Abstract

The design of fluorescence imaging instruments for surgical guidance is rapidly evolving, and a key issue is to efficiently capture signals with high ambient room lighting. Here, we introduce a novel time-gated approach to fluorescence imaging synchronizing acquisition to the 120 Hz light of the room, with pulsed LED excitation and gated ICCD detection. It is shown that under bright ambient room light this technique allows for the detection of physiologically relevant nanomolar fluorophore concentrations, and in particular reduces the light fluctuations present from the room lights, making low concentration measurements more reliable. This is particularly relevant for the light bands near 700nm that are more dominated by ambient lights.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Non-invasive fluorescence imaging under ambient light conditions using a modulated ICCD and laser diode

Banghe Zhu, John C. Rasmussen, and Eva M. Sevick-Muraca
Biomed. Opt. Express 5(2) 562-572 (2014)

Pulsed-light imaging for fluorescence guided surgery under normal room lighting

Kristian Sexton, Scott C. Davis, David McClatchy, Pablo A. Valdes, Stephen C. Kanick, Keith D. Paulsen, David W. Roberts, and Brian W. Pogue
Opt. Lett. 38(17) 3249-3252 (2013)

Improved sensitivity to fluorescence for cancer detection in wide-field image-guided neurosurgery

Michael Jermyn, Yoann Gosselin, Pablo A. Valdes, Mira Sibai, Kolbein Kolste, Jeanne Mercier, Leticia Angulo, David W. Roberts, Keith D. Paulsen, Kevin Petrecca, Olivier Daigle, Brian C. Wilson, and Frederic Leblond
Biomed. Opt. Express 6(12) 5063-5074 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. M. Sevick-Muraca and J. C. Rasmussen, “Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine,” J. Biomed. Opt. 13(4), 041303 (2008).
    [Crossref] [PubMed]
  2. B. E. Schaafsma, J. S. Mieog, M. Hutteman, J. R. van der Vorst, P. J. Kuppen, C. W. Löwik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery,” J. Surg. Oncol. 104(3), 323–332 (2011).
    [Crossref] [PubMed]
  3. S. Yamashita, K. Tokuishi, M. Miyawaki, K. Anami, T. Moroga, S. Takeno, M. Chujo, S. Yamamoto, and K. Kawahara, “Sentinel node navigation surgery by thoracoscopic fluorescence imaging system and molecular examination in non-small cell lung cancer,” Ann. Surg. Oncol. 19(3), 728–733 (2012).
    [Crossref] [PubMed]
  4. T. J. Snoeks, P. B. van Driel, S. Keereweer, S. Aime, K. M. Brindle, G. M. van Dam, C. W. Löwik, V. Ntziachristos, and A. L. Vahrmeijer, “Towards a successful clinical implementation of fluorescence-guided surgery,” Mol. Imaging Biol. 16(2), 147–151 (2014).
    [Crossref] [PubMed]
  5. P. B. van Driel, J. R. van der Vorst, F. P. Verbeek, S. Oliveira, T. J. Snoeks, S. Keereweer, B. Chan, M. C. Boonstra, J. V. Frangioni, P. M. van Bergen en Henegouwen, A. L. Vahrmeijer, and C. W. Lowik, “Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody,” Int. J. Cancer 134(11), 2663–2673 (2014).
    [Crossref] [PubMed]
  6. S. L. Gibbs, Y. Xie, H. L. Goodwill, K. A. Nasr, Y. Ashitate, V. J. Madigan, T. M. Siclovan, M. Zavodszky, C. A. Tan Hehir, and J. V. Frangioni, “Structure-activity relationship of nerve-highlighting fluorophores,” PLoS One 8(9), e73493 (2013).
    [Crossref] [PubMed]
  7. N. Mitsuhashi, F. Kimura, H. Shimizu, M. Imamaki, H. Yoshidome, M. Ohtsuka, A. Kato, H. Yoshitomi, S. Nozawa, K. Furukawa, D. Takeuchi, T. Takayashiki, K. Suda, T. Igarashi, and M. Miyazaki, “Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery,” J. Hepatobiliary Pancreat. Surg. 15(5), 508–514 (2008).
    [Crossref] [PubMed]
  8. M. Hutteman, J. R. van der Vorst, K. N. Gaarenstroom, A. A. Peters, J. S. Mieog, B. E. Schaafsma, C. W. Lowik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “Optimization of near-infrared fluorescent sentinel lymph node mapping for vulvar cancer,” Am. J. Obstet. Gynecol. 206(1), 89 (2012)
  9. F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, R. J. Swijnenburg, K. N. Gaarenstroom, H. W. Elzevier, C. J. van de Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience,” J. Urol. 190(2), 574–579 (2013).
    [Crossref] [PubMed]
  10. S. Gioux, Y. Ashitate, M. Hutteman, and J. V. Frangioni, “Motion-gated acquisition for in vivo optical imaging,” J. Biomed. Opt. 14(6), 064038 (2009).
    [Crossref] [PubMed]
  11. S. Gioux, J. G. Coutard, M. Berger, H. Grateau, V. Josserand, M. Keramidas, C. Righini, J. L. Coll, and J. M. Dinten, “FluoSTIC: miniaturized fluorescence image-guided surgery system,” J. Biomed. Opt. 17(10), 106014 (2012).
    [Crossref] [PubMed]
  12. S. Gioux, V. Kianzad, R. Ciocan, H. S. Choi, C. Nelson, J. Thumm, R. J. Filkins, S. J. Lomnes, and J. V. Frangioni, “A low-cost, linear, DC - 35 MHz, high-power LED driver for continuous wave (CW) and fluorescence lifetime imaging (FLIM),” Proc SPIE Int Soc Opt Eng 6848, 684807 (2008).
    [Crossref] [PubMed]
  13. S. Gioux, V. Kianzad, R. Ciocan, S. Gupta, R. Oketokoun, and J. V. Frangioni, “High-power, computer-controlled, light-emitting diode-based light sources for fluorescence imaging and image-guided surgery,” Mol. Imaging 8(3), 156–165 (2009).
    [PubMed]
  14. B. T. Lee, M. Hutteman, S. Gioux, A. Stockdale, S. J. Lin, L. H. Ngo, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in perforator flap breast reconstruction,” Plast. Reconstr. Surg. 126(5), 1472–1481 (2010).
    [Crossref] [PubMed]
  15. P. A. Valdes, K. Bekelis, B. T. Harris, B. C. Wilson, F. Leblond, A. Kim, N. E. Simmons, K. Erkmen, K. D. Paulsen, and D. W. Roberts, “5-aminolevulinic acid-induced protoporphyrin ix fluorescence in meningioma: qualitative and quantitative measurements in vivo,” Neurosurgery 10(1), 74–82, discussion 82–83 (2014).
    [PubMed]
  16. R. G. Pleijhuis, G. C. Langhout, W. Helfrich, G. Themelis, A. Sarantopoulos, L. M. Crane, N. J. Harlaar, J. S. de Jong, V. Ntziachristos, and G. M. van Dam, “Near-infrared fluorescence (NIRF) imaging in breast-conserving surgery: assessing intraoperative techniques in tissue-simulating breast phantoms,” Eur. J. Surg. Oncol. 37(1), 32–39 (2011).
    [Crossref] [PubMed]
  17. G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
    [Crossref] [PubMed]
  18. W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
    [Crossref] [PubMed]
  19. K. Sexton, S. C. Davis, D. McClatchy, P. A. Valdes, S. C. Kanick, K. D. Paulsen, D. W. Roberts, and B. W. Pogue, “Pulsed-light imaging for fluorescence guided surgery under normal room lighting,” Opt. Lett. 38(17), 3249–3252 (2013).
    [Crossref] [PubMed]
  20. K. Sexton, “System and methodology for receptor-level fluorescence imaging during surgery,” Doctoral Dissertation, Dartmouth College (2014).
  21. B. Zhu, J. C. Rasmussen, and E. M. Sevick-Muraca, “A matter of collection and detection for intraoperative and noninvasive near-infrared fluorescence molecular imaging: to see or not to see?” Med. Phys. 41(2), 022105 (2014).
    [Crossref] [PubMed]
  22. B. Zhu, J. C. Rasmussen, and E. M. Sevick-Muraca, “Non-invasive fluorescence imaging under ambient light conditions using a modulated ICCD and laser diode,” Biomed. Opt. Express 5(2), 562–572 (2014).
    [Crossref] [PubMed]

2014 (5)

T. J. Snoeks, P. B. van Driel, S. Keereweer, S. Aime, K. M. Brindle, G. M. van Dam, C. W. Löwik, V. Ntziachristos, and A. L. Vahrmeijer, “Towards a successful clinical implementation of fluorescence-guided surgery,” Mol. Imaging Biol. 16(2), 147–151 (2014).
[Crossref] [PubMed]

P. B. van Driel, J. R. van der Vorst, F. P. Verbeek, S. Oliveira, T. J. Snoeks, S. Keereweer, B. Chan, M. C. Boonstra, J. V. Frangioni, P. M. van Bergen en Henegouwen, A. L. Vahrmeijer, and C. W. Lowik, “Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody,” Int. J. Cancer 134(11), 2663–2673 (2014).
[Crossref] [PubMed]

P. A. Valdes, K. Bekelis, B. T. Harris, B. C. Wilson, F. Leblond, A. Kim, N. E. Simmons, K. Erkmen, K. D. Paulsen, and D. W. Roberts, “5-aminolevulinic acid-induced protoporphyrin ix fluorescence in meningioma: qualitative and quantitative measurements in vivo,” Neurosurgery 10(1), 74–82, discussion 82–83 (2014).
[PubMed]

B. Zhu, J. C. Rasmussen, and E. M. Sevick-Muraca, “A matter of collection and detection for intraoperative and noninvasive near-infrared fluorescence molecular imaging: to see or not to see?” Med. Phys. 41(2), 022105 (2014).
[Crossref] [PubMed]

B. Zhu, J. C. Rasmussen, and E. M. Sevick-Muraca, “Non-invasive fluorescence imaging under ambient light conditions using a modulated ICCD and laser diode,” Biomed. Opt. Express 5(2), 562–572 (2014).
[Crossref] [PubMed]

2013 (3)

K. Sexton, S. C. Davis, D. McClatchy, P. A. Valdes, S. C. Kanick, K. D. Paulsen, D. W. Roberts, and B. W. Pogue, “Pulsed-light imaging for fluorescence guided surgery under normal room lighting,” Opt. Lett. 38(17), 3249–3252 (2013).
[Crossref] [PubMed]

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, R. J. Swijnenburg, K. N. Gaarenstroom, H. W. Elzevier, C. J. van de Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience,” J. Urol. 190(2), 574–579 (2013).
[Crossref] [PubMed]

S. L. Gibbs, Y. Xie, H. L. Goodwill, K. A. Nasr, Y. Ashitate, V. J. Madigan, T. M. Siclovan, M. Zavodszky, C. A. Tan Hehir, and J. V. Frangioni, “Structure-activity relationship of nerve-highlighting fluorophores,” PLoS One 8(9), e73493 (2013).
[Crossref] [PubMed]

2012 (3)

S. Yamashita, K. Tokuishi, M. Miyawaki, K. Anami, T. Moroga, S. Takeno, M. Chujo, S. Yamamoto, and K. Kawahara, “Sentinel node navigation surgery by thoracoscopic fluorescence imaging system and molecular examination in non-small cell lung cancer,” Ann. Surg. Oncol. 19(3), 728–733 (2012).
[Crossref] [PubMed]

M. Hutteman, J. R. van der Vorst, K. N. Gaarenstroom, A. A. Peters, J. S. Mieog, B. E. Schaafsma, C. W. Lowik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “Optimization of near-infrared fluorescent sentinel lymph node mapping for vulvar cancer,” Am. J. Obstet. Gynecol. 206(1), 89 (2012)

S. Gioux, J. G. Coutard, M. Berger, H. Grateau, V. Josserand, M. Keramidas, C. Righini, J. L. Coll, and J. M. Dinten, “FluoSTIC: miniaturized fluorescence image-guided surgery system,” J. Biomed. Opt. 17(10), 106014 (2012).
[Crossref] [PubMed]

2011 (3)

R. G. Pleijhuis, G. C. Langhout, W. Helfrich, G. Themelis, A. Sarantopoulos, L. M. Crane, N. J. Harlaar, J. S. de Jong, V. Ntziachristos, and G. M. van Dam, “Near-infrared fluorescence (NIRF) imaging in breast-conserving surgery: assessing intraoperative techniques in tissue-simulating breast phantoms,” Eur. J. Surg. Oncol. 37(1), 32–39 (2011).
[Crossref] [PubMed]

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

B. E. Schaafsma, J. S. Mieog, M. Hutteman, J. R. van der Vorst, P. J. Kuppen, C. W. Löwik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery,” J. Surg. Oncol. 104(3), 323–332 (2011).
[Crossref] [PubMed]

2010 (1)

B. T. Lee, M. Hutteman, S. Gioux, A. Stockdale, S. J. Lin, L. H. Ngo, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in perforator flap breast reconstruction,” Plast. Reconstr. Surg. 126(5), 1472–1481 (2010).
[Crossref] [PubMed]

2009 (2)

S. Gioux, V. Kianzad, R. Ciocan, S. Gupta, R. Oketokoun, and J. V. Frangioni, “High-power, computer-controlled, light-emitting diode-based light sources for fluorescence imaging and image-guided surgery,” Mol. Imaging 8(3), 156–165 (2009).
[PubMed]

S. Gioux, Y. Ashitate, M. Hutteman, and J. V. Frangioni, “Motion-gated acquisition for in vivo optical imaging,” J. Biomed. Opt. 14(6), 064038 (2009).
[Crossref] [PubMed]

2008 (3)

S. Gioux, V. Kianzad, R. Ciocan, H. S. Choi, C. Nelson, J. Thumm, R. J. Filkins, S. J. Lomnes, and J. V. Frangioni, “A low-cost, linear, DC - 35 MHz, high-power LED driver for continuous wave (CW) and fluorescence lifetime imaging (FLIM),” Proc SPIE Int Soc Opt Eng 6848, 684807 (2008).
[Crossref] [PubMed]

E. M. Sevick-Muraca and J. C. Rasmussen, “Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine,” J. Biomed. Opt. 13(4), 041303 (2008).
[Crossref] [PubMed]

N. Mitsuhashi, F. Kimura, H. Shimizu, M. Imamaki, H. Yoshidome, M. Ohtsuka, A. Kato, H. Yoshitomi, S. Nozawa, K. Furukawa, D. Takeuchi, T. Takayashiki, K. Suda, T. Igarashi, and M. Miyazaki, “Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery,” J. Hepatobiliary Pancreat. Surg. 15(5), 508–514 (2008).
[Crossref] [PubMed]

2006 (1)

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Aime, S.

T. J. Snoeks, P. B. van Driel, S. Keereweer, S. Aime, K. M. Brindle, G. M. van Dam, C. W. Löwik, V. Ntziachristos, and A. L. Vahrmeijer, “Towards a successful clinical implementation of fluorescence-guided surgery,” Mol. Imaging Biol. 16(2), 147–151 (2014).
[Crossref] [PubMed]

Anami, K.

S. Yamashita, K. Tokuishi, M. Miyawaki, K. Anami, T. Moroga, S. Takeno, M. Chujo, S. Yamamoto, and K. Kawahara, “Sentinel node navigation surgery by thoracoscopic fluorescence imaging system and molecular examination in non-small cell lung cancer,” Ann. Surg. Oncol. 19(3), 728–733 (2012).
[Crossref] [PubMed]

Arts, H. J.

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Ashitate, Y.

S. L. Gibbs, Y. Xie, H. L. Goodwill, K. A. Nasr, Y. Ashitate, V. J. Madigan, T. M. Siclovan, M. Zavodszky, C. A. Tan Hehir, and J. V. Frangioni, “Structure-activity relationship of nerve-highlighting fluorophores,” PLoS One 8(9), e73493 (2013).
[Crossref] [PubMed]

S. Gioux, Y. Ashitate, M. Hutteman, and J. V. Frangioni, “Motion-gated acquisition for in vivo optical imaging,” J. Biomed. Opt. 14(6), 064038 (2009).
[Crossref] [PubMed]

Bart, J.

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Bekelis, K.

P. A. Valdes, K. Bekelis, B. T. Harris, B. C. Wilson, F. Leblond, A. Kim, N. E. Simmons, K. Erkmen, K. D. Paulsen, and D. W. Roberts, “5-aminolevulinic acid-induced protoporphyrin ix fluorescence in meningioma: qualitative and quantitative measurements in vivo,” Neurosurgery 10(1), 74–82, discussion 82–83 (2014).
[PubMed]

Berger, M.

S. Gioux, J. G. Coutard, M. Berger, H. Grateau, V. Josserand, M. Keramidas, C. Righini, J. L. Coll, and J. M. Dinten, “FluoSTIC: miniaturized fluorescence image-guided surgery system,” J. Biomed. Opt. 17(10), 106014 (2012).
[Crossref] [PubMed]

Boonstra, M. C.

P. B. van Driel, J. R. van der Vorst, F. P. Verbeek, S. Oliveira, T. J. Snoeks, S. Keereweer, B. Chan, M. C. Boonstra, J. V. Frangioni, P. M. van Bergen en Henegouwen, A. L. Vahrmeijer, and C. W. Lowik, “Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody,” Int. J. Cancer 134(11), 2663–2673 (2014).
[Crossref] [PubMed]

Brindle, K. M.

T. J. Snoeks, P. B. van Driel, S. Keereweer, S. Aime, K. M. Brindle, G. M. van Dam, C. W. Löwik, V. Ntziachristos, and A. L. Vahrmeijer, “Towards a successful clinical implementation of fluorescence-guided surgery,” Mol. Imaging Biol. 16(2), 147–151 (2014).
[Crossref] [PubMed]

Chan, B.

P. B. van Driel, J. R. van der Vorst, F. P. Verbeek, S. Oliveira, T. J. Snoeks, S. Keereweer, B. Chan, M. C. Boonstra, J. V. Frangioni, P. M. van Bergen en Henegouwen, A. L. Vahrmeijer, and C. W. Lowik, “Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody,” Int. J. Cancer 134(11), 2663–2673 (2014).
[Crossref] [PubMed]

Choi, H. S.

S. Gioux, V. Kianzad, R. Ciocan, H. S. Choi, C. Nelson, J. Thumm, R. J. Filkins, S. J. Lomnes, and J. V. Frangioni, “A low-cost, linear, DC - 35 MHz, high-power LED driver for continuous wave (CW) and fluorescence lifetime imaging (FLIM),” Proc SPIE Int Soc Opt Eng 6848, 684807 (2008).
[Crossref] [PubMed]

Chujo, M.

S. Yamashita, K. Tokuishi, M. Miyawaki, K. Anami, T. Moroga, S. Takeno, M. Chujo, S. Yamamoto, and K. Kawahara, “Sentinel node navigation surgery by thoracoscopic fluorescence imaging system and molecular examination in non-small cell lung cancer,” Ann. Surg. Oncol. 19(3), 728–733 (2012).
[Crossref] [PubMed]

Ciocan, R.

S. Gioux, V. Kianzad, R. Ciocan, S. Gupta, R. Oketokoun, and J. V. Frangioni, “High-power, computer-controlled, light-emitting diode-based light sources for fluorescence imaging and image-guided surgery,” Mol. Imaging 8(3), 156–165 (2009).
[PubMed]

S. Gioux, V. Kianzad, R. Ciocan, H. S. Choi, C. Nelson, J. Thumm, R. J. Filkins, S. J. Lomnes, and J. V. Frangioni, “A low-cost, linear, DC - 35 MHz, high-power LED driver for continuous wave (CW) and fluorescence lifetime imaging (FLIM),” Proc SPIE Int Soc Opt Eng 6848, 684807 (2008).
[Crossref] [PubMed]

Coll, J. L.

S. Gioux, J. G. Coutard, M. Berger, H. Grateau, V. Josserand, M. Keramidas, C. Righini, J. L. Coll, and J. M. Dinten, “FluoSTIC: miniaturized fluorescence image-guided surgery system,” J. Biomed. Opt. 17(10), 106014 (2012).
[Crossref] [PubMed]

Coutard, J. G.

S. Gioux, J. G. Coutard, M. Berger, H. Grateau, V. Josserand, M. Keramidas, C. Righini, J. L. Coll, and J. M. Dinten, “FluoSTIC: miniaturized fluorescence image-guided surgery system,” J. Biomed. Opt. 17(10), 106014 (2012).
[Crossref] [PubMed]

Crane, L. M.

R. G. Pleijhuis, G. C. Langhout, W. Helfrich, G. Themelis, A. Sarantopoulos, L. M. Crane, N. J. Harlaar, J. S. de Jong, V. Ntziachristos, and G. M. van Dam, “Near-infrared fluorescence (NIRF) imaging in breast-conserving surgery: assessing intraoperative techniques in tissue-simulating breast phantoms,” Eur. J. Surg. Oncol. 37(1), 32–39 (2011).
[Crossref] [PubMed]

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Davis, S. C.

de Jong, J. S.

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

R. G. Pleijhuis, G. C. Langhout, W. Helfrich, G. Themelis, A. Sarantopoulos, L. M. Crane, N. J. Harlaar, J. S. de Jong, V. Ntziachristos, and G. M. van Dam, “Near-infrared fluorescence (NIRF) imaging in breast-conserving surgery: assessing intraoperative techniques in tissue-simulating breast phantoms,” Eur. J. Surg. Oncol. 37(1), 32–39 (2011).
[Crossref] [PubMed]

Dinten, J. M.

S. Gioux, J. G. Coutard, M. Berger, H. Grateau, V. Josserand, M. Keramidas, C. Righini, J. L. Coll, and J. M. Dinten, “FluoSTIC: miniaturized fluorescence image-guided surgery system,” J. Biomed. Opt. 17(10), 106014 (2012).
[Crossref] [PubMed]

Elzevier, H. W.

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, R. J. Swijnenburg, K. N. Gaarenstroom, H. W. Elzevier, C. J. van de Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience,” J. Urol. 190(2), 574–579 (2013).
[Crossref] [PubMed]

Erkmen, K.

P. A. Valdes, K. Bekelis, B. T. Harris, B. C. Wilson, F. Leblond, A. Kim, N. E. Simmons, K. Erkmen, K. D. Paulsen, and D. W. Roberts, “5-aminolevulinic acid-induced protoporphyrin ix fluorescence in meningioma: qualitative and quantitative measurements in vivo,” Neurosurgery 10(1), 74–82, discussion 82–83 (2014).
[PubMed]

Filkins, R. J.

S. Gioux, V. Kianzad, R. Ciocan, H. S. Choi, C. Nelson, J. Thumm, R. J. Filkins, S. J. Lomnes, and J. V. Frangioni, “A low-cost, linear, DC - 35 MHz, high-power LED driver for continuous wave (CW) and fluorescence lifetime imaging (FLIM),” Proc SPIE Int Soc Opt Eng 6848, 684807 (2008).
[Crossref] [PubMed]

Frangioni, J. V.

P. B. van Driel, J. R. van der Vorst, F. P. Verbeek, S. Oliveira, T. J. Snoeks, S. Keereweer, B. Chan, M. C. Boonstra, J. V. Frangioni, P. M. van Bergen en Henegouwen, A. L. Vahrmeijer, and C. W. Lowik, “Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody,” Int. J. Cancer 134(11), 2663–2673 (2014).
[Crossref] [PubMed]

S. L. Gibbs, Y. Xie, H. L. Goodwill, K. A. Nasr, Y. Ashitate, V. J. Madigan, T. M. Siclovan, M. Zavodszky, C. A. Tan Hehir, and J. V. Frangioni, “Structure-activity relationship of nerve-highlighting fluorophores,” PLoS One 8(9), e73493 (2013).
[Crossref] [PubMed]

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, R. J. Swijnenburg, K. N. Gaarenstroom, H. W. Elzevier, C. J. van de Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience,” J. Urol. 190(2), 574–579 (2013).
[Crossref] [PubMed]

M. Hutteman, J. R. van der Vorst, K. N. Gaarenstroom, A. A. Peters, J. S. Mieog, B. E. Schaafsma, C. W. Lowik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “Optimization of near-infrared fluorescent sentinel lymph node mapping for vulvar cancer,” Am. J. Obstet. Gynecol. 206(1), 89 (2012)

B. E. Schaafsma, J. S. Mieog, M. Hutteman, J. R. van der Vorst, P. J. Kuppen, C. W. Löwik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery,” J. Surg. Oncol. 104(3), 323–332 (2011).
[Crossref] [PubMed]

B. T. Lee, M. Hutteman, S. Gioux, A. Stockdale, S. J. Lin, L. H. Ngo, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in perforator flap breast reconstruction,” Plast. Reconstr. Surg. 126(5), 1472–1481 (2010).
[Crossref] [PubMed]

S. Gioux, V. Kianzad, R. Ciocan, S. Gupta, R. Oketokoun, and J. V. Frangioni, “High-power, computer-controlled, light-emitting diode-based light sources for fluorescence imaging and image-guided surgery,” Mol. Imaging 8(3), 156–165 (2009).
[PubMed]

S. Gioux, Y. Ashitate, M. Hutteman, and J. V. Frangioni, “Motion-gated acquisition for in vivo optical imaging,” J. Biomed. Opt. 14(6), 064038 (2009).
[Crossref] [PubMed]

S. Gioux, V. Kianzad, R. Ciocan, H. S. Choi, C. Nelson, J. Thumm, R. J. Filkins, S. J. Lomnes, and J. V. Frangioni, “A low-cost, linear, DC - 35 MHz, high-power LED driver for continuous wave (CW) and fluorescence lifetime imaging (FLIM),” Proc SPIE Int Soc Opt Eng 6848, 684807 (2008).
[Crossref] [PubMed]

Furukawa, K.

N. Mitsuhashi, F. Kimura, H. Shimizu, M. Imamaki, H. Yoshidome, M. Ohtsuka, A. Kato, H. Yoshitomi, S. Nozawa, K. Furukawa, D. Takeuchi, T. Takayashiki, K. Suda, T. Igarashi, and M. Miyazaki, “Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery,” J. Hepatobiliary Pancreat. Surg. 15(5), 508–514 (2008).
[Crossref] [PubMed]

Gaarenstroom, K. N.

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, R. J. Swijnenburg, K. N. Gaarenstroom, H. W. Elzevier, C. J. van de Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience,” J. Urol. 190(2), 574–579 (2013).
[Crossref] [PubMed]

M. Hutteman, J. R. van der Vorst, K. N. Gaarenstroom, A. A. Peters, J. S. Mieog, B. E. Schaafsma, C. W. Lowik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “Optimization of near-infrared fluorescent sentinel lymph node mapping for vulvar cancer,” Am. J. Obstet. Gynecol. 206(1), 89 (2012)

Gibbs, S. L.

S. L. Gibbs, Y. Xie, H. L. Goodwill, K. A. Nasr, Y. Ashitate, V. J. Madigan, T. M. Siclovan, M. Zavodszky, C. A. Tan Hehir, and J. V. Frangioni, “Structure-activity relationship of nerve-highlighting fluorophores,” PLoS One 8(9), e73493 (2013).
[Crossref] [PubMed]

Gioux, S.

S. Gioux, J. G. Coutard, M. Berger, H. Grateau, V. Josserand, M. Keramidas, C. Righini, J. L. Coll, and J. M. Dinten, “FluoSTIC: miniaturized fluorescence image-guided surgery system,” J. Biomed. Opt. 17(10), 106014 (2012).
[Crossref] [PubMed]

B. T. Lee, M. Hutteman, S. Gioux, A. Stockdale, S. J. Lin, L. H. Ngo, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in perforator flap breast reconstruction,” Plast. Reconstr. Surg. 126(5), 1472–1481 (2010).
[Crossref] [PubMed]

S. Gioux, V. Kianzad, R. Ciocan, S. Gupta, R. Oketokoun, and J. V. Frangioni, “High-power, computer-controlled, light-emitting diode-based light sources for fluorescence imaging and image-guided surgery,” Mol. Imaging 8(3), 156–165 (2009).
[PubMed]

S. Gioux, Y. Ashitate, M. Hutteman, and J. V. Frangioni, “Motion-gated acquisition for in vivo optical imaging,” J. Biomed. Opt. 14(6), 064038 (2009).
[Crossref] [PubMed]

S. Gioux, V. Kianzad, R. Ciocan, H. S. Choi, C. Nelson, J. Thumm, R. J. Filkins, S. J. Lomnes, and J. V. Frangioni, “A low-cost, linear, DC - 35 MHz, high-power LED driver for continuous wave (CW) and fluorescence lifetime imaging (FLIM),” Proc SPIE Int Soc Opt Eng 6848, 684807 (2008).
[Crossref] [PubMed]

Goodwill, H. L.

S. L. Gibbs, Y. Xie, H. L. Goodwill, K. A. Nasr, Y. Ashitate, V. J. Madigan, T. M. Siclovan, M. Zavodszky, C. A. Tan Hehir, and J. V. Frangioni, “Structure-activity relationship of nerve-highlighting fluorophores,” PLoS One 8(9), e73493 (2013).
[Crossref] [PubMed]

Grateau, H.

S. Gioux, J. G. Coutard, M. Berger, H. Grateau, V. Josserand, M. Keramidas, C. Righini, J. L. Coll, and J. M. Dinten, “FluoSTIC: miniaturized fluorescence image-guided surgery system,” J. Biomed. Opt. 17(10), 106014 (2012).
[Crossref] [PubMed]

Gupta, S.

S. Gioux, V. Kianzad, R. Ciocan, S. Gupta, R. Oketokoun, and J. V. Frangioni, “High-power, computer-controlled, light-emitting diode-based light sources for fluorescence imaging and image-guided surgery,” Mol. Imaging 8(3), 156–165 (2009).
[PubMed]

Harlaar, N. J.

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

R. G. Pleijhuis, G. C. Langhout, W. Helfrich, G. Themelis, A. Sarantopoulos, L. M. Crane, N. J. Harlaar, J. S. de Jong, V. Ntziachristos, and G. M. van Dam, “Near-infrared fluorescence (NIRF) imaging in breast-conserving surgery: assessing intraoperative techniques in tissue-simulating breast phantoms,” Eur. J. Surg. Oncol. 37(1), 32–39 (2011).
[Crossref] [PubMed]

Harris, B. T.

P. A. Valdes, K. Bekelis, B. T. Harris, B. C. Wilson, F. Leblond, A. Kim, N. E. Simmons, K. Erkmen, K. D. Paulsen, and D. W. Roberts, “5-aminolevulinic acid-induced protoporphyrin ix fluorescence in meningioma: qualitative and quantitative measurements in vivo,” Neurosurgery 10(1), 74–82, discussion 82–83 (2014).
[PubMed]

Helfrich, W.

R. G. Pleijhuis, G. C. Langhout, W. Helfrich, G. Themelis, A. Sarantopoulos, L. M. Crane, N. J. Harlaar, J. S. de Jong, V. Ntziachristos, and G. M. van Dam, “Near-infrared fluorescence (NIRF) imaging in breast-conserving surgery: assessing intraoperative techniques in tissue-simulating breast phantoms,” Eur. J. Surg. Oncol. 37(1), 32–39 (2011).
[Crossref] [PubMed]

Hutteman, M.

M. Hutteman, J. R. van der Vorst, K. N. Gaarenstroom, A. A. Peters, J. S. Mieog, B. E. Schaafsma, C. W. Lowik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “Optimization of near-infrared fluorescent sentinel lymph node mapping for vulvar cancer,” Am. J. Obstet. Gynecol. 206(1), 89 (2012)

B. E. Schaafsma, J. S. Mieog, M. Hutteman, J. R. van der Vorst, P. J. Kuppen, C. W. Löwik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery,” J. Surg. Oncol. 104(3), 323–332 (2011).
[Crossref] [PubMed]

B. T. Lee, M. Hutteman, S. Gioux, A. Stockdale, S. J. Lin, L. H. Ngo, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in perforator flap breast reconstruction,” Plast. Reconstr. Surg. 126(5), 1472–1481 (2010).
[Crossref] [PubMed]

S. Gioux, Y. Ashitate, M. Hutteman, and J. V. Frangioni, “Motion-gated acquisition for in vivo optical imaging,” J. Biomed. Opt. 14(6), 064038 (2009).
[Crossref] [PubMed]

Igarashi, T.

N. Mitsuhashi, F. Kimura, H. Shimizu, M. Imamaki, H. Yoshidome, M. Ohtsuka, A. Kato, H. Yoshitomi, S. Nozawa, K. Furukawa, D. Takeuchi, T. Takayashiki, K. Suda, T. Igarashi, and M. Miyazaki, “Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery,” J. Hepatobiliary Pancreat. Surg. 15(5), 508–514 (2008).
[Crossref] [PubMed]

Imamaki, M.

N. Mitsuhashi, F. Kimura, H. Shimizu, M. Imamaki, H. Yoshidome, M. Ohtsuka, A. Kato, H. Yoshitomi, S. Nozawa, K. Furukawa, D. Takeuchi, T. Takayashiki, K. Suda, T. Igarashi, and M. Miyazaki, “Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery,” J. Hepatobiliary Pancreat. Surg. 15(5), 508–514 (2008).
[Crossref] [PubMed]

Josserand, V.

S. Gioux, J. G. Coutard, M. Berger, H. Grateau, V. Josserand, M. Keramidas, C. Righini, J. L. Coll, and J. M. Dinten, “FluoSTIC: miniaturized fluorescence image-guided surgery system,” J. Biomed. Opt. 17(10), 106014 (2012).
[Crossref] [PubMed]

Kanick, S. C.

Kato, A.

N. Mitsuhashi, F. Kimura, H. Shimizu, M. Imamaki, H. Yoshidome, M. Ohtsuka, A. Kato, H. Yoshitomi, S. Nozawa, K. Furukawa, D. Takeuchi, T. Takayashiki, K. Suda, T. Igarashi, and M. Miyazaki, “Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery,” J. Hepatobiliary Pancreat. Surg. 15(5), 508–514 (2008).
[Crossref] [PubMed]

Kawahara, K.

S. Yamashita, K. Tokuishi, M. Miyawaki, K. Anami, T. Moroga, S. Takeno, M. Chujo, S. Yamamoto, and K. Kawahara, “Sentinel node navigation surgery by thoracoscopic fluorescence imaging system and molecular examination in non-small cell lung cancer,” Ann. Surg. Oncol. 19(3), 728–733 (2012).
[Crossref] [PubMed]

Keereweer, S.

T. J. Snoeks, P. B. van Driel, S. Keereweer, S. Aime, K. M. Brindle, G. M. van Dam, C. W. Löwik, V. Ntziachristos, and A. L. Vahrmeijer, “Towards a successful clinical implementation of fluorescence-guided surgery,” Mol. Imaging Biol. 16(2), 147–151 (2014).
[Crossref] [PubMed]

P. B. van Driel, J. R. van der Vorst, F. P. Verbeek, S. Oliveira, T. J. Snoeks, S. Keereweer, B. Chan, M. C. Boonstra, J. V. Frangioni, P. M. van Bergen en Henegouwen, A. L. Vahrmeijer, and C. W. Lowik, “Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody,” Int. J. Cancer 134(11), 2663–2673 (2014).
[Crossref] [PubMed]

Kelder, W.

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Keramidas, M.

S. Gioux, J. G. Coutard, M. Berger, H. Grateau, V. Josserand, M. Keramidas, C. Righini, J. L. Coll, and J. M. Dinten, “FluoSTIC: miniaturized fluorescence image-guided surgery system,” J. Biomed. Opt. 17(10), 106014 (2012).
[Crossref] [PubMed]

Kianzad, V.

S. Gioux, V. Kianzad, R. Ciocan, S. Gupta, R. Oketokoun, and J. V. Frangioni, “High-power, computer-controlled, light-emitting diode-based light sources for fluorescence imaging and image-guided surgery,” Mol. Imaging 8(3), 156–165 (2009).
[PubMed]

S. Gioux, V. Kianzad, R. Ciocan, H. S. Choi, C. Nelson, J. Thumm, R. J. Filkins, S. J. Lomnes, and J. V. Frangioni, “A low-cost, linear, DC - 35 MHz, high-power LED driver for continuous wave (CW) and fluorescence lifetime imaging (FLIM),” Proc SPIE Int Soc Opt Eng 6848, 684807 (2008).
[Crossref] [PubMed]

Kim, A.

P. A. Valdes, K. Bekelis, B. T. Harris, B. C. Wilson, F. Leblond, A. Kim, N. E. Simmons, K. Erkmen, K. D. Paulsen, and D. W. Roberts, “5-aminolevulinic acid-induced protoporphyrin ix fluorescence in meningioma: qualitative and quantitative measurements in vivo,” Neurosurgery 10(1), 74–82, discussion 82–83 (2014).
[PubMed]

Kimura, F.

N. Mitsuhashi, F. Kimura, H. Shimizu, M. Imamaki, H. Yoshidome, M. Ohtsuka, A. Kato, H. Yoshitomi, S. Nozawa, K. Furukawa, D. Takeuchi, T. Takayashiki, K. Suda, T. Igarashi, and M. Miyazaki, “Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery,” J. Hepatobiliary Pancreat. Surg. 15(5), 508–514 (2008).
[Crossref] [PubMed]

Kuppen, P. J.

B. E. Schaafsma, J. S. Mieog, M. Hutteman, J. R. van der Vorst, P. J. Kuppen, C. W. Löwik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery,” J. Surg. Oncol. 104(3), 323–332 (2011).
[Crossref] [PubMed]

Langhout, G. C.

R. G. Pleijhuis, G. C. Langhout, W. Helfrich, G. Themelis, A. Sarantopoulos, L. M. Crane, N. J. Harlaar, J. S. de Jong, V. Ntziachristos, and G. M. van Dam, “Near-infrared fluorescence (NIRF) imaging in breast-conserving surgery: assessing intraoperative techniques in tissue-simulating breast phantoms,” Eur. J. Surg. Oncol. 37(1), 32–39 (2011).
[Crossref] [PubMed]

Leblond, F.

P. A. Valdes, K. Bekelis, B. T. Harris, B. C. Wilson, F. Leblond, A. Kim, N. E. Simmons, K. Erkmen, K. D. Paulsen, and D. W. Roberts, “5-aminolevulinic acid-induced protoporphyrin ix fluorescence in meningioma: qualitative and quantitative measurements in vivo,” Neurosurgery 10(1), 74–82, discussion 82–83 (2014).
[PubMed]

Lee, B. T.

B. T. Lee, M. Hutteman, S. Gioux, A. Stockdale, S. J. Lin, L. H. Ngo, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in perforator flap breast reconstruction,” Plast. Reconstr. Surg. 126(5), 1472–1481 (2010).
[Crossref] [PubMed]

Lin, S. J.

B. T. Lee, M. Hutteman, S. Gioux, A. Stockdale, S. J. Lin, L. H. Ngo, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in perforator flap breast reconstruction,” Plast. Reconstr. Surg. 126(5), 1472–1481 (2010).
[Crossref] [PubMed]

Lomnes, S. J.

S. Gioux, V. Kianzad, R. Ciocan, H. S. Choi, C. Nelson, J. Thumm, R. J. Filkins, S. J. Lomnes, and J. V. Frangioni, “A low-cost, linear, DC - 35 MHz, high-power LED driver for continuous wave (CW) and fluorescence lifetime imaging (FLIM),” Proc SPIE Int Soc Opt Eng 6848, 684807 (2008).
[Crossref] [PubMed]

Low, P. S.

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Lowik, C. W.

P. B. van Driel, J. R. van der Vorst, F. P. Verbeek, S. Oliveira, T. J. Snoeks, S. Keereweer, B. Chan, M. C. Boonstra, J. V. Frangioni, P. M. van Bergen en Henegouwen, A. L. Vahrmeijer, and C. W. Lowik, “Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody,” Int. J. Cancer 134(11), 2663–2673 (2014).
[Crossref] [PubMed]

M. Hutteman, J. R. van der Vorst, K. N. Gaarenstroom, A. A. Peters, J. S. Mieog, B. E. Schaafsma, C. W. Lowik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “Optimization of near-infrared fluorescent sentinel lymph node mapping for vulvar cancer,” Am. J. Obstet. Gynecol. 206(1), 89 (2012)

Löwik, C. W.

T. J. Snoeks, P. B. van Driel, S. Keereweer, S. Aime, K. M. Brindle, G. M. van Dam, C. W. Löwik, V. Ntziachristos, and A. L. Vahrmeijer, “Towards a successful clinical implementation of fluorescence-guided surgery,” Mol. Imaging Biol. 16(2), 147–151 (2014).
[Crossref] [PubMed]

B. E. Schaafsma, J. S. Mieog, M. Hutteman, J. R. van der Vorst, P. J. Kuppen, C. W. Löwik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery,” J. Surg. Oncol. 104(3), 323–332 (2011).
[Crossref] [PubMed]

Madigan, V. J.

S. L. Gibbs, Y. Xie, H. L. Goodwill, K. A. Nasr, Y. Ashitate, V. J. Madigan, T. M. Siclovan, M. Zavodszky, C. A. Tan Hehir, and J. V. Frangioni, “Structure-activity relationship of nerve-highlighting fluorophores,” PLoS One 8(9), e73493 (2013).
[Crossref] [PubMed]

McClatchy, D.

Meinel, T.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Mieog, J. S.

M. Hutteman, J. R. van der Vorst, K. N. Gaarenstroom, A. A. Peters, J. S. Mieog, B. E. Schaafsma, C. W. Lowik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “Optimization of near-infrared fluorescent sentinel lymph node mapping for vulvar cancer,” Am. J. Obstet. Gynecol. 206(1), 89 (2012)

B. E. Schaafsma, J. S. Mieog, M. Hutteman, J. R. van der Vorst, P. J. Kuppen, C. W. Löwik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery,” J. Surg. Oncol. 104(3), 323–332 (2011).
[Crossref] [PubMed]

Mitsuhashi, N.

N. Mitsuhashi, F. Kimura, H. Shimizu, M. Imamaki, H. Yoshidome, M. Ohtsuka, A. Kato, H. Yoshitomi, S. Nozawa, K. Furukawa, D. Takeuchi, T. Takayashiki, K. Suda, T. Igarashi, and M. Miyazaki, “Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery,” J. Hepatobiliary Pancreat. Surg. 15(5), 508–514 (2008).
[Crossref] [PubMed]

Miyawaki, M.

S. Yamashita, K. Tokuishi, M. Miyawaki, K. Anami, T. Moroga, S. Takeno, M. Chujo, S. Yamamoto, and K. Kawahara, “Sentinel node navigation surgery by thoracoscopic fluorescence imaging system and molecular examination in non-small cell lung cancer,” Ann. Surg. Oncol. 19(3), 728–733 (2012).
[Crossref] [PubMed]

Miyazaki, M.

N. Mitsuhashi, F. Kimura, H. Shimizu, M. Imamaki, H. Yoshidome, M. Ohtsuka, A. Kato, H. Yoshitomi, S. Nozawa, K. Furukawa, D. Takeuchi, T. Takayashiki, K. Suda, T. Igarashi, and M. Miyazaki, “Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery,” J. Hepatobiliary Pancreat. Surg. 15(5), 508–514 (2008).
[Crossref] [PubMed]

Moroga, T.

S. Yamashita, K. Tokuishi, M. Miyawaki, K. Anami, T. Moroga, S. Takeno, M. Chujo, S. Yamamoto, and K. Kawahara, “Sentinel node navigation surgery by thoracoscopic fluorescence imaging system and molecular examination in non-small cell lung cancer,” Ann. Surg. Oncol. 19(3), 728–733 (2012).
[Crossref] [PubMed]

Nasr, K. A.

S. L. Gibbs, Y. Xie, H. L. Goodwill, K. A. Nasr, Y. Ashitate, V. J. Madigan, T. M. Siclovan, M. Zavodszky, C. A. Tan Hehir, and J. V. Frangioni, “Structure-activity relationship of nerve-highlighting fluorophores,” PLoS One 8(9), e73493 (2013).
[Crossref] [PubMed]

Nelson, C.

S. Gioux, V. Kianzad, R. Ciocan, H. S. Choi, C. Nelson, J. Thumm, R. J. Filkins, S. J. Lomnes, and J. V. Frangioni, “A low-cost, linear, DC - 35 MHz, high-power LED driver for continuous wave (CW) and fluorescence lifetime imaging (FLIM),” Proc SPIE Int Soc Opt Eng 6848, 684807 (2008).
[Crossref] [PubMed]

Ngo, L. H.

B. T. Lee, M. Hutteman, S. Gioux, A. Stockdale, S. J. Lin, L. H. Ngo, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in perforator flap breast reconstruction,” Plast. Reconstr. Surg. 126(5), 1472–1481 (2010).
[Crossref] [PubMed]

Nozawa, S.

N. Mitsuhashi, F. Kimura, H. Shimizu, M. Imamaki, H. Yoshidome, M. Ohtsuka, A. Kato, H. Yoshitomi, S. Nozawa, K. Furukawa, D. Takeuchi, T. Takayashiki, K. Suda, T. Igarashi, and M. Miyazaki, “Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery,” J. Hepatobiliary Pancreat. Surg. 15(5), 508–514 (2008).
[Crossref] [PubMed]

Ntziachristos, V.

T. J. Snoeks, P. B. van Driel, S. Keereweer, S. Aime, K. M. Brindle, G. M. van Dam, C. W. Löwik, V. Ntziachristos, and A. L. Vahrmeijer, “Towards a successful clinical implementation of fluorescence-guided surgery,” Mol. Imaging Biol. 16(2), 147–151 (2014).
[Crossref] [PubMed]

R. G. Pleijhuis, G. C. Langhout, W. Helfrich, G. Themelis, A. Sarantopoulos, L. M. Crane, N. J. Harlaar, J. S. de Jong, V. Ntziachristos, and G. M. van Dam, “Near-infrared fluorescence (NIRF) imaging in breast-conserving surgery: assessing intraoperative techniques in tissue-simulating breast phantoms,” Eur. J. Surg. Oncol. 37(1), 32–39 (2011).
[Crossref] [PubMed]

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Ohtsuka, M.

N. Mitsuhashi, F. Kimura, H. Shimizu, M. Imamaki, H. Yoshidome, M. Ohtsuka, A. Kato, H. Yoshitomi, S. Nozawa, K. Furukawa, D. Takeuchi, T. Takayashiki, K. Suda, T. Igarashi, and M. Miyazaki, “Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery,” J. Hepatobiliary Pancreat. Surg. 15(5), 508–514 (2008).
[Crossref] [PubMed]

Oketokoun, R.

S. Gioux, V. Kianzad, R. Ciocan, S. Gupta, R. Oketokoun, and J. V. Frangioni, “High-power, computer-controlled, light-emitting diode-based light sources for fluorescence imaging and image-guided surgery,” Mol. Imaging 8(3), 156–165 (2009).
[PubMed]

Oliveira, S.

P. B. van Driel, J. R. van der Vorst, F. P. Verbeek, S. Oliveira, T. J. Snoeks, S. Keereweer, B. Chan, M. C. Boonstra, J. V. Frangioni, P. M. van Bergen en Henegouwen, A. L. Vahrmeijer, and C. W. Lowik, “Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody,” Int. J. Cancer 134(11), 2663–2673 (2014).
[Crossref] [PubMed]

Paulsen, K. D.

P. A. Valdes, K. Bekelis, B. T. Harris, B. C. Wilson, F. Leblond, A. Kim, N. E. Simmons, K. Erkmen, K. D. Paulsen, and D. W. Roberts, “5-aminolevulinic acid-induced protoporphyrin ix fluorescence in meningioma: qualitative and quantitative measurements in vivo,” Neurosurgery 10(1), 74–82, discussion 82–83 (2014).
[PubMed]

K. Sexton, S. C. Davis, D. McClatchy, P. A. Valdes, S. C. Kanick, K. D. Paulsen, D. W. Roberts, and B. W. Pogue, “Pulsed-light imaging for fluorescence guided surgery under normal room lighting,” Opt. Lett. 38(17), 3249–3252 (2013).
[Crossref] [PubMed]

Peters, A. A.

M. Hutteman, J. R. van der Vorst, K. N. Gaarenstroom, A. A. Peters, J. S. Mieog, B. E. Schaafsma, C. W. Lowik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “Optimization of near-infrared fluorescent sentinel lymph node mapping for vulvar cancer,” Am. J. Obstet. Gynecol. 206(1), 89 (2012)

Pichlmeier, U.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Pleijhuis, R. G.

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

R. G. Pleijhuis, G. C. Langhout, W. Helfrich, G. Themelis, A. Sarantopoulos, L. M. Crane, N. J. Harlaar, J. S. de Jong, V. Ntziachristos, and G. M. van Dam, “Near-infrared fluorescence (NIRF) imaging in breast-conserving surgery: assessing intraoperative techniques in tissue-simulating breast phantoms,” Eur. J. Surg. Oncol. 37(1), 32–39 (2011).
[Crossref] [PubMed]

Pogue, B. W.

Rasmussen, J. C.

B. Zhu, J. C. Rasmussen, and E. M. Sevick-Muraca, “Non-invasive fluorescence imaging under ambient light conditions using a modulated ICCD and laser diode,” Biomed. Opt. Express 5(2), 562–572 (2014).
[Crossref] [PubMed]

B. Zhu, J. C. Rasmussen, and E. M. Sevick-Muraca, “A matter of collection and detection for intraoperative and noninvasive near-infrared fluorescence molecular imaging: to see or not to see?” Med. Phys. 41(2), 022105 (2014).
[Crossref] [PubMed]

E. M. Sevick-Muraca and J. C. Rasmussen, “Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine,” J. Biomed. Opt. 13(4), 041303 (2008).
[Crossref] [PubMed]

Reulen, H. J.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Righini, C.

S. Gioux, J. G. Coutard, M. Berger, H. Grateau, V. Josserand, M. Keramidas, C. Righini, J. L. Coll, and J. M. Dinten, “FluoSTIC: miniaturized fluorescence image-guided surgery system,” J. Biomed. Opt. 17(10), 106014 (2012).
[Crossref] [PubMed]

Roberts, D. W.

P. A. Valdes, K. Bekelis, B. T. Harris, B. C. Wilson, F. Leblond, A. Kim, N. E. Simmons, K. Erkmen, K. D. Paulsen, and D. W. Roberts, “5-aminolevulinic acid-induced protoporphyrin ix fluorescence in meningioma: qualitative and quantitative measurements in vivo,” Neurosurgery 10(1), 74–82, discussion 82–83 (2014).
[PubMed]

K. Sexton, S. C. Davis, D. McClatchy, P. A. Valdes, S. C. Kanick, K. D. Paulsen, D. W. Roberts, and B. W. Pogue, “Pulsed-light imaging for fluorescence guided surgery under normal room lighting,” Opt. Lett. 38(17), 3249–3252 (2013).
[Crossref] [PubMed]

Sarantopoulos, A.

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

R. G. Pleijhuis, G. C. Langhout, W. Helfrich, G. Themelis, A. Sarantopoulos, L. M. Crane, N. J. Harlaar, J. S. de Jong, V. Ntziachristos, and G. M. van Dam, “Near-infrared fluorescence (NIRF) imaging in breast-conserving surgery: assessing intraoperative techniques in tissue-simulating breast phantoms,” Eur. J. Surg. Oncol. 37(1), 32–39 (2011).
[Crossref] [PubMed]

Schaafsma, B. E.

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, R. J. Swijnenburg, K. N. Gaarenstroom, H. W. Elzevier, C. J. van de Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience,” J. Urol. 190(2), 574–579 (2013).
[Crossref] [PubMed]

M. Hutteman, J. R. van der Vorst, K. N. Gaarenstroom, A. A. Peters, J. S. Mieog, B. E. Schaafsma, C. W. Lowik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “Optimization of near-infrared fluorescent sentinel lymph node mapping for vulvar cancer,” Am. J. Obstet. Gynecol. 206(1), 89 (2012)

B. E. Schaafsma, J. S. Mieog, M. Hutteman, J. R. van der Vorst, P. J. Kuppen, C. W. Löwik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery,” J. Surg. Oncol. 104(3), 323–332 (2011).
[Crossref] [PubMed]

Sevick-Muraca, E. M.

B. Zhu, J. C. Rasmussen, and E. M. Sevick-Muraca, “Non-invasive fluorescence imaging under ambient light conditions using a modulated ICCD and laser diode,” Biomed. Opt. Express 5(2), 562–572 (2014).
[Crossref] [PubMed]

B. Zhu, J. C. Rasmussen, and E. M. Sevick-Muraca, “A matter of collection and detection for intraoperative and noninvasive near-infrared fluorescence molecular imaging: to see or not to see?” Med. Phys. 41(2), 022105 (2014).
[Crossref] [PubMed]

E. M. Sevick-Muraca and J. C. Rasmussen, “Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine,” J. Biomed. Opt. 13(4), 041303 (2008).
[Crossref] [PubMed]

Sexton, K.

Shimizu, H.

N. Mitsuhashi, F. Kimura, H. Shimizu, M. Imamaki, H. Yoshidome, M. Ohtsuka, A. Kato, H. Yoshitomi, S. Nozawa, K. Furukawa, D. Takeuchi, T. Takayashiki, K. Suda, T. Igarashi, and M. Miyazaki, “Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery,” J. Hepatobiliary Pancreat. Surg. 15(5), 508–514 (2008).
[Crossref] [PubMed]

Siclovan, T. M.

S. L. Gibbs, Y. Xie, H. L. Goodwill, K. A. Nasr, Y. Ashitate, V. J. Madigan, T. M. Siclovan, M. Zavodszky, C. A. Tan Hehir, and J. V. Frangioni, “Structure-activity relationship of nerve-highlighting fluorophores,” PLoS One 8(9), e73493 (2013).
[Crossref] [PubMed]

Simmons, N. E.

P. A. Valdes, K. Bekelis, B. T. Harris, B. C. Wilson, F. Leblond, A. Kim, N. E. Simmons, K. Erkmen, K. D. Paulsen, and D. W. Roberts, “5-aminolevulinic acid-induced protoporphyrin ix fluorescence in meningioma: qualitative and quantitative measurements in vivo,” Neurosurgery 10(1), 74–82, discussion 82–83 (2014).
[PubMed]

Snoeks, T. J.

P. B. van Driel, J. R. van der Vorst, F. P. Verbeek, S. Oliveira, T. J. Snoeks, S. Keereweer, B. Chan, M. C. Boonstra, J. V. Frangioni, P. M. van Bergen en Henegouwen, A. L. Vahrmeijer, and C. W. Lowik, “Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody,” Int. J. Cancer 134(11), 2663–2673 (2014).
[Crossref] [PubMed]

T. J. Snoeks, P. B. van Driel, S. Keereweer, S. Aime, K. M. Brindle, G. M. van Dam, C. W. Löwik, V. Ntziachristos, and A. L. Vahrmeijer, “Towards a successful clinical implementation of fluorescence-guided surgery,” Mol. Imaging Biol. 16(2), 147–151 (2014).
[Crossref] [PubMed]

Stockdale, A.

B. T. Lee, M. Hutteman, S. Gioux, A. Stockdale, S. J. Lin, L. H. Ngo, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in perforator flap breast reconstruction,” Plast. Reconstr. Surg. 126(5), 1472–1481 (2010).
[Crossref] [PubMed]

Stummer, W.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Suda, K.

N. Mitsuhashi, F. Kimura, H. Shimizu, M. Imamaki, H. Yoshidome, M. Ohtsuka, A. Kato, H. Yoshitomi, S. Nozawa, K. Furukawa, D. Takeuchi, T. Takayashiki, K. Suda, T. Igarashi, and M. Miyazaki, “Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery,” J. Hepatobiliary Pancreat. Surg. 15(5), 508–514 (2008).
[Crossref] [PubMed]

Swijnenburg, R. J.

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, R. J. Swijnenburg, K. N. Gaarenstroom, H. W. Elzevier, C. J. van de Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience,” J. Urol. 190(2), 574–579 (2013).
[Crossref] [PubMed]

Takayashiki, T.

N. Mitsuhashi, F. Kimura, H. Shimizu, M. Imamaki, H. Yoshidome, M. Ohtsuka, A. Kato, H. Yoshitomi, S. Nozawa, K. Furukawa, D. Takeuchi, T. Takayashiki, K. Suda, T. Igarashi, and M. Miyazaki, “Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery,” J. Hepatobiliary Pancreat. Surg. 15(5), 508–514 (2008).
[Crossref] [PubMed]

Takeno, S.

S. Yamashita, K. Tokuishi, M. Miyawaki, K. Anami, T. Moroga, S. Takeno, M. Chujo, S. Yamamoto, and K. Kawahara, “Sentinel node navigation surgery by thoracoscopic fluorescence imaging system and molecular examination in non-small cell lung cancer,” Ann. Surg. Oncol. 19(3), 728–733 (2012).
[Crossref] [PubMed]

Takeuchi, D.

N. Mitsuhashi, F. Kimura, H. Shimizu, M. Imamaki, H. Yoshidome, M. Ohtsuka, A. Kato, H. Yoshitomi, S. Nozawa, K. Furukawa, D. Takeuchi, T. Takayashiki, K. Suda, T. Igarashi, and M. Miyazaki, “Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery,” J. Hepatobiliary Pancreat. Surg. 15(5), 508–514 (2008).
[Crossref] [PubMed]

Tan Hehir, C. A.

S. L. Gibbs, Y. Xie, H. L. Goodwill, K. A. Nasr, Y. Ashitate, V. J. Madigan, T. M. Siclovan, M. Zavodszky, C. A. Tan Hehir, and J. V. Frangioni, “Structure-activity relationship of nerve-highlighting fluorophores,” PLoS One 8(9), e73493 (2013).
[Crossref] [PubMed]

Themelis, G.

R. G. Pleijhuis, G. C. Langhout, W. Helfrich, G. Themelis, A. Sarantopoulos, L. M. Crane, N. J. Harlaar, J. S. de Jong, V. Ntziachristos, and G. M. van Dam, “Near-infrared fluorescence (NIRF) imaging in breast-conserving surgery: assessing intraoperative techniques in tissue-simulating breast phantoms,” Eur. J. Surg. Oncol. 37(1), 32–39 (2011).
[Crossref] [PubMed]

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Thumm, J.

S. Gioux, V. Kianzad, R. Ciocan, H. S. Choi, C. Nelson, J. Thumm, R. J. Filkins, S. J. Lomnes, and J. V. Frangioni, “A low-cost, linear, DC - 35 MHz, high-power LED driver for continuous wave (CW) and fluorescence lifetime imaging (FLIM),” Proc SPIE Int Soc Opt Eng 6848, 684807 (2008).
[Crossref] [PubMed]

Tokuishi, K.

S. Yamashita, K. Tokuishi, M. Miyawaki, K. Anami, T. Moroga, S. Takeno, M. Chujo, S. Yamamoto, and K. Kawahara, “Sentinel node navigation surgery by thoracoscopic fluorescence imaging system and molecular examination in non-small cell lung cancer,” Ann. Surg. Oncol. 19(3), 728–733 (2012).
[Crossref] [PubMed]

Vahrmeijer, A. L.

T. J. Snoeks, P. B. van Driel, S. Keereweer, S. Aime, K. M. Brindle, G. M. van Dam, C. W. Löwik, V. Ntziachristos, and A. L. Vahrmeijer, “Towards a successful clinical implementation of fluorescence-guided surgery,” Mol. Imaging Biol. 16(2), 147–151 (2014).
[Crossref] [PubMed]

P. B. van Driel, J. R. van der Vorst, F. P. Verbeek, S. Oliveira, T. J. Snoeks, S. Keereweer, B. Chan, M. C. Boonstra, J. V. Frangioni, P. M. van Bergen en Henegouwen, A. L. Vahrmeijer, and C. W. Lowik, “Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody,” Int. J. Cancer 134(11), 2663–2673 (2014).
[Crossref] [PubMed]

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, R. J. Swijnenburg, K. N. Gaarenstroom, H. W. Elzevier, C. J. van de Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience,” J. Urol. 190(2), 574–579 (2013).
[Crossref] [PubMed]

M. Hutteman, J. R. van der Vorst, K. N. Gaarenstroom, A. A. Peters, J. S. Mieog, B. E. Schaafsma, C. W. Lowik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “Optimization of near-infrared fluorescent sentinel lymph node mapping for vulvar cancer,” Am. J. Obstet. Gynecol. 206(1), 89 (2012)

B. E. Schaafsma, J. S. Mieog, M. Hutteman, J. R. van der Vorst, P. J. Kuppen, C. W. Löwik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery,” J. Surg. Oncol. 104(3), 323–332 (2011).
[Crossref] [PubMed]

Valdes, P. A.

P. A. Valdes, K. Bekelis, B. T. Harris, B. C. Wilson, F. Leblond, A. Kim, N. E. Simmons, K. Erkmen, K. D. Paulsen, and D. W. Roberts, “5-aminolevulinic acid-induced protoporphyrin ix fluorescence in meningioma: qualitative and quantitative measurements in vivo,” Neurosurgery 10(1), 74–82, discussion 82–83 (2014).
[PubMed]

K. Sexton, S. C. Davis, D. McClatchy, P. A. Valdes, S. C. Kanick, K. D. Paulsen, D. W. Roberts, and B. W. Pogue, “Pulsed-light imaging for fluorescence guided surgery under normal room lighting,” Opt. Lett. 38(17), 3249–3252 (2013).
[Crossref] [PubMed]

van Bergen en Henegouwen, P. M.

P. B. van Driel, J. R. van der Vorst, F. P. Verbeek, S. Oliveira, T. J. Snoeks, S. Keereweer, B. Chan, M. C. Boonstra, J. V. Frangioni, P. M. van Bergen en Henegouwen, A. L. Vahrmeijer, and C. W. Lowik, “Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody,” Int. J. Cancer 134(11), 2663–2673 (2014).
[Crossref] [PubMed]

van Dam, G. M.

T. J. Snoeks, P. B. van Driel, S. Keereweer, S. Aime, K. M. Brindle, G. M. van Dam, C. W. Löwik, V. Ntziachristos, and A. L. Vahrmeijer, “Towards a successful clinical implementation of fluorescence-guided surgery,” Mol. Imaging Biol. 16(2), 147–151 (2014).
[Crossref] [PubMed]

R. G. Pleijhuis, G. C. Langhout, W. Helfrich, G. Themelis, A. Sarantopoulos, L. M. Crane, N. J. Harlaar, J. S. de Jong, V. Ntziachristos, and G. M. van Dam, “Near-infrared fluorescence (NIRF) imaging in breast-conserving surgery: assessing intraoperative techniques in tissue-simulating breast phantoms,” Eur. J. Surg. Oncol. 37(1), 32–39 (2011).
[Crossref] [PubMed]

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

van de Velde, C. J.

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, R. J. Swijnenburg, K. N. Gaarenstroom, H. W. Elzevier, C. J. van de Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience,” J. Urol. 190(2), 574–579 (2013).
[Crossref] [PubMed]

M. Hutteman, J. R. van der Vorst, K. N. Gaarenstroom, A. A. Peters, J. S. Mieog, B. E. Schaafsma, C. W. Lowik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “Optimization of near-infrared fluorescent sentinel lymph node mapping for vulvar cancer,” Am. J. Obstet. Gynecol. 206(1), 89 (2012)

B. E. Schaafsma, J. S. Mieog, M. Hutteman, J. R. van der Vorst, P. J. Kuppen, C. W. Löwik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery,” J. Surg. Oncol. 104(3), 323–332 (2011).
[Crossref] [PubMed]

van der Vorst, J. R.

P. B. van Driel, J. R. van der Vorst, F. P. Verbeek, S. Oliveira, T. J. Snoeks, S. Keereweer, B. Chan, M. C. Boonstra, J. V. Frangioni, P. M. van Bergen en Henegouwen, A. L. Vahrmeijer, and C. W. Lowik, “Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody,” Int. J. Cancer 134(11), 2663–2673 (2014).
[Crossref] [PubMed]

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, R. J. Swijnenburg, K. N. Gaarenstroom, H. W. Elzevier, C. J. van de Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience,” J. Urol. 190(2), 574–579 (2013).
[Crossref] [PubMed]

M. Hutteman, J. R. van der Vorst, K. N. Gaarenstroom, A. A. Peters, J. S. Mieog, B. E. Schaafsma, C. W. Lowik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “Optimization of near-infrared fluorescent sentinel lymph node mapping for vulvar cancer,” Am. J. Obstet. Gynecol. 206(1), 89 (2012)

B. E. Schaafsma, J. S. Mieog, M. Hutteman, J. R. van der Vorst, P. J. Kuppen, C. W. Löwik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery,” J. Surg. Oncol. 104(3), 323–332 (2011).
[Crossref] [PubMed]

van der Zee, A. G.

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

van Driel, P. B.

P. B. van Driel, J. R. van der Vorst, F. P. Verbeek, S. Oliveira, T. J. Snoeks, S. Keereweer, B. Chan, M. C. Boonstra, J. V. Frangioni, P. M. van Bergen en Henegouwen, A. L. Vahrmeijer, and C. W. Lowik, “Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody,” Int. J. Cancer 134(11), 2663–2673 (2014).
[Crossref] [PubMed]

T. J. Snoeks, P. B. van Driel, S. Keereweer, S. Aime, K. M. Brindle, G. M. van Dam, C. W. Löwik, V. Ntziachristos, and A. L. Vahrmeijer, “Towards a successful clinical implementation of fluorescence-guided surgery,” Mol. Imaging Biol. 16(2), 147–151 (2014).
[Crossref] [PubMed]

Verbeek, F. P.

P. B. van Driel, J. R. van der Vorst, F. P. Verbeek, S. Oliveira, T. J. Snoeks, S. Keereweer, B. Chan, M. C. Boonstra, J. V. Frangioni, P. M. van Bergen en Henegouwen, A. L. Vahrmeijer, and C. W. Lowik, “Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody,” Int. J. Cancer 134(11), 2663–2673 (2014).
[Crossref] [PubMed]

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, R. J. Swijnenburg, K. N. Gaarenstroom, H. W. Elzevier, C. J. van de Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience,” J. Urol. 190(2), 574–579 (2013).
[Crossref] [PubMed]

Wiestler, O. D.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Wilson, B. C.

P. A. Valdes, K. Bekelis, B. T. Harris, B. C. Wilson, F. Leblond, A. Kim, N. E. Simmons, K. Erkmen, K. D. Paulsen, and D. W. Roberts, “5-aminolevulinic acid-induced protoporphyrin ix fluorescence in meningioma: qualitative and quantitative measurements in vivo,” Neurosurgery 10(1), 74–82, discussion 82–83 (2014).
[PubMed]

Xie, Y.

S. L. Gibbs, Y. Xie, H. L. Goodwill, K. A. Nasr, Y. Ashitate, V. J. Madigan, T. M. Siclovan, M. Zavodszky, C. A. Tan Hehir, and J. V. Frangioni, “Structure-activity relationship of nerve-highlighting fluorophores,” PLoS One 8(9), e73493 (2013).
[Crossref] [PubMed]

Yamamoto, S.

S. Yamashita, K. Tokuishi, M. Miyawaki, K. Anami, T. Moroga, S. Takeno, M. Chujo, S. Yamamoto, and K. Kawahara, “Sentinel node navigation surgery by thoracoscopic fluorescence imaging system and molecular examination in non-small cell lung cancer,” Ann. Surg. Oncol. 19(3), 728–733 (2012).
[Crossref] [PubMed]

Yamashita, S.

S. Yamashita, K. Tokuishi, M. Miyawaki, K. Anami, T. Moroga, S. Takeno, M. Chujo, S. Yamamoto, and K. Kawahara, “Sentinel node navigation surgery by thoracoscopic fluorescence imaging system and molecular examination in non-small cell lung cancer,” Ann. Surg. Oncol. 19(3), 728–733 (2012).
[Crossref] [PubMed]

Yoshidome, H.

N. Mitsuhashi, F. Kimura, H. Shimizu, M. Imamaki, H. Yoshidome, M. Ohtsuka, A. Kato, H. Yoshitomi, S. Nozawa, K. Furukawa, D. Takeuchi, T. Takayashiki, K. Suda, T. Igarashi, and M. Miyazaki, “Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery,” J. Hepatobiliary Pancreat. Surg. 15(5), 508–514 (2008).
[Crossref] [PubMed]

Yoshitomi, H.

N. Mitsuhashi, F. Kimura, H. Shimizu, M. Imamaki, H. Yoshidome, M. Ohtsuka, A. Kato, H. Yoshitomi, S. Nozawa, K. Furukawa, D. Takeuchi, T. Takayashiki, K. Suda, T. Igarashi, and M. Miyazaki, “Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery,” J. Hepatobiliary Pancreat. Surg. 15(5), 508–514 (2008).
[Crossref] [PubMed]

Zanella, F.

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Zavodszky, M.

S. L. Gibbs, Y. Xie, H. L. Goodwill, K. A. Nasr, Y. Ashitate, V. J. Madigan, T. M. Siclovan, M. Zavodszky, C. A. Tan Hehir, and J. V. Frangioni, “Structure-activity relationship of nerve-highlighting fluorophores,” PLoS One 8(9), e73493 (2013).
[Crossref] [PubMed]

Zhu, B.

B. Zhu, J. C. Rasmussen, and E. M. Sevick-Muraca, “A matter of collection and detection for intraoperative and noninvasive near-infrared fluorescence molecular imaging: to see or not to see?” Med. Phys. 41(2), 022105 (2014).
[Crossref] [PubMed]

B. Zhu, J. C. Rasmussen, and E. M. Sevick-Muraca, “Non-invasive fluorescence imaging under ambient light conditions using a modulated ICCD and laser diode,” Biomed. Opt. Express 5(2), 562–572 (2014).
[Crossref] [PubMed]

Am. J. Obstet. Gynecol. (1)

M. Hutteman, J. R. van der Vorst, K. N. Gaarenstroom, A. A. Peters, J. S. Mieog, B. E. Schaafsma, C. W. Lowik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “Optimization of near-infrared fluorescent sentinel lymph node mapping for vulvar cancer,” Am. J. Obstet. Gynecol. 206(1), 89 (2012)

Ann. Surg. Oncol. (1)

S. Yamashita, K. Tokuishi, M. Miyawaki, K. Anami, T. Moroga, S. Takeno, M. Chujo, S. Yamamoto, and K. Kawahara, “Sentinel node navigation surgery by thoracoscopic fluorescence imaging system and molecular examination in non-small cell lung cancer,” Ann. Surg. Oncol. 19(3), 728–733 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Eur. J. Surg. Oncol. (1)

R. G. Pleijhuis, G. C. Langhout, W. Helfrich, G. Themelis, A. Sarantopoulos, L. M. Crane, N. J. Harlaar, J. S. de Jong, V. Ntziachristos, and G. M. van Dam, “Near-infrared fluorescence (NIRF) imaging in breast-conserving surgery: assessing intraoperative techniques in tissue-simulating breast phantoms,” Eur. J. Surg. Oncol. 37(1), 32–39 (2011).
[Crossref] [PubMed]

Int. J. Cancer (1)

P. B. van Driel, J. R. van der Vorst, F. P. Verbeek, S. Oliveira, T. J. Snoeks, S. Keereweer, B. Chan, M. C. Boonstra, J. V. Frangioni, P. M. van Bergen en Henegouwen, A. L. Vahrmeijer, and C. W. Lowik, “Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody,” Int. J. Cancer 134(11), 2663–2673 (2014).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

E. M. Sevick-Muraca and J. C. Rasmussen, “Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine,” J. Biomed. Opt. 13(4), 041303 (2008).
[Crossref] [PubMed]

S. Gioux, Y. Ashitate, M. Hutteman, and J. V. Frangioni, “Motion-gated acquisition for in vivo optical imaging,” J. Biomed. Opt. 14(6), 064038 (2009).
[Crossref] [PubMed]

S. Gioux, J. G. Coutard, M. Berger, H. Grateau, V. Josserand, M. Keramidas, C. Righini, J. L. Coll, and J. M. Dinten, “FluoSTIC: miniaturized fluorescence image-guided surgery system,” J. Biomed. Opt. 17(10), 106014 (2012).
[Crossref] [PubMed]

J. Hepatobiliary Pancreat. Surg. (1)

N. Mitsuhashi, F. Kimura, H. Shimizu, M. Imamaki, H. Yoshidome, M. Ohtsuka, A. Kato, H. Yoshitomi, S. Nozawa, K. Furukawa, D. Takeuchi, T. Takayashiki, K. Suda, T. Igarashi, and M. Miyazaki, “Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery,” J. Hepatobiliary Pancreat. Surg. 15(5), 508–514 (2008).
[Crossref] [PubMed]

J. Surg. Oncol. (1)

B. E. Schaafsma, J. S. Mieog, M. Hutteman, J. R. van der Vorst, P. J. Kuppen, C. W. Löwik, J. V. Frangioni, C. J. van de Velde, and A. L. Vahrmeijer, “The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery,” J. Surg. Oncol. 104(3), 323–332 (2011).
[Crossref] [PubMed]

J. Urol. (1)

F. P. Verbeek, J. R. van der Vorst, B. E. Schaafsma, R. J. Swijnenburg, K. N. Gaarenstroom, H. W. Elzevier, C. J. van de Velde, J. V. Frangioni, and A. L. Vahrmeijer, “Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience,” J. Urol. 190(2), 574–579 (2013).
[Crossref] [PubMed]

Lancet Oncol. (1)

W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H. J. Reulen, and ALA-Glioma Study Group, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial,” Lancet Oncol. 7(5), 392–401 (2006).
[Crossref] [PubMed]

Med. Phys. (1)

B. Zhu, J. C. Rasmussen, and E. M. Sevick-Muraca, “A matter of collection and detection for intraoperative and noninvasive near-infrared fluorescence molecular imaging: to see or not to see?” Med. Phys. 41(2), 022105 (2014).
[Crossref] [PubMed]

Mol. Imaging (1)

S. Gioux, V. Kianzad, R. Ciocan, S. Gupta, R. Oketokoun, and J. V. Frangioni, “High-power, computer-controlled, light-emitting diode-based light sources for fluorescence imaging and image-guided surgery,” Mol. Imaging 8(3), 156–165 (2009).
[PubMed]

Mol. Imaging Biol. (1)

T. J. Snoeks, P. B. van Driel, S. Keereweer, S. Aime, K. M. Brindle, G. M. van Dam, C. W. Löwik, V. Ntziachristos, and A. L. Vahrmeijer, “Towards a successful clinical implementation of fluorescence-guided surgery,” Mol. Imaging Biol. 16(2), 147–151 (2014).
[Crossref] [PubMed]

Nat. Med. (1)

G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med. 17(10), 1315–1319 (2011).
[Crossref] [PubMed]

Neurosurgery (1)

P. A. Valdes, K. Bekelis, B. T. Harris, B. C. Wilson, F. Leblond, A. Kim, N. E. Simmons, K. Erkmen, K. D. Paulsen, and D. W. Roberts, “5-aminolevulinic acid-induced protoporphyrin ix fluorescence in meningioma: qualitative and quantitative measurements in vivo,” Neurosurgery 10(1), 74–82, discussion 82–83 (2014).
[PubMed]

Opt. Lett. (1)

Plast. Reconstr. Surg. (1)

B. T. Lee, M. Hutteman, S. Gioux, A. Stockdale, S. J. Lin, L. H. Ngo, and J. V. Frangioni, “The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in perforator flap breast reconstruction,” Plast. Reconstr. Surg. 126(5), 1472–1481 (2010).
[Crossref] [PubMed]

PLoS One (1)

S. L. Gibbs, Y. Xie, H. L. Goodwill, K. A. Nasr, Y. Ashitate, V. J. Madigan, T. M. Siclovan, M. Zavodszky, C. A. Tan Hehir, and J. V. Frangioni, “Structure-activity relationship of nerve-highlighting fluorophores,” PLoS One 8(9), e73493 (2013).
[Crossref] [PubMed]

Proc SPIE Int Soc Opt Eng (1)

S. Gioux, V. Kianzad, R. Ciocan, H. S. Choi, C. Nelson, J. Thumm, R. J. Filkins, S. J. Lomnes, and J. V. Frangioni, “A low-cost, linear, DC - 35 MHz, high-power LED driver for continuous wave (CW) and fluorescence lifetime imaging (FLIM),” Proc SPIE Int Soc Opt Eng 6848, 684807 (2008).
[Crossref] [PubMed]

Other (1)

K. Sexton, “System and methodology for receptor-level fluorescence imaging during surgery,” Doctoral Dissertation, Dartmouth College (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Photograph of pulsed imaging showing articulated surgical arm, balance system, camera and excitation mount, box containing all electronics and control screen. (b) Photograph detailing camera, lens and LED array.
Fig. 2
Fig. 2 Characteristics of the ambient light signal in an Operating Room (Sylvania FO32/735/ECO overhead fluorescent lights) are shown, with (a) the temporal signals from two different rooms, showing the periodic signal at 120 Hz. The optical spectrum recorded is displayed on a linear scale (b) and logarithmic scale (c). The signal at 700nm (visible) can be seen to be substantially larger than that at 800 nm (NIR).
Fig. 3
Fig. 3 Fluorescence detected in the OR without (a) and with (b) room light based triggering is shown. Error bar plots showing mean and one standard deviation above and below the mean for background subtracted signals averaged from 50 repeated images of 0 to 4 nM IRDye 680RD. Acquisitions utilized 1ms gate widths, full camera gain and 10x overdriving of the LEDs. Also in (b) images were taken with room light based triggering (offset left / blue) and images taken in complete darkness (offset right / black).
Fig. 4
Fig. 4 Single fluorescence background subtracted images of approximately 1.6cm by 1.6cm phantoms taken with 1ms gate widths and full camera gain. Images were taken separately and have been stitched together for viewing purposes. (a) Images taken without room light based triggering clearly demonstrate the inability to visualize fluorescence with strong variations in signal due to room light fluctuation. In (b) images taken with room light based triggering demonstrate significant fluorescence visualization at the higher concentrations examined. In (c) images taken in the absence of room lights show comparable fluorescence visualization to those seen in (b).
Fig. 5
Fig. 5 (a) Average background and fluorescence signal levels (from 50 images) of 0.25 nM IRDye 680RD phantom, were acquired using 1ms gate width, full camera gain, and 10x LED overdriving. The left bar shows the signal in full OR background light, and middle bar shown with the room light triggering. The right bar is for images acquired in complete darkness, showing nearly no background. In (b) Average background and fluorescence signal levels from 30 images of 0.25 nM IRDye 680RD phantom at various gate widths all using no camera gain and no LED overdriving. Note that the fluorescence signal at 40 ms is present but barely visible in the plot. All error bars represent a single standard deviation.
Fig. 6
Fig. 6 In (a) the normalized standard deviation values of the background signals in the 700 nm channel are shown for a variety of image acquisition settings (from 30 to 50 images each). In (b) the same standard deviations are shown, but normalized by the fluorescence signal. It can be seen that while standard deviation as a fraction of background signal as seen in (a) may be quite low for some of the longer exposure times, this is not the case when considering standard deviation as a fraction of fluorescent signal which is the more relevant metric. This is a result of the much lower fluorescence to background ratio seen at longer imaging times.
Fig. 7
Fig. 7 Detection in OR under different imaging parameters at the 700 nm channel. (A,B&C) Error bar plots showing mean and one standard deviation above and below the mean for background subtracted signal for series of 30-50 images taken at each IRDye 680RD concentration from 0 to 0.98 nM. (a) Images taken in the surgical OR with no room light based triggering, 40 ms gate width and no camera gain. (b) Images taken in the surgical OR with no room light based triggering, 100 ms gate width and no camera gain. (c) Images taken in the surgical OR with room light based triggering (offset left / blue) and images taken in complete darkness (offset right / black). Both sets of images taken using 1ms gate widths, full camera gain and 10x overdriving of the LEDs.
Fig. 8
Fig. 8 Detection in OR with and without room light based triggering at the 800 nm channel.(A&B) Error bar plots showing mean and one standard deviation above and below the mean for background subtracted signal for series of 50 images taken at each IRDye 800CW concentration from 0 to 3.9 nM. This is for 1ms gate widths, full camera gain and 10x overdriving of the LEDs. (a) Images taken in the surgical OR with no room light based triggering. (b) Images taken in the surgical OR with room light based triggering (offset left / blue) and images taken in complete darkness (offset right / black).
Fig. 9
Fig. 9 Single fluorescence background subtracted images of approximately 1.6cm by 1.6cm phantoms taken with 1ms gate widths and full camera gain. Images were taken separately and have been stitched together for viewing purposes. (a) Images taken without room light based triggering clearly demonstrate the inability to visualize fluorescence with strong variations in signal due to room light fluctuation. In (b) images taken with room light based triggering demonstrate significant fluorescence visualization at the higher concentrations examined. In (c) images taken in the absence of room lights show comparable fluorescence visualization to those seen in (b).
Fig. 10
Fig. 10 (a) Average background and fluorescence signal levels in the 800 nm channel are shown (from 50 images) of 0.25 nM IRDye 800CW phantom all acquired using 1ms gate width, full camera gain, and 10x LED overdriving. Center and left bars are from images acquired in full surgical OR background light with and without room light based triggering respectively. Right bar is for images acquired in complete darkness. (b) Average background and fluorescence signal levels from 50 images of 0.25 nM IRDye 800CW phantom at various gate widths all using full camera gain, but no LED overdriving. All error bars represent a single standard deviation.
Fig. 11
Fig. 11 (a) The normalized standard deviations of background signals at the 800 nm channel are shown, for a variety of image acquisition settings (30-50 images at each). Acquisition settings are shown below each bar. (b) The same standard deviations are shown, but normalized by the fluorescence contribution calculated from a 0.25 nM IRDye 800CW phantom. It can be seen that while standard deviation as a fraction of background signal as seen in (a) may be quite low for some of the longer exposure times this is not the case when considering standard deviation as a fraction of fluorescent signal which is the more relevant metric. This is a result of the much lower fluorescence to background ratio seen at longer imaging times.

Metrics