment,” Neuroimage 59(1), 36–47 (2012).
[Crossref] [PubMed]

Xia, D.-S.

Q.-S. Sun, S.-G. Zeng, Y. Liu, P.-A. Heng, and D.-S. Xia, “A new method of feature fusion and its application in image recognition,” Pattern Recognit. 38(12), 2437–2448 (2005).
[Crossref]

Yahata, N.

H. Sato, N. Yahata, T. Funane, R. Takizawa, T. Katura, H. Atsumori, Y. Nishimura, A. Kinoshita, M. Kiguchi, H. Koizumi, M. Fukuda, and K. Kasai, “A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task,” Neuroimage 83(1), 158–173 (2013).
[Crossref] [PubMed]

Yennu, A.

F. Tian, A. Yennu, A. Smith-Osborne, F. Gonzalez-Lima, C. S. North, and H. Liu, “Prefrontal responses to digit span memory phases in patients with post-traumatic stress disorder (PTSD): a functional near infrared spectroscopy study,” Neuroimage Clin. 4, 808–819 (2014).
[Crossref] [PubMed]

Zeng, S.-G.

Q.-S. Sun, S.-G. Zeng, Y. Liu, P.-A. Heng, and D.-S. Xia, “A new method of feature fusion and its application in image recognition,” Pattern Recognit. 38(12), 2437–2448 (2005).
[Crossref]

Zhang, X.

J. A. Noah, Y. Ono, Y. Nomoto, S. Shimada, A. Tachibana, X. Zhang, S. Bronner, and J. Hirsch, “fMRI validation of fNIRS measurements during a naturalistic task,” J. Vis. Exp. (100): e52116 (2015).
[PubMed]

Zhao, C.

C. Zhao, M. Zhao, J. Liu, and C. Zheng, “Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator,” Accid. Anal. Prev. 45, 83–90 (2012).
[Crossref] [PubMed]

Zhao, M.

C. Zhao, M. Zhao, J. Liu, and C. Zheng, “Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator,” Accid. Anal. Prev. 45, 83–90 (2012).
[Crossref] [PubMed]

Zheng, C.

C. Zhao, M. Zhao, J. Liu, and C. Zheng, “Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator,” Accid. Anal. Prev. 45, 83–90 (2012).
[Crossref] [PubMed]

Accid. Anal. Prev. (1)

C. Zhao, M. Zhao, J. Liu, and C. Zheng, “Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator,” Accid. Anal. Prev. 45, 83–90 (2012).
[Crossref] [PubMed]

ACM Trans. Intell. Syst. Technol. (1)

C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011).
[Crossref]

Annu. Rev. Clin. Psychol. (1)

C. Hammen, “Stress and depression,” Annu. Rev. Clin. Psychol. 1(1), 293–319 (2005).
[Crossref] [PubMed]

Arch. Gen. Psychiatry (1)

A. F. Arnsten and P. S. Goldman-Rakic, “Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism,” Arch. Gen. Psychiatry 55(4), 362–368 (1998).
[Crossref] [PubMed]

Biol. Psychiatry (2)

S. Qin, E. J. Hermans, H. J. van Marle, J. Luo, and G. Fernández, “Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex,” Biol. Psychiatry 66(1), 25–32 (2009).
[Crossref] [PubMed]

J. C. Pruessner, K. Dedovic, N. Khalili-Mahani, V. Engert, M. Pruessner, C. Buss, R. Renwick, A. Dagher, M. J. Meaney, and S. Lupien, “Deactivation of the limbic system during acute psychosocial stress: evidence from positron emission tomography and functional magnetic resonance imaging studies,” Biol. Psychiatry 63(2), 234–240 (2008).
[Crossref] [PubMed]

Biol. Psychol. (2)

C. W. Quaedflieg, T. Meyer, F. T. Smulders, and T. Smeets, “The functional role of individual-alpha based frontal asymmetry in stress responding,” Biol. Psychol. 104, 75–81 (2015).
[Crossref] [PubMed]

R. S. Lewis, N. Y. Weekes, and T. H. Wang, “The effect of a naturalistic stressor on frontal EEG asymmetry, stress, and health,” Biol. Psychol. 75(3), 239–247 (2007).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Can. J. Psychiatry (1)

K. Dedovic, C. D’Aguiar, and J. C. Pruessner, “What stress does to your brain: a review of neuroimaging studies,” Can. J. Psychiatry 54(1), 6–15 (2009).
[Crossref] [PubMed]

Cortex (2)

R. T. Thibault, M. Lifshitz, and A. Raz, “The self-regulating brain and neurofeedback: Experimental science and clinical promise,” Cortex 74(1), 247–261 (2016).
[Crossref] [PubMed]

T. Jovanovic, T. Ely, N. Fani, E. M. Glover, D. Gutman, E. B. Tone, S. D. Norrholm, B. Bradley, and K. J. Ressler, “Reduced neural activation during an inhibition task is associated with impaired fear inhibition in a traumatized civilian sample,” Cortex 49(7), 1884–1891 (2013).
[Crossref] [PubMed]

Ergonomics (1)

A. W. Gaillard, “Comparing the concepts of mental load and stress,” Ergonomics 36(9), 991–1005 (1993).
[Crossref] [PubMed]

Front. Neurosci. (1)

F. Putze, S. Hesslinger, C. Y. Tse, Y. Huang, C. Herff, C. Guan, and T. Schultz, “Hybrid fNIRS-EEG based classification of auditory and visual perception processes,” Front. Neurosci. 8, 373 (2014).
[Crossref] [PubMed]

IEEE J. Sel. Top. Signal Process. (1)

N. M. Correa, Y.-O. Li, T. Adalı, and V. D. Calhoun, “Canonical correlation analysis for feature-based fusion of biomedical imaging modalities and its application to detection of associative networks in schizophrenia,” IEEE J. Sel. Top. Signal Process. 2(6), 998–1007 (2008).
[Crossref] [PubMed]

IEEE Signal Process. Mag. (1)

N. M. Correa, T. Adali, Y.-O. Li, and V. D. Calhoun, “Canonical correlation analysis for data fusion and group inferences,” IEEE Signal Process. Mag. 27(4), 39–50 (2010).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

K.-Q. Shen, C.-J. Ong, X.-P. Li, Z. Hui, and E. P. Wilder-Smith, “A feature selection method for multilevel mental fatigue EEG classification,” IEEE Trans. Biomed. Eng. 54(7), 1231–1237 (2007).
[Crossref] [PubMed]

IEEE Trans. Signal Process. (1)

Y.-O. Li, T. Adalı, W. Wang, and V. D. Calhoun, “Joint blind source separation by multiset canonical correlation analysis,” IEEE Trans. Signal Process. 57(10), 3918–3929 (2009).
[Crossref] [PubMed]

Int. J. Dev. Neurosci. (1)

A. F. Arnsten, “Prefrontal cortical network connections: key site of vulnerability in stress and schizophrenia,” Int. J. Dev. Neurosci. 29(3), 215–223 (2011).
[Crossref] [PubMed]

J. Abnorm. Psychol. (1)

R. Thibodeau, R. S. Jorgensen, and S. Kim, “Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review,” J. Abnorm. Psychol. 115(4), 715–729 (2006).
[Crossref] [PubMed]

J. Neurosci. Methods (1)

A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis,” J. Neurosci. Methods 134(1), 9–21 (2004).
[Crossref] [PubMed]

J. Psychiatry Neurosci. (1)

K. Dedovic, R. Renwick, N. K. Mahani, V. Engert, S. J. Lupien, and J. C. Pruessner, “The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain,” J. Psychiatry Neurosci. 30(5), 319–325 (2005).
[PubMed]

Nat. Neurosci. (2)

A. F. Arnsten, “Stress weakens prefrontal networks: molecular insults to higher cognition,” Nat. Neurosci. 18(10), 1376–1385 (2015).
[Crossref] [PubMed]

S. Bishop, J. Duncan, M. Brett, and A. D. Lawrence, “Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli,” Nat. Neurosci. 7(2), 184–188 (2004).
[Crossref] [PubMed]

Nat. Rev. Neurosci. (1)

A. F. Arnsten, “Stress signalling pathways that impair prefrontal cortex structure and function,” Nat. Rev. Neurosci. 10(6), 410–422 (2009).
[Crossref] [PubMed]

Neurobiol. Stress (1)

A. F. Arnsten, M. A. Raskind, F. B. Taylor, and D. F. Connor, “The effects of stress exposure on prefrontal cortex: translating basic research into successful treatments for post-traumatic stress disorder,” Neurobiol. Stress 1, 89–99 (2015).
[Crossref] [PubMed]

Neurocomputing (1)

T. Gandhi, B. K. Panigrahi, and S. Anand, “A comparative study of wavelet families for EEG signal classification,” Neurocomputing 74(17), 3051–3057 (2011).
[Crossref]

Neuroimage (9)

L. Koessler, L. Maillard, A. Benhadid, J. P. Vignal, J. Felblinger, H. Vespignani, and M. Braun, “Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system,” Neuroimage 46(1), 64–72 (2009).
[Crossref] [PubMed]

Z. Wang, R. M. Hope, Z. Wang, Q. Ji, and W. D. Gray, “Cross-subject workload classification with a hierarchical Bayes model,” Neuroimage 59(1), 64–69 (2012).
[Crossref] [PubMed]

S. Heinzel, F. B. Haeussinger, T. Hahn, A.-C. Ehlis, M. M. Plichta, and A. J. Fallgatter, “Variability of (functional) hemodynamics as measured with simultaneous fNIRS and fMRI during intertemporal choice,” Neuroimage 71(1), 125–134 (2013).
[Crossref] [PubMed]

H. Sato, N. Yahata, T. Funane, R. Takizawa, T. Katura, H. Atsumori, Y. Nishimura, A. Kinoshita, M. Kiguchi, H. Koizumi, M. Fukuda, and K. Kasai, “A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task,” Neuroimage 83(1), 158–173 (2013).
[Crossref] [PubMed]

M. S. Sherwood, J. H. Kane, M. P. Weisend, and J. G. Parker, “Enhanced control of dorsolateral prefrontal cortex neurophysiology with real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback training and working memory practice,” Neuroimage 124(Pt A), 214–223 (2016).
[Crossref] [PubMed]

M. L. Schroeter, T. Kupka, T. Mildner, K. Uludağ, and D. Y. von Cramon, “Investigating the post-stimulus undershoot of the BOLD signal--a simultaneous fMRI and fNIRS study,” Neuroimage 30(2), 349–358 (2006).
[Crossref] [PubMed]

H. Ayaz, P. A. Shewokis, S. Bunce, K. Izzetoglu, B. Willems, and B. Onaral, “Optical brain monitoring for operator training and mental workload assessment,” Neuroimage 59(1), 36–47 (2012).
[Crossref] [PubMed]

L. Ossewaarde, S. Qin, H. J. Van Marle, G. A. van Wingen, G. Fernández, and E. J. Hermans, “Stress-induced reduction in reward-related prefrontal cortex function,” Neuroimage 55(1), 345–352 (2011).
[Crossref] [PubMed]

M. M. Plichta, S. Heinzel, A.-C. Ehlis, P. Pauli, and A. J. Fallgatter, “Model-based analysis of rapid event-related functional near-infrared spectroscopy (NIRS) data: a parametric validation study,” Neuroimage 35(2), 625–634 (2007).
[Crossref] [PubMed]

Neuroimage Clin. (1)

F. Tian, A. Yennu, A. Smith-Osborne, F. Gonzalez-Lima, C. S. North, and H. Liu, “Prefrontal responses to digit span memory phases in patients with post-traumatic stress disorder (PTSD): a functional near infrared spectroscopy study,” Neuroimage Clin. 4, 808–819 (2014).
[Crossref] [PubMed]

Neurophotonics (2)

S. Sutoko, H. Sato, A. Maki, M. Kiguchi, Y. Hirabayashi, H. Atsumori, A. Obata, T. Funane, and T. Katura, “Tutorial on platform for optical topography analysis tools,” Neurophotonics 3(1), 010801 (2016).
[Crossref] [PubMed]

I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3(3), 031405 (2016).
[Crossref] [PubMed]

Neurophysiol. Clin. (1)

J.-A. Micoulaud-Franchi, A. McGonigal, R. Lopez, C. Daudet, I. Kotwas, and F. Bartolomei, “Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice,” Neurophysiol. Clin. 45(6), 423–433 (2015).
[Crossref] [PubMed]

Neurosci. Biobehav. Rev. (1)

K. Starcke and M. Brand, “Decision making under stress: a selective review,” Neurosci. Biobehav. Rev. 36(4), 1228–1248 (2012).
[Crossref] [PubMed]

Neurosci. Lett. (1)

M. Tops, J. M. van Peer, A. E. Wester, A. A. Wijers, and J. Korf, “State-dependent regulation of cortical activity by cortisol: an EEG study,” Neurosci. Lett. 404(1-2), 39–43 (2006).
[Crossref] [PubMed]

Neuroscience (1)

B. Leuner and T. J. Shors, “Stress, anxiety, and dendritic spines: what are the connections?” Neuroscience 251(1), 108–119 (2013).
[Crossref] [PubMed]

Pattern Recognit. (1)

Q.-S. Sun, S.-G. Zeng, Y. Liu, P.-A. Heng, and D.-S. Xia, “A new method of feature fusion and its application in image recognition,” Pattern Recognit. 38(12), 2437–2448 (2005).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (3)

C. Liston, B. S. McEwen, and B. J. Casey, “Psychosocial stress reversibly disrupts prefrontal processing and attentional control,” Proc. Natl. Acad. Sci. U.S.A. 106(3), 912–917 (2009).
[Crossref] [PubMed]

J. Wang, H. Rao, G. S. Wetmore, P. M. Furlan, M. Korczykowski, D. F. Dinges, and J. A. Detre, “Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17804–17809 (2005).
[Crossref] [PubMed]

D. Mantini, M. G. Perrucci, C. Del Gratta, G. L. Romani, and M. Corbetta, “Electrophysiological signatures of resting state networks in the human brain,” Proc. Natl. Acad. Sci. U.S.A. 104(32), 13170–13175 (2007).
[Crossref] [PubMed]

Psychophysiology (1)

R. E. Wheeler, R. J. Davidson, and A. J. Tomarken, “Frontal brain asymmetry and emotional reactivity: a biological substrate of affective style,” Psychophysiology 30(1), 82–89 (1993).
[Crossref] [PubMed]

Scand. J. Clin. Lab. Invest. (1)

A. M. Hansen, A. H. Garde, and R. Persson, “Sources of biological and methodological variation in salivary cortisol and their impact on measurement among healthy adults: a review,” Scand. J. Clin. Lab. Invest. 68(6), 448–458 (2008).
[Crossref] [PubMed]

Other (6)

A. C. Rencher, Methods of Multivariate Analysis (John Wiley & Sons, 2003), Vol. 492.

D. Weenink, “Canonical correlation analysis,” in Proceedings of the Institute of Phonetic Sciences of the University of Amsterdam, (Citeseer, 2003), 81–99.

W. Krzanowski, Principles of Multivariate Analysis (OUP Oxford, 2000).

J. A. Noah, Y. Ono, Y. Nomoto, S. Shimada, A. Tachibana, X. Zhang, S. Bronner, and J. Hirsch, “fMRI validation of fNIRS measurements during a naturalistic task,” J. Vis. Exp. (100): e52116 (2015).
[PubMed]

V. N. Vapnik and V. Vapnik, Statistical Learning Theory (Wiley New York, 1998), Vol. 1.

J. Voss and K. Paller, Neural Substrates of Remembering: Electroencephalographic Studies. in Learning and Memory: a Comperhensive Reference (ed. Byrne, J.H.) 79–97 (Elsevier, Oxford, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experiment block design. There is a total of five active blocks for each of the conditions: (a) control and (b) stress. In each block, arithmetic tasks are presented for 30 s followed by 20 s rest. The red dashed-line marks the start of the task and the green dashed-line marks the end of the task (the marking is done at every block). The stressors are based on time pressure and negative feedback of individual performance as demonstrated in (b).
Fig. 2
Fig. 2 EEG-fNIRS channel placement based on international 10-20 system. EEG electrodes and fNIRS channels were registered on three lateral PFC subregion namely: Dorsolateral PFC (yellow circles), Ventrolateral PFC (green circles) and Frontopolar area (grey circles). There were a total of seven EEG electrodes and 23 fNIRS channels.
Fig. 3
Fig. 3 Results. (a) Normalized alpha rhythm obtained from all EEG electrodes. The marks ‘**’, ‘***’ and ‘****’ indicate that, the task is significant with p<0.01, p<0.001 and p<0.0001, respectively. (b) Mean change in oxygenated hemoglobin concentrations of four example subjects under control condition. (c) Mean change in oxygenated hemoglobin concentrations of the same subjects under stress condition. (d) Mean change in oxygenated hemoglobin concentrations of all 25 subjects, (1) under control condition, (2) under stress condition and (3) average T-map of between control and stress conditions. The numbers 1 to 23 in each topographical image indicate the number of particular channel at that location.
Fig. 4
Fig. 4 Left: Correlation coefficients resulting from EEG-fNIRS CCA (sorted in decreasing order). Right: CCA of EEG alpha rhythm and O2Hb of fNIRS.
Fig. 5
Fig. 5 Cross-subjects source correlation matrix using CCA technique.
Fig. 6
Fig. 6 ROC curves (a) EEG modality with different combinations (using six-bilateral electrodes red-line, VLPFC blue-line, DLPFC green-line and FPA black-line), (b) fNIRS modality with different combinations (using six-channels red-line, VLPFC blue-line, DLPFC green-line and FPA black-line), and (c) fusion of EEG and fNIRS with different combinations (two-electrodes and two-channels within: the VLPFC red-line, DLPFC blue-line, FPA green-line and six-bilateral electrodes black-line and six-channels cyan line).

Tables (2)

Tables Icon

Table 1 Overall classification performance and fusion improvement

Tables Icon

Table 2 Performance evaluation between different pairs of PFC subregions

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

P= 1 N n=1 N |x(n) | 2 ,
ρ( X * , Y * )=ρ( W x T X, W y T Y)= W x T S xy W y ( W x T S xx W x )( W y T S yy W y ) ,
W x T S xx W x = W y T S yy W y =1,
Model{ maxρ( X * , Y * ), W x T S xx W x = W y T S yy W y =1, W x p , W y q
L( X * , Y * )=L( W x T X, W y T Y)= W x T S xy W y λ 1 2 ( W x T S xx W x 1) λ 2 2 ( W y T S yy W y 1),
L W x = S xy W y λ 1 S xx W x =0,
L W y = S yx W x λ 2 S yy W y =0,
W x T S xy W y = λ 1 W x T S xx W x = λ 1 ,
W y T S yx W x = λ 2 W y T S yy W y = λ 2 ,
ρ( X * , Y * )= W x T S xy W y = W y T S yx W x =λ,
S xx 1 S xy S yy 1 S yx W x = λ 2 W x ,
S yy 1 S yx S xx 1 S xy W y = λ 2 W y ,
F=( X * Y * )=( W x T X W y T Y )= ( W x 0 0 W y ) T ( X Y ),

Metrics