Abstract

Non-thermal atmospheric-pressure plasma has been introduced in various applications such as sterilization, wound healing, blood coagulation, and other biomedical applications. The most attractive application of non-thermal atmospheric-pressure plasma is in cancer treatment, where the plasma is used to produce reactive oxygen species (ROS) to facilitate cell apoptosis. We investigate the effects of different durations of exposure to dielectric-barrier discharge (DBD) plasma on colon cancer cells using measurement of cell viability and ROS levels, western blot, immunocytochemistry, and Raman spectroscopy. Our results suggest that different kinds of plasma-treated cells can be differentiated from control cells using the Raman data.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Assessment of the radiotherapy effect for nasopharyngeal cancer using plasma surface-enhanced Raman spectroscopy technology

Qiong Wu, Sufang Qiu, Yun Yu, Weiwei Chen, Huijing Lin, Duo Lin, Shangyuan Feng, and Rong Chen
Biomed. Opt. Express 9(7) 3413-3423 (2018)

Non-thermal effects of terahertz radiation on gene expression in mouse stem cells

Boian S. Alexandrov, Kim Ø. Rasmussen, Alan R. Bishop, Anny Usheva, Ludmil B. Alexandrov, Shou Chong, Yossi Dagon, Layla G. Booshehri, Charles H. Mielke, M. Lisa Phipps, Jennifer S. Martinez, Hou-Tong Chen, and George Rodriguez
Biomed. Opt. Express 2(9) 2679-2689 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. U. Kalghatgi, G. Fridman, M. Cooper, G. Nagaraj, M. Peddinghaus, M. Balasubramanian, V. N. Vasilets, A. F. Gutsol, A. Fridman, and G. Friedman, “Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma,” IEEE Trans. Plasma Sci. 35(5), 1559–1566 (2007).
    [Crossref]
  2. B. Haertel, T. von Woedtke, K. D. Weltmann, and U. Lindequist, “Non-thermal atmospheric-pressure plasma possible application in wound healing,” Biomol. Ther. (Seoul) 22(6), 477–490 (2014).
    [Crossref] [PubMed]
  3. G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol, and A. Brooks, “Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air,” Plasma Chem. Plasma Process. 26(4), 425–442 (2006).
    [Crossref]
  4. Y. Li, A. Kojtari, G. Friedman, A. D. Brooks, A. Fridman, and H. F. Ji, “Decomposition of L-Valine under Nonthermal Dielectric Barrier Discharge Plasma,” J. Phys. Chem. B 118(6), 1612–1620 (2014).
    [Crossref] [PubMed]
  5. P. Y. Oh, J. H. Kim, Y. Hong, S. H. Cho, G. Cho, and E. H. Choi, “Spatiotemporal behavior of excited xenon-atom density in accordance with xenon mole fraction to neon in alternating-current plasma display panels by laser-absorption spectroscopy,” IEEE Trans. Plasma Sci. 36(3), 816–820 (2008).
    [Crossref]
  6. N. K. Kaushik, N. Kaushik, B. Min, K. H. Choi, Y. J. Hong, V. Miller, A. Fridman, and E. H. Choi, “Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation,” J. Phys. D Appl. Phys. 49(8), 084001 (2016).
    [Crossref]
  7. J. H. Park, N. Kumar, D. H. Park, M. Yusupov, E. C. Neyts, C. C. Verlackt, A. Bogaerts, M. H. Kang, H. S. Uhm, E. H. Choi, and P. Attri, “A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma,” Sci. Rep. 5(1), 13849 (2015).
    [Crossref] [PubMed]
  8. N. K. Kaushik, P. Attri, N. Kaushik, and E. H. Choi, “A preliminary study of the effect of DBD plasma and osmolytes on T98G brain cancer and HEK non-malignant cells,” Molecules 18(5), 4917–4928 (2013).
    [Crossref] [PubMed]
  9. W. Van Gaens and A. Bogaerts, “Kinetic modelling for an atmospheric pressure argon plasma jet in humid air,” J. Phys. D Appl. Phys. 46(27), 275201 (2013).
    [Crossref]
  10. U. Kogelschatz, “Dielectric-barrier discharges: their history, discharge physics, and industrial applications,” Plasma Chem. Plasma Process. 23(1), 1–46 (2003).
    [Crossref]
  11. H. Halfmann, N. Bibinov, J. Wunderlich, and P. Awakowicz, “A double inductively coupled plasma for sterilization of medical devices,” J. Phys. D Appl. Phys. 40(14), 4145–4154 (2007).
    [Crossref]
  12. M. H. Ngo Thi, P. L. Shao, J. D. Liao, C. C. K. Lin, and H. K. Yip, “Enhancement of Angiogenesis and Epithelialization Processes in Mice with Burn Wounds through ROS/RNS Signals Generated by Non‐Thermal N2/Ar Micro‐Plasma,” Plasma Process. Polym. 11(11), 1076–1088 (2014).
    [Crossref]
  13. P. L. Shao, J. D. Liao, T. W. Wong, Y. C. Wang, S. Leu, and H. K. Yip, “Enhancement of Wound Healing by Non-Thermal N2/Ar Micro-Plasma Exposure in Mice with Fractional-CO2-Laser-Induced Wounds,” PLoS One 11(6), e0156699 (2016).
    [Crossref] [PubMed]
  14. S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS One 6(1), e16270 (2011).
    [Crossref] [PubMed]
  15. G. Fridman, A. Shereshevsky, M. M. Jost, A. D. Brooks, A. Fridman, A. Gutsol, V. Vasilets, and G. Friedman, “Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines,” Plasma Chem. Plasma Process. 27(2), 163–176 (2007).
    [Crossref]
  16. C. H. Kim, J. H. Bahn, S. H. Lee, G. Y. Kim, S. I. Jun, K. Lee, and S. J. Baek, “Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells,” J. Biotechnol. 150(4), 530–538 (2010).
    [Crossref] [PubMed]
  17. S. J. Kim, T. Chung, S. Bae, and S. Leem, “Induction of apoptosis in human breast cancer cells by a pulsed atmospheric pressure plasma jet,” Appl. Phys. Lett. 97(2), 023702 (2010).
    [Crossref]
  18. B. Haertel, M. Hähnel, S. Blackert, K. Wende, T. von Woedtke, and U. Lindequist, “Surface molecules on HaCaT keratinocytes after interaction with non-thermal atmospheric pressure plasma,” Cell Biol. Int. 36(12), 1217–1222 (2012).
    [Crossref] [PubMed]
  19. N. K. Kaushik, H. Uhm, and E. H. Choi, “Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells,” Appl. Phys. Lett. 100(8), 084102 (2012).
    [Crossref]
  20. G. Kim, W. Kim, K. Kim, and J. Lee, “DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma,” Appl. Phys. Lett. 96(2), 021502 (2010).
    [Crossref]
  21. M. Ushio-Fukai and R. W. Alexander, “Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase,” Mol. Cell. Biochem. 264(1-2), 85–97 (2004).
    [Crossref] [PubMed]
  22. K. P. Arjunan, G. Friedman, A. Fridman, and A. M. Clyne, “Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species,” J. R. Soc. Interface 9(66), 147–157 (2012).
    [Crossref] [PubMed]
  23. S. Kalghatgi, A. Fridman, J. Azizkhan Clifford, and G. Friedman, “DNA Damage in Mammalian Cells by Non‐thermal Atmospheric Pressure Microsecond Pulsed Dielectric Barrier Discharge Plasma is not Mediated by Ozone,” Plasma Process. Polym. 9(7), 726–732 (2012).
    [Crossref]
  24. K. D. Jacob, N. Noren Hooten, A. R. Trzeciak, and M. K. Evans, “Markers of oxidant stress that are clinically relevant in aging and age-related disease,” Mech. Ageing Dev. 134(3-4), 139–157 (2013).
    [Crossref] [PubMed]
  25. P. Morales-Ramírez, V. Cruz-Vallejo, R. Peña-Eguiluz, R. López-Callejas, B. G. Rodríguez-Méndez, R. Valencia-Alvarado, A. Mercado-Cabrera, and A. E. Muñoz-Castro, “Assessing cellular DNA damage from a helium plasma needle,” Radiat. Res. 179(6), 669–673 (2013).
    [Crossref] [PubMed]
  26. A. Sinha, T. T. Chu, M. Dao, and R. Chandramohanadas, “Single-cell evaluation of red blood cell bio-mechanical and nano-structural alterations upon chemically induced oxidative stress,” Sci. Rep. 5(1), 9768 (2015).
    [Crossref] [PubMed]
  27. T. Furuhashi, Basics of Multivariate Analysis II (Principal Component Analysis): Theory and Exercise using R (Amazon Digital Services LLC, 2015).
  28. T. Furuhashi, Basics of Multivariate Analysis III (Discriminant Analysis): Theory and Exercise using R (Amazon Digital Services LLC, 2016).
  29. “The R Project for Statistical Computing”, retrieved September 21, 2016, https://www.r-project.org .
  30. K. Panngom, K. Y. Baik, M. K. Nam, J. H. Han, H. Rhim, and E. H. Choi, “Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma,” Cell Death Dis. 4(5), e642 (2013).
    [Crossref] [PubMed]
  31. W. T. Chang, H. L. Lin, H. C. Chen, Y. M. Wu, W. J. Chen, Y. T. Lee, and I. Liau, “Real‐time molecular assessment on oxidative injury of single cells using Raman spectroscopy,” J. Raman Spectrosc. 40(9), 1194–1199 (2009).
    [Crossref]
  32. G. B. Jung, Y. J. Lee, G. Lee, and H.-K. Park, “A simple and rapid detection of tissue adhesive-induced biochemical changes in cells and DNA using Raman spectroscopy,” Biomed. Opt. Express 4(11), 2673–2682 (2013).
    [Crossref] [PubMed]
  33. N. Kaushik, S. J. Lee, T. G. Choi, K. Y. Baik, H. S. Uhm, C. H. Kim, N. K. Kaushik, and E. H. Choi, “Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells,” Sci. Rep. 5, 8726 (2015).
    [Crossref] [PubMed]
  34. Y. Ma, C. S. Ha, S. W. Hwang, H. J. Lee, G. C. Kim, K. W. Lee, and K. Song, “Non-thermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ROS stress-response pathways,” PLoS One 9(4), e91947 (2014).
    [Crossref] [PubMed]
  35. E. Panieri and M. M. Santoro, “ROS homeostasis and metabolism: a dangerous liason in cancer cells,” Cell Death Dis. 7(6), e2253 (2016).
    [Crossref] [PubMed]
  36. M. Podhorecka, A. Skladanowski, and P. Bozko, “H2AX phosphorylation: its role in DNA damage response and cancer therapy,” J. Nucleic Acids 2010, 920161 (2010).
    [Crossref] [PubMed]
  37. A. Gross, J. M. McDonnell, and S. J. Korsmeyer, “BCL-2 family members and the mitochondria in apoptosis,” Genes Dev. 13(15), 1899–1911 (1999).
    [Crossref] [PubMed]
  38. A. G. Porter and R. U. Jänicke, “Emerging roles of caspase-3 in apoptosis,” Cell Death Differ. 6(2), 99–104 (1999).
    [Crossref] [PubMed]
  39. S. N. Zucker, J. Zirnheld, A. Bagati, T. M. DiSanto, B. Des Soye, J. A. Wawrzyniak, K. Etemadi, M. Nikiforov, and R. Berezney, “Preferential induction of apoptotic cell death in melanoma cells as compared with normal keratinocytes using a non-thermal plasma torch,” Cancer Biol. Ther. 13(13), 1299–1306 (2012).
    [Crossref] [PubMed]
  40. K. Panngom, K. Y. Baik, M. K. Nam, J. H. Han, H. Rhim, and E. H. Choi, “Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma,” Cell Death Dis. 4(5), e642 (2013).
    [Crossref] [PubMed]
  41. H. Tanaka, M. Mizuno, K. Ishikawa, K. Nakamura, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Plasma-Activated Medium Selectively Kills Glioblastoma Brain Tumor Cells by Down-Regulating a Survival Signaling Molecule, AKT Kinase,” Plasma Medicine 1(3-4), 265–277 (2011).
    [Crossref]
  42. S. Iseki, K. Nakamura, M. Hayashi, H. Tanaka, H. Kondo, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma,” Appl. Phys. Lett. 100(11), 113702 (2012).
    [Crossref]

2016 (3)

N. K. Kaushik, N. Kaushik, B. Min, K. H. Choi, Y. J. Hong, V. Miller, A. Fridman, and E. H. Choi, “Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation,” J. Phys. D Appl. Phys. 49(8), 084001 (2016).
[Crossref]

P. L. Shao, J. D. Liao, T. W. Wong, Y. C. Wang, S. Leu, and H. K. Yip, “Enhancement of Wound Healing by Non-Thermal N2/Ar Micro-Plasma Exposure in Mice with Fractional-CO2-Laser-Induced Wounds,” PLoS One 11(6), e0156699 (2016).
[Crossref] [PubMed]

E. Panieri and M. M. Santoro, “ROS homeostasis and metabolism: a dangerous liason in cancer cells,” Cell Death Dis. 7(6), e2253 (2016).
[Crossref] [PubMed]

2015 (3)

N. Kaushik, S. J. Lee, T. G. Choi, K. Y. Baik, H. S. Uhm, C. H. Kim, N. K. Kaushik, and E. H. Choi, “Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells,” Sci. Rep. 5, 8726 (2015).
[Crossref] [PubMed]

A. Sinha, T. T. Chu, M. Dao, and R. Chandramohanadas, “Single-cell evaluation of red blood cell bio-mechanical and nano-structural alterations upon chemically induced oxidative stress,” Sci. Rep. 5(1), 9768 (2015).
[Crossref] [PubMed]

J. H. Park, N. Kumar, D. H. Park, M. Yusupov, E. C. Neyts, C. C. Verlackt, A. Bogaerts, M. H. Kang, H. S. Uhm, E. H. Choi, and P. Attri, “A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma,” Sci. Rep. 5(1), 13849 (2015).
[Crossref] [PubMed]

2014 (4)

B. Haertel, T. von Woedtke, K. D. Weltmann, and U. Lindequist, “Non-thermal atmospheric-pressure plasma possible application in wound healing,” Biomol. Ther. (Seoul) 22(6), 477–490 (2014).
[Crossref] [PubMed]

Y. Li, A. Kojtari, G. Friedman, A. D. Brooks, A. Fridman, and H. F. Ji, “Decomposition of L-Valine under Nonthermal Dielectric Barrier Discharge Plasma,” J. Phys. Chem. B 118(6), 1612–1620 (2014).
[Crossref] [PubMed]

Y. Ma, C. S. Ha, S. W. Hwang, H. J. Lee, G. C. Kim, K. W. Lee, and K. Song, “Non-thermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ROS stress-response pathways,” PLoS One 9(4), e91947 (2014).
[Crossref] [PubMed]

M. H. Ngo Thi, P. L. Shao, J. D. Liao, C. C. K. Lin, and H. K. Yip, “Enhancement of Angiogenesis and Epithelialization Processes in Mice with Burn Wounds through ROS/RNS Signals Generated by Non‐Thermal N2/Ar Micro‐Plasma,” Plasma Process. Polym. 11(11), 1076–1088 (2014).
[Crossref]

2013 (7)

G. B. Jung, Y. J. Lee, G. Lee, and H.-K. Park, “A simple and rapid detection of tissue adhesive-induced biochemical changes in cells and DNA using Raman spectroscopy,” Biomed. Opt. Express 4(11), 2673–2682 (2013).
[Crossref] [PubMed]

K. Panngom, K. Y. Baik, M. K. Nam, J. H. Han, H. Rhim, and E. H. Choi, “Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma,” Cell Death Dis. 4(5), e642 (2013).
[Crossref] [PubMed]

K. D. Jacob, N. Noren Hooten, A. R. Trzeciak, and M. K. Evans, “Markers of oxidant stress that are clinically relevant in aging and age-related disease,” Mech. Ageing Dev. 134(3-4), 139–157 (2013).
[Crossref] [PubMed]

P. Morales-Ramírez, V. Cruz-Vallejo, R. Peña-Eguiluz, R. López-Callejas, B. G. Rodríguez-Méndez, R. Valencia-Alvarado, A. Mercado-Cabrera, and A. E. Muñoz-Castro, “Assessing cellular DNA damage from a helium plasma needle,” Radiat. Res. 179(6), 669–673 (2013).
[Crossref] [PubMed]

N. K. Kaushik, P. Attri, N. Kaushik, and E. H. Choi, “A preliminary study of the effect of DBD plasma and osmolytes on T98G brain cancer and HEK non-malignant cells,” Molecules 18(5), 4917–4928 (2013).
[Crossref] [PubMed]

W. Van Gaens and A. Bogaerts, “Kinetic modelling for an atmospheric pressure argon plasma jet in humid air,” J. Phys. D Appl. Phys. 46(27), 275201 (2013).
[Crossref]

K. Panngom, K. Y. Baik, M. K. Nam, J. H. Han, H. Rhim, and E. H. Choi, “Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma,” Cell Death Dis. 4(5), e642 (2013).
[Crossref] [PubMed]

2012 (6)

S. N. Zucker, J. Zirnheld, A. Bagati, T. M. DiSanto, B. Des Soye, J. A. Wawrzyniak, K. Etemadi, M. Nikiforov, and R. Berezney, “Preferential induction of apoptotic cell death in melanoma cells as compared with normal keratinocytes using a non-thermal plasma torch,” Cancer Biol. Ther. 13(13), 1299–1306 (2012).
[Crossref] [PubMed]

S. Iseki, K. Nakamura, M. Hayashi, H. Tanaka, H. Kondo, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma,” Appl. Phys. Lett. 100(11), 113702 (2012).
[Crossref]

B. Haertel, M. Hähnel, S. Blackert, K. Wende, T. von Woedtke, and U. Lindequist, “Surface molecules on HaCaT keratinocytes after interaction with non-thermal atmospheric pressure plasma,” Cell Biol. Int. 36(12), 1217–1222 (2012).
[Crossref] [PubMed]

N. K. Kaushik, H. Uhm, and E. H. Choi, “Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells,” Appl. Phys. Lett. 100(8), 084102 (2012).
[Crossref]

K. P. Arjunan, G. Friedman, A. Fridman, and A. M. Clyne, “Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species,” J. R. Soc. Interface 9(66), 147–157 (2012).
[Crossref] [PubMed]

S. Kalghatgi, A. Fridman, J. Azizkhan Clifford, and G. Friedman, “DNA Damage in Mammalian Cells by Non‐thermal Atmospheric Pressure Microsecond Pulsed Dielectric Barrier Discharge Plasma is not Mediated by Ozone,” Plasma Process. Polym. 9(7), 726–732 (2012).
[Crossref]

2011 (2)

S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS One 6(1), e16270 (2011).
[Crossref] [PubMed]

H. Tanaka, M. Mizuno, K. Ishikawa, K. Nakamura, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Plasma-Activated Medium Selectively Kills Glioblastoma Brain Tumor Cells by Down-Regulating a Survival Signaling Molecule, AKT Kinase,” Plasma Medicine 1(3-4), 265–277 (2011).
[Crossref]

2010 (4)

G. Kim, W. Kim, K. Kim, and J. Lee, “DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma,” Appl. Phys. Lett. 96(2), 021502 (2010).
[Crossref]

C. H. Kim, J. H. Bahn, S. H. Lee, G. Y. Kim, S. I. Jun, K. Lee, and S. J. Baek, “Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells,” J. Biotechnol. 150(4), 530–538 (2010).
[Crossref] [PubMed]

S. J. Kim, T. Chung, S. Bae, and S. Leem, “Induction of apoptosis in human breast cancer cells by a pulsed atmospheric pressure plasma jet,” Appl. Phys. Lett. 97(2), 023702 (2010).
[Crossref]

M. Podhorecka, A. Skladanowski, and P. Bozko, “H2AX phosphorylation: its role in DNA damage response and cancer therapy,” J. Nucleic Acids 2010, 920161 (2010).
[Crossref] [PubMed]

2009 (1)

W. T. Chang, H. L. Lin, H. C. Chen, Y. M. Wu, W. J. Chen, Y. T. Lee, and I. Liau, “Real‐time molecular assessment on oxidative injury of single cells using Raman spectroscopy,” J. Raman Spectrosc. 40(9), 1194–1199 (2009).
[Crossref]

2008 (1)

P. Y. Oh, J. H. Kim, Y. Hong, S. H. Cho, G. Cho, and E. H. Choi, “Spatiotemporal behavior of excited xenon-atom density in accordance with xenon mole fraction to neon in alternating-current plasma display panels by laser-absorption spectroscopy,” IEEE Trans. Plasma Sci. 36(3), 816–820 (2008).
[Crossref]

2007 (3)

G. Fridman, A. Shereshevsky, M. M. Jost, A. D. Brooks, A. Fridman, A. Gutsol, V. Vasilets, and G. Friedman, “Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines,” Plasma Chem. Plasma Process. 27(2), 163–176 (2007).
[Crossref]

S. U. Kalghatgi, G. Fridman, M. Cooper, G. Nagaraj, M. Peddinghaus, M. Balasubramanian, V. N. Vasilets, A. F. Gutsol, A. Fridman, and G. Friedman, “Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma,” IEEE Trans. Plasma Sci. 35(5), 1559–1566 (2007).
[Crossref]

H. Halfmann, N. Bibinov, J. Wunderlich, and P. Awakowicz, “A double inductively coupled plasma for sterilization of medical devices,” J. Phys. D Appl. Phys. 40(14), 4145–4154 (2007).
[Crossref]

2006 (1)

G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol, and A. Brooks, “Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air,” Plasma Chem. Plasma Process. 26(4), 425–442 (2006).
[Crossref]

2004 (1)

M. Ushio-Fukai and R. W. Alexander, “Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase,” Mol. Cell. Biochem. 264(1-2), 85–97 (2004).
[Crossref] [PubMed]

2003 (1)

U. Kogelschatz, “Dielectric-barrier discharges: their history, discharge physics, and industrial applications,” Plasma Chem. Plasma Process. 23(1), 1–46 (2003).
[Crossref]

1999 (2)

A. Gross, J. M. McDonnell, and S. J. Korsmeyer, “BCL-2 family members and the mitochondria in apoptosis,” Genes Dev. 13(15), 1899–1911 (1999).
[Crossref] [PubMed]

A. G. Porter and R. U. Jänicke, “Emerging roles of caspase-3 in apoptosis,” Cell Death Differ. 6(2), 99–104 (1999).
[Crossref] [PubMed]

Alekseev, O.

S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS One 6(1), e16270 (2011).
[Crossref] [PubMed]

Alexander, R. W.

M. Ushio-Fukai and R. W. Alexander, “Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase,” Mol. Cell. Biochem. 264(1-2), 85–97 (2004).
[Crossref] [PubMed]

Arjunan, K. P.

K. P. Arjunan, G. Friedman, A. Fridman, and A. M. Clyne, “Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species,” J. R. Soc. Interface 9(66), 147–157 (2012).
[Crossref] [PubMed]

Attri, P.

J. H. Park, N. Kumar, D. H. Park, M. Yusupov, E. C. Neyts, C. C. Verlackt, A. Bogaerts, M. H. Kang, H. S. Uhm, E. H. Choi, and P. Attri, “A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma,” Sci. Rep. 5(1), 13849 (2015).
[Crossref] [PubMed]

N. K. Kaushik, P. Attri, N. Kaushik, and E. H. Choi, “A preliminary study of the effect of DBD plasma and osmolytes on T98G brain cancer and HEK non-malignant cells,” Molecules 18(5), 4917–4928 (2013).
[Crossref] [PubMed]

Awakowicz, P.

H. Halfmann, N. Bibinov, J. Wunderlich, and P. Awakowicz, “A double inductively coupled plasma for sterilization of medical devices,” J. Phys. D Appl. Phys. 40(14), 4145–4154 (2007).
[Crossref]

Ayan, H.

G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol, and A. Brooks, “Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air,” Plasma Chem. Plasma Process. 26(4), 425–442 (2006).
[Crossref]

Azizkhan Clifford, J.

S. Kalghatgi, A. Fridman, J. Azizkhan Clifford, and G. Friedman, “DNA Damage in Mammalian Cells by Non‐thermal Atmospheric Pressure Microsecond Pulsed Dielectric Barrier Discharge Plasma is not Mediated by Ozone,” Plasma Process. Polym. 9(7), 726–732 (2012).
[Crossref]

Azizkhan-Clifford, J.

S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS One 6(1), e16270 (2011).
[Crossref] [PubMed]

Bae, S.

S. J. Kim, T. Chung, S. Bae, and S. Leem, “Induction of apoptosis in human breast cancer cells by a pulsed atmospheric pressure plasma jet,” Appl. Phys. Lett. 97(2), 023702 (2010).
[Crossref]

Baek, S. J.

C. H. Kim, J. H. Bahn, S. H. Lee, G. Y. Kim, S. I. Jun, K. Lee, and S. J. Baek, “Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells,” J. Biotechnol. 150(4), 530–538 (2010).
[Crossref] [PubMed]

Bagati, A.

S. N. Zucker, J. Zirnheld, A. Bagati, T. M. DiSanto, B. Des Soye, J. A. Wawrzyniak, K. Etemadi, M. Nikiforov, and R. Berezney, “Preferential induction of apoptotic cell death in melanoma cells as compared with normal keratinocytes using a non-thermal plasma torch,” Cancer Biol. Ther. 13(13), 1299–1306 (2012).
[Crossref] [PubMed]

Bahn, J. H.

C. H. Kim, J. H. Bahn, S. H. Lee, G. Y. Kim, S. I. Jun, K. Lee, and S. J. Baek, “Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells,” J. Biotechnol. 150(4), 530–538 (2010).
[Crossref] [PubMed]

Baik, K. Y.

N. Kaushik, S. J. Lee, T. G. Choi, K. Y. Baik, H. S. Uhm, C. H. Kim, N. K. Kaushik, and E. H. Choi, “Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells,” Sci. Rep. 5, 8726 (2015).
[Crossref] [PubMed]

K. Panngom, K. Y. Baik, M. K. Nam, J. H. Han, H. Rhim, and E. H. Choi, “Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma,” Cell Death Dis. 4(5), e642 (2013).
[Crossref] [PubMed]

K. Panngom, K. Y. Baik, M. K. Nam, J. H. Han, H. Rhim, and E. H. Choi, “Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma,” Cell Death Dis. 4(5), e642 (2013).
[Crossref] [PubMed]

Balasubramanian, M.

S. U. Kalghatgi, G. Fridman, M. Cooper, G. Nagaraj, M. Peddinghaus, M. Balasubramanian, V. N. Vasilets, A. F. Gutsol, A. Fridman, and G. Friedman, “Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma,” IEEE Trans. Plasma Sci. 35(5), 1559–1566 (2007).
[Crossref]

G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol, and A. Brooks, “Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air,” Plasma Chem. Plasma Process. 26(4), 425–442 (2006).
[Crossref]

Berezney, R.

S. N. Zucker, J. Zirnheld, A. Bagati, T. M. DiSanto, B. Des Soye, J. A. Wawrzyniak, K. Etemadi, M. Nikiforov, and R. Berezney, “Preferential induction of apoptotic cell death in melanoma cells as compared with normal keratinocytes using a non-thermal plasma torch,” Cancer Biol. Ther. 13(13), 1299–1306 (2012).
[Crossref] [PubMed]

Bibinov, N.

H. Halfmann, N. Bibinov, J. Wunderlich, and P. Awakowicz, “A double inductively coupled plasma for sterilization of medical devices,” J. Phys. D Appl. Phys. 40(14), 4145–4154 (2007).
[Crossref]

Blackert, S.

B. Haertel, M. Hähnel, S. Blackert, K. Wende, T. von Woedtke, and U. Lindequist, “Surface molecules on HaCaT keratinocytes after interaction with non-thermal atmospheric pressure plasma,” Cell Biol. Int. 36(12), 1217–1222 (2012).
[Crossref] [PubMed]

Bogaerts, A.

J. H. Park, N. Kumar, D. H. Park, M. Yusupov, E. C. Neyts, C. C. Verlackt, A. Bogaerts, M. H. Kang, H. S. Uhm, E. H. Choi, and P. Attri, “A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma,” Sci. Rep. 5(1), 13849 (2015).
[Crossref] [PubMed]

W. Van Gaens and A. Bogaerts, “Kinetic modelling for an atmospheric pressure argon plasma jet in humid air,” J. Phys. D Appl. Phys. 46(27), 275201 (2013).
[Crossref]

Bozko, P.

M. Podhorecka, A. Skladanowski, and P. Bozko, “H2AX phosphorylation: its role in DNA damage response and cancer therapy,” J. Nucleic Acids 2010, 920161 (2010).
[Crossref] [PubMed]

Brooks, A.

G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol, and A. Brooks, “Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air,” Plasma Chem. Plasma Process. 26(4), 425–442 (2006).
[Crossref]

Brooks, A. D.

Y. Li, A. Kojtari, G. Friedman, A. D. Brooks, A. Fridman, and H. F. Ji, “Decomposition of L-Valine under Nonthermal Dielectric Barrier Discharge Plasma,” J. Phys. Chem. B 118(6), 1612–1620 (2014).
[Crossref] [PubMed]

G. Fridman, A. Shereshevsky, M. M. Jost, A. D. Brooks, A. Fridman, A. Gutsol, V. Vasilets, and G. Friedman, “Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines,” Plasma Chem. Plasma Process. 27(2), 163–176 (2007).
[Crossref]

Cerchar, E.

S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS One 6(1), e16270 (2011).
[Crossref] [PubMed]

Chandramohanadas, R.

A. Sinha, T. T. Chu, M. Dao, and R. Chandramohanadas, “Single-cell evaluation of red blood cell bio-mechanical and nano-structural alterations upon chemically induced oxidative stress,” Sci. Rep. 5(1), 9768 (2015).
[Crossref] [PubMed]

Chang, W. T.

W. T. Chang, H. L. Lin, H. C. Chen, Y. M. Wu, W. J. Chen, Y. T. Lee, and I. Liau, “Real‐time molecular assessment on oxidative injury of single cells using Raman spectroscopy,” J. Raman Spectrosc. 40(9), 1194–1199 (2009).
[Crossref]

Chen, H. C.

W. T. Chang, H. L. Lin, H. C. Chen, Y. M. Wu, W. J. Chen, Y. T. Lee, and I. Liau, “Real‐time molecular assessment on oxidative injury of single cells using Raman spectroscopy,” J. Raman Spectrosc. 40(9), 1194–1199 (2009).
[Crossref]

Chen, W. J.

W. T. Chang, H. L. Lin, H. C. Chen, Y. M. Wu, W. J. Chen, Y. T. Lee, and I. Liau, “Real‐time molecular assessment on oxidative injury of single cells using Raman spectroscopy,” J. Raman Spectrosc. 40(9), 1194–1199 (2009).
[Crossref]

Cho, G.

P. Y. Oh, J. H. Kim, Y. Hong, S. H. Cho, G. Cho, and E. H. Choi, “Spatiotemporal behavior of excited xenon-atom density in accordance with xenon mole fraction to neon in alternating-current plasma display panels by laser-absorption spectroscopy,” IEEE Trans. Plasma Sci. 36(3), 816–820 (2008).
[Crossref]

Cho, S. H.

P. Y. Oh, J. H. Kim, Y. Hong, S. H. Cho, G. Cho, and E. H. Choi, “Spatiotemporal behavior of excited xenon-atom density in accordance with xenon mole fraction to neon in alternating-current plasma display panels by laser-absorption spectroscopy,” IEEE Trans. Plasma Sci. 36(3), 816–820 (2008).
[Crossref]

Choi, E. H.

N. K. Kaushik, N. Kaushik, B. Min, K. H. Choi, Y. J. Hong, V. Miller, A. Fridman, and E. H. Choi, “Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation,” J. Phys. D Appl. Phys. 49(8), 084001 (2016).
[Crossref]

N. Kaushik, S. J. Lee, T. G. Choi, K. Y. Baik, H. S. Uhm, C. H. Kim, N. K. Kaushik, and E. H. Choi, “Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells,” Sci. Rep. 5, 8726 (2015).
[Crossref] [PubMed]

J. H. Park, N. Kumar, D. H. Park, M. Yusupov, E. C. Neyts, C. C. Verlackt, A. Bogaerts, M. H. Kang, H. S. Uhm, E. H. Choi, and P. Attri, “A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma,” Sci. Rep. 5(1), 13849 (2015).
[Crossref] [PubMed]

N. K. Kaushik, P. Attri, N. Kaushik, and E. H. Choi, “A preliminary study of the effect of DBD plasma and osmolytes on T98G brain cancer and HEK non-malignant cells,” Molecules 18(5), 4917–4928 (2013).
[Crossref] [PubMed]

K. Panngom, K. Y. Baik, M. K. Nam, J. H. Han, H. Rhim, and E. H. Choi, “Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma,” Cell Death Dis. 4(5), e642 (2013).
[Crossref] [PubMed]

K. Panngom, K. Y. Baik, M. K. Nam, J. H. Han, H. Rhim, and E. H. Choi, “Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma,” Cell Death Dis. 4(5), e642 (2013).
[Crossref] [PubMed]

N. K. Kaushik, H. Uhm, and E. H. Choi, “Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells,” Appl. Phys. Lett. 100(8), 084102 (2012).
[Crossref]

P. Y. Oh, J. H. Kim, Y. Hong, S. H. Cho, G. Cho, and E. H. Choi, “Spatiotemporal behavior of excited xenon-atom density in accordance with xenon mole fraction to neon in alternating-current plasma display panels by laser-absorption spectroscopy,” IEEE Trans. Plasma Sci. 36(3), 816–820 (2008).
[Crossref]

Choi, K. H.

N. K. Kaushik, N. Kaushik, B. Min, K. H. Choi, Y. J. Hong, V. Miller, A. Fridman, and E. H. Choi, “Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation,” J. Phys. D Appl. Phys. 49(8), 084001 (2016).
[Crossref]

Choi, T. G.

N. Kaushik, S. J. Lee, T. G. Choi, K. Y. Baik, H. S. Uhm, C. H. Kim, N. K. Kaushik, and E. H. Choi, “Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells,” Sci. Rep. 5, 8726 (2015).
[Crossref] [PubMed]

Chu, T. T.

A. Sinha, T. T. Chu, M. Dao, and R. Chandramohanadas, “Single-cell evaluation of red blood cell bio-mechanical and nano-structural alterations upon chemically induced oxidative stress,” Sci. Rep. 5(1), 9768 (2015).
[Crossref] [PubMed]

Chung, T.

S. J. Kim, T. Chung, S. Bae, and S. Leem, “Induction of apoptosis in human breast cancer cells by a pulsed atmospheric pressure plasma jet,” Appl. Phys. Lett. 97(2), 023702 (2010).
[Crossref]

Clyne, A. M.

K. P. Arjunan, G. Friedman, A. Fridman, and A. M. Clyne, “Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species,” J. R. Soc. Interface 9(66), 147–157 (2012).
[Crossref] [PubMed]

Cooper, M.

S. U. Kalghatgi, G. Fridman, M. Cooper, G. Nagaraj, M. Peddinghaus, M. Balasubramanian, V. N. Vasilets, A. F. Gutsol, A. Fridman, and G. Friedman, “Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma,” IEEE Trans. Plasma Sci. 35(5), 1559–1566 (2007).
[Crossref]

Cruz-Vallejo, V.

P. Morales-Ramírez, V. Cruz-Vallejo, R. Peña-Eguiluz, R. López-Callejas, B. G. Rodríguez-Méndez, R. Valencia-Alvarado, A. Mercado-Cabrera, and A. E. Muñoz-Castro, “Assessing cellular DNA damage from a helium plasma needle,” Radiat. Res. 179(6), 669–673 (2013).
[Crossref] [PubMed]

Dao, M.

A. Sinha, T. T. Chu, M. Dao, and R. Chandramohanadas, “Single-cell evaluation of red blood cell bio-mechanical and nano-structural alterations upon chemically induced oxidative stress,” Sci. Rep. 5(1), 9768 (2015).
[Crossref] [PubMed]

Des Soye, B.

S. N. Zucker, J. Zirnheld, A. Bagati, T. M. DiSanto, B. Des Soye, J. A. Wawrzyniak, K. Etemadi, M. Nikiforov, and R. Berezney, “Preferential induction of apoptotic cell death in melanoma cells as compared with normal keratinocytes using a non-thermal plasma torch,” Cancer Biol. Ther. 13(13), 1299–1306 (2012).
[Crossref] [PubMed]

DiSanto, T. M.

S. N. Zucker, J. Zirnheld, A. Bagati, T. M. DiSanto, B. Des Soye, J. A. Wawrzyniak, K. Etemadi, M. Nikiforov, and R. Berezney, “Preferential induction of apoptotic cell death in melanoma cells as compared with normal keratinocytes using a non-thermal plasma torch,” Cancer Biol. Ther. 13(13), 1299–1306 (2012).
[Crossref] [PubMed]

Etemadi, K.

S. N. Zucker, J. Zirnheld, A. Bagati, T. M. DiSanto, B. Des Soye, J. A. Wawrzyniak, K. Etemadi, M. Nikiforov, and R. Berezney, “Preferential induction of apoptotic cell death in melanoma cells as compared with normal keratinocytes using a non-thermal plasma torch,” Cancer Biol. Ther. 13(13), 1299–1306 (2012).
[Crossref] [PubMed]

Evans, M. K.

K. D. Jacob, N. Noren Hooten, A. R. Trzeciak, and M. K. Evans, “Markers of oxidant stress that are clinically relevant in aging and age-related disease,” Mech. Ageing Dev. 134(3-4), 139–157 (2013).
[Crossref] [PubMed]

Fridman, A.

N. K. Kaushik, N. Kaushik, B. Min, K. H. Choi, Y. J. Hong, V. Miller, A. Fridman, and E. H. Choi, “Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation,” J. Phys. D Appl. Phys. 49(8), 084001 (2016).
[Crossref]

Y. Li, A. Kojtari, G. Friedman, A. D. Brooks, A. Fridman, and H. F. Ji, “Decomposition of L-Valine under Nonthermal Dielectric Barrier Discharge Plasma,” J. Phys. Chem. B 118(6), 1612–1620 (2014).
[Crossref] [PubMed]

K. P. Arjunan, G. Friedman, A. Fridman, and A. M. Clyne, “Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species,” J. R. Soc. Interface 9(66), 147–157 (2012).
[Crossref] [PubMed]

S. Kalghatgi, A. Fridman, J. Azizkhan Clifford, and G. Friedman, “DNA Damage in Mammalian Cells by Non‐thermal Atmospheric Pressure Microsecond Pulsed Dielectric Barrier Discharge Plasma is not Mediated by Ozone,” Plasma Process. Polym. 9(7), 726–732 (2012).
[Crossref]

S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS One 6(1), e16270 (2011).
[Crossref] [PubMed]

S. U. Kalghatgi, G. Fridman, M. Cooper, G. Nagaraj, M. Peddinghaus, M. Balasubramanian, V. N. Vasilets, A. F. Gutsol, A. Fridman, and G. Friedman, “Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma,” IEEE Trans. Plasma Sci. 35(5), 1559–1566 (2007).
[Crossref]

G. Fridman, A. Shereshevsky, M. M. Jost, A. D. Brooks, A. Fridman, A. Gutsol, V. Vasilets, and G. Friedman, “Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines,” Plasma Chem. Plasma Process. 27(2), 163–176 (2007).
[Crossref]

G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol, and A. Brooks, “Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air,” Plasma Chem. Plasma Process. 26(4), 425–442 (2006).
[Crossref]

Fridman, G.

S. U. Kalghatgi, G. Fridman, M. Cooper, G. Nagaraj, M. Peddinghaus, M. Balasubramanian, V. N. Vasilets, A. F. Gutsol, A. Fridman, and G. Friedman, “Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma,” IEEE Trans. Plasma Sci. 35(5), 1559–1566 (2007).
[Crossref]

G. Fridman, A. Shereshevsky, M. M. Jost, A. D. Brooks, A. Fridman, A. Gutsol, V. Vasilets, and G. Friedman, “Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines,” Plasma Chem. Plasma Process. 27(2), 163–176 (2007).
[Crossref]

G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol, and A. Brooks, “Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air,” Plasma Chem. Plasma Process. 26(4), 425–442 (2006).
[Crossref]

Friedman, G.

Y. Li, A. Kojtari, G. Friedman, A. D. Brooks, A. Fridman, and H. F. Ji, “Decomposition of L-Valine under Nonthermal Dielectric Barrier Discharge Plasma,” J. Phys. Chem. B 118(6), 1612–1620 (2014).
[Crossref] [PubMed]

K. P. Arjunan, G. Friedman, A. Fridman, and A. M. Clyne, “Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species,” J. R. Soc. Interface 9(66), 147–157 (2012).
[Crossref] [PubMed]

S. Kalghatgi, A. Fridman, J. Azizkhan Clifford, and G. Friedman, “DNA Damage in Mammalian Cells by Non‐thermal Atmospheric Pressure Microsecond Pulsed Dielectric Barrier Discharge Plasma is not Mediated by Ozone,” Plasma Process. Polym. 9(7), 726–732 (2012).
[Crossref]

S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS One 6(1), e16270 (2011).
[Crossref] [PubMed]

S. U. Kalghatgi, G. Fridman, M. Cooper, G. Nagaraj, M. Peddinghaus, M. Balasubramanian, V. N. Vasilets, A. F. Gutsol, A. Fridman, and G. Friedman, “Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma,” IEEE Trans. Plasma Sci. 35(5), 1559–1566 (2007).
[Crossref]

G. Fridman, A. Shereshevsky, M. M. Jost, A. D. Brooks, A. Fridman, A. Gutsol, V. Vasilets, and G. Friedman, “Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines,” Plasma Chem. Plasma Process. 27(2), 163–176 (2007).
[Crossref]

Gross, A.

A. Gross, J. M. McDonnell, and S. J. Korsmeyer, “BCL-2 family members and the mitochondria in apoptosis,” Genes Dev. 13(15), 1899–1911 (1999).
[Crossref] [PubMed]

Gutsol, A.

G. Fridman, A. Shereshevsky, M. M. Jost, A. D. Brooks, A. Fridman, A. Gutsol, V. Vasilets, and G. Friedman, “Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines,” Plasma Chem. Plasma Process. 27(2), 163–176 (2007).
[Crossref]

G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol, and A. Brooks, “Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air,” Plasma Chem. Plasma Process. 26(4), 425–442 (2006).
[Crossref]

Gutsol, A. F.

S. U. Kalghatgi, G. Fridman, M. Cooper, G. Nagaraj, M. Peddinghaus, M. Balasubramanian, V. N. Vasilets, A. F. Gutsol, A. Fridman, and G. Friedman, “Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma,” IEEE Trans. Plasma Sci. 35(5), 1559–1566 (2007).
[Crossref]

Ha, C. S.

Y. Ma, C. S. Ha, S. W. Hwang, H. J. Lee, G. C. Kim, K. W. Lee, and K. Song, “Non-thermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ROS stress-response pathways,” PLoS One 9(4), e91947 (2014).
[Crossref] [PubMed]

Haertel, B.

B. Haertel, T. von Woedtke, K. D. Weltmann, and U. Lindequist, “Non-thermal atmospheric-pressure plasma possible application in wound healing,” Biomol. Ther. (Seoul) 22(6), 477–490 (2014).
[Crossref] [PubMed]

B. Haertel, M. Hähnel, S. Blackert, K. Wende, T. von Woedtke, and U. Lindequist, “Surface molecules on HaCaT keratinocytes after interaction with non-thermal atmospheric pressure plasma,” Cell Biol. Int. 36(12), 1217–1222 (2012).
[Crossref] [PubMed]

Hähnel, M.

B. Haertel, M. Hähnel, S. Blackert, K. Wende, T. von Woedtke, and U. Lindequist, “Surface molecules on HaCaT keratinocytes after interaction with non-thermal atmospheric pressure plasma,” Cell Biol. Int. 36(12), 1217–1222 (2012).
[Crossref] [PubMed]

Halfmann, H.

H. Halfmann, N. Bibinov, J. Wunderlich, and P. Awakowicz, “A double inductively coupled plasma for sterilization of medical devices,” J. Phys. D Appl. Phys. 40(14), 4145–4154 (2007).
[Crossref]

Han, J. H.

K. Panngom, K. Y. Baik, M. K. Nam, J. H. Han, H. Rhim, and E. H. Choi, “Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma,” Cell Death Dis. 4(5), e642 (2013).
[Crossref] [PubMed]

K. Panngom, K. Y. Baik, M. K. Nam, J. H. Han, H. Rhim, and E. H. Choi, “Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma,” Cell Death Dis. 4(5), e642 (2013).
[Crossref] [PubMed]

Hayashi, M.

S. Iseki, K. Nakamura, M. Hayashi, H. Tanaka, H. Kondo, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma,” Appl. Phys. Lett. 100(11), 113702 (2012).
[Crossref]

Hong, Y.

P. Y. Oh, J. H. Kim, Y. Hong, S. H. Cho, G. Cho, and E. H. Choi, “Spatiotemporal behavior of excited xenon-atom density in accordance with xenon mole fraction to neon in alternating-current plasma display panels by laser-absorption spectroscopy,” IEEE Trans. Plasma Sci. 36(3), 816–820 (2008).
[Crossref]

Hong, Y. J.

N. K. Kaushik, N. Kaushik, B. Min, K. H. Choi, Y. J. Hong, V. Miller, A. Fridman, and E. H. Choi, “Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation,” J. Phys. D Appl. Phys. 49(8), 084001 (2016).
[Crossref]

Hori, M.

S. Iseki, K. Nakamura, M. Hayashi, H. Tanaka, H. Kondo, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma,” Appl. Phys. Lett. 100(11), 113702 (2012).
[Crossref]

H. Tanaka, M. Mizuno, K. Ishikawa, K. Nakamura, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Plasma-Activated Medium Selectively Kills Glioblastoma Brain Tumor Cells by Down-Regulating a Survival Signaling Molecule, AKT Kinase,” Plasma Medicine 1(3-4), 265–277 (2011).
[Crossref]

Hwang, S. W.

Y. Ma, C. S. Ha, S. W. Hwang, H. J. Lee, G. C. Kim, K. W. Lee, and K. Song, “Non-thermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ROS stress-response pathways,” PLoS One 9(4), e91947 (2014).
[Crossref] [PubMed]

Iseki, S.

S. Iseki, K. Nakamura, M. Hayashi, H. Tanaka, H. Kondo, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma,” Appl. Phys. Lett. 100(11), 113702 (2012).
[Crossref]

Ishikawa, K.

H. Tanaka, M. Mizuno, K. Ishikawa, K. Nakamura, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Plasma-Activated Medium Selectively Kills Glioblastoma Brain Tumor Cells by Down-Regulating a Survival Signaling Molecule, AKT Kinase,” Plasma Medicine 1(3-4), 265–277 (2011).
[Crossref]

Jacob, K. D.

K. D. Jacob, N. Noren Hooten, A. R. Trzeciak, and M. K. Evans, “Markers of oxidant stress that are clinically relevant in aging and age-related disease,” Mech. Ageing Dev. 134(3-4), 139–157 (2013).
[Crossref] [PubMed]

Jänicke, R. U.

A. G. Porter and R. U. Jänicke, “Emerging roles of caspase-3 in apoptosis,” Cell Death Differ. 6(2), 99–104 (1999).
[Crossref] [PubMed]

Ji, H. F.

Y. Li, A. Kojtari, G. Friedman, A. D. Brooks, A. Fridman, and H. F. Ji, “Decomposition of L-Valine under Nonthermal Dielectric Barrier Discharge Plasma,” J. Phys. Chem. B 118(6), 1612–1620 (2014).
[Crossref] [PubMed]

Jost, M. M.

G. Fridman, A. Shereshevsky, M. M. Jost, A. D. Brooks, A. Fridman, A. Gutsol, V. Vasilets, and G. Friedman, “Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines,” Plasma Chem. Plasma Process. 27(2), 163–176 (2007).
[Crossref]

Jun, S. I.

C. H. Kim, J. H. Bahn, S. H. Lee, G. Y. Kim, S. I. Jun, K. Lee, and S. J. Baek, “Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells,” J. Biotechnol. 150(4), 530–538 (2010).
[Crossref] [PubMed]

Jung, G. B.

Kajiyama, H.

S. Iseki, K. Nakamura, M. Hayashi, H. Tanaka, H. Kondo, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma,” Appl. Phys. Lett. 100(11), 113702 (2012).
[Crossref]

H. Tanaka, M. Mizuno, K. Ishikawa, K. Nakamura, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Plasma-Activated Medium Selectively Kills Glioblastoma Brain Tumor Cells by Down-Regulating a Survival Signaling Molecule, AKT Kinase,” Plasma Medicine 1(3-4), 265–277 (2011).
[Crossref]

Kalghatgi, S.

S. Kalghatgi, A. Fridman, J. Azizkhan Clifford, and G. Friedman, “DNA Damage in Mammalian Cells by Non‐thermal Atmospheric Pressure Microsecond Pulsed Dielectric Barrier Discharge Plasma is not Mediated by Ozone,” Plasma Process. Polym. 9(7), 726–732 (2012).
[Crossref]

S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS One 6(1), e16270 (2011).
[Crossref] [PubMed]

Kalghatgi, S. U.

S. U. Kalghatgi, G. Fridman, M. Cooper, G. Nagaraj, M. Peddinghaus, M. Balasubramanian, V. N. Vasilets, A. F. Gutsol, A. Fridman, and G. Friedman, “Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma,” IEEE Trans. Plasma Sci. 35(5), 1559–1566 (2007).
[Crossref]

Kang, M. H.

J. H. Park, N. Kumar, D. H. Park, M. Yusupov, E. C. Neyts, C. C. Verlackt, A. Bogaerts, M. H. Kang, H. S. Uhm, E. H. Choi, and P. Attri, “A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma,” Sci. Rep. 5(1), 13849 (2015).
[Crossref] [PubMed]

Kano, H.

S. Iseki, K. Nakamura, M. Hayashi, H. Tanaka, H. Kondo, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma,” Appl. Phys. Lett. 100(11), 113702 (2012).
[Crossref]

H. Tanaka, M. Mizuno, K. Ishikawa, K. Nakamura, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Plasma-Activated Medium Selectively Kills Glioblastoma Brain Tumor Cells by Down-Regulating a Survival Signaling Molecule, AKT Kinase,” Plasma Medicine 1(3-4), 265–277 (2011).
[Crossref]

Kaushik, N.

N. K. Kaushik, N. Kaushik, B. Min, K. H. Choi, Y. J. Hong, V. Miller, A. Fridman, and E. H. Choi, “Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation,” J. Phys. D Appl. Phys. 49(8), 084001 (2016).
[Crossref]

N. Kaushik, S. J. Lee, T. G. Choi, K. Y. Baik, H. S. Uhm, C. H. Kim, N. K. Kaushik, and E. H. Choi, “Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells,” Sci. Rep. 5, 8726 (2015).
[Crossref] [PubMed]

N. K. Kaushik, P. Attri, N. Kaushik, and E. H. Choi, “A preliminary study of the effect of DBD plasma and osmolytes on T98G brain cancer and HEK non-malignant cells,” Molecules 18(5), 4917–4928 (2013).
[Crossref] [PubMed]

Kaushik, N. K.

N. K. Kaushik, N. Kaushik, B. Min, K. H. Choi, Y. J. Hong, V. Miller, A. Fridman, and E. H. Choi, “Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation,” J. Phys. D Appl. Phys. 49(8), 084001 (2016).
[Crossref]

N. Kaushik, S. J. Lee, T. G. Choi, K. Y. Baik, H. S. Uhm, C. H. Kim, N. K. Kaushik, and E. H. Choi, “Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells,” Sci. Rep. 5, 8726 (2015).
[Crossref] [PubMed]

N. K. Kaushik, P. Attri, N. Kaushik, and E. H. Choi, “A preliminary study of the effect of DBD plasma and osmolytes on T98G brain cancer and HEK non-malignant cells,” Molecules 18(5), 4917–4928 (2013).
[Crossref] [PubMed]

N. K. Kaushik, H. Uhm, and E. H. Choi, “Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells,” Appl. Phys. Lett. 100(8), 084102 (2012).
[Crossref]

Kelly, C. M.

S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS One 6(1), e16270 (2011).
[Crossref] [PubMed]

Kikkawa, F.

S. Iseki, K. Nakamura, M. Hayashi, H. Tanaka, H. Kondo, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma,” Appl. Phys. Lett. 100(11), 113702 (2012).
[Crossref]

H. Tanaka, M. Mizuno, K. Ishikawa, K. Nakamura, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Plasma-Activated Medium Selectively Kills Glioblastoma Brain Tumor Cells by Down-Regulating a Survival Signaling Molecule, AKT Kinase,” Plasma Medicine 1(3-4), 265–277 (2011).
[Crossref]

Kim, C. H.

N. Kaushik, S. J. Lee, T. G. Choi, K. Y. Baik, H. S. Uhm, C. H. Kim, N. K. Kaushik, and E. H. Choi, “Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells,” Sci. Rep. 5, 8726 (2015).
[Crossref] [PubMed]

C. H. Kim, J. H. Bahn, S. H. Lee, G. Y. Kim, S. I. Jun, K. Lee, and S. J. Baek, “Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells,” J. Biotechnol. 150(4), 530–538 (2010).
[Crossref] [PubMed]

Kim, G.

G. Kim, W. Kim, K. Kim, and J. Lee, “DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma,” Appl. Phys. Lett. 96(2), 021502 (2010).
[Crossref]

Kim, G. C.

Y. Ma, C. S. Ha, S. W. Hwang, H. J. Lee, G. C. Kim, K. W. Lee, and K. Song, “Non-thermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ROS stress-response pathways,” PLoS One 9(4), e91947 (2014).
[Crossref] [PubMed]

Kim, G. Y.

C. H. Kim, J. H. Bahn, S. H. Lee, G. Y. Kim, S. I. Jun, K. Lee, and S. J. Baek, “Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells,” J. Biotechnol. 150(4), 530–538 (2010).
[Crossref] [PubMed]

Kim, J. H.

P. Y. Oh, J. H. Kim, Y. Hong, S. H. Cho, G. Cho, and E. H. Choi, “Spatiotemporal behavior of excited xenon-atom density in accordance with xenon mole fraction to neon in alternating-current plasma display panels by laser-absorption spectroscopy,” IEEE Trans. Plasma Sci. 36(3), 816–820 (2008).
[Crossref]

Kim, K.

G. Kim, W. Kim, K. Kim, and J. Lee, “DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma,” Appl. Phys. Lett. 96(2), 021502 (2010).
[Crossref]

Kim, S. J.

S. J. Kim, T. Chung, S. Bae, and S. Leem, “Induction of apoptosis in human breast cancer cells by a pulsed atmospheric pressure plasma jet,” Appl. Phys. Lett. 97(2), 023702 (2010).
[Crossref]

Kim, W.

G. Kim, W. Kim, K. Kim, and J. Lee, “DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma,” Appl. Phys. Lett. 96(2), 021502 (2010).
[Crossref]

Kogelschatz, U.

U. Kogelschatz, “Dielectric-barrier discharges: their history, discharge physics, and industrial applications,” Plasma Chem. Plasma Process. 23(1), 1–46 (2003).
[Crossref]

Kojtari, A.

Y. Li, A. Kojtari, G. Friedman, A. D. Brooks, A. Fridman, and H. F. Ji, “Decomposition of L-Valine under Nonthermal Dielectric Barrier Discharge Plasma,” J. Phys. Chem. B 118(6), 1612–1620 (2014).
[Crossref] [PubMed]

Kondo, H.

S. Iseki, K. Nakamura, M. Hayashi, H. Tanaka, H. Kondo, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma,” Appl. Phys. Lett. 100(11), 113702 (2012).
[Crossref]

Korsmeyer, S. J.

A. Gross, J. M. McDonnell, and S. J. Korsmeyer, “BCL-2 family members and the mitochondria in apoptosis,” Genes Dev. 13(15), 1899–1911 (1999).
[Crossref] [PubMed]

Kumar, N.

J. H. Park, N. Kumar, D. H. Park, M. Yusupov, E. C. Neyts, C. C. Verlackt, A. Bogaerts, M. H. Kang, H. S. Uhm, E. H. Choi, and P. Attri, “A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma,” Sci. Rep. 5(1), 13849 (2015).
[Crossref] [PubMed]

Lee, G.

Lee, H. J.

Y. Ma, C. S. Ha, S. W. Hwang, H. J. Lee, G. C. Kim, K. W. Lee, and K. Song, “Non-thermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ROS stress-response pathways,” PLoS One 9(4), e91947 (2014).
[Crossref] [PubMed]

Lee, J.

G. Kim, W. Kim, K. Kim, and J. Lee, “DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma,” Appl. Phys. Lett. 96(2), 021502 (2010).
[Crossref]

Lee, K.

C. H. Kim, J. H. Bahn, S. H. Lee, G. Y. Kim, S. I. Jun, K. Lee, and S. J. Baek, “Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells,” J. Biotechnol. 150(4), 530–538 (2010).
[Crossref] [PubMed]

Lee, K. W.

Y. Ma, C. S. Ha, S. W. Hwang, H. J. Lee, G. C. Kim, K. W. Lee, and K. Song, “Non-thermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ROS stress-response pathways,” PLoS One 9(4), e91947 (2014).
[Crossref] [PubMed]

Lee, S. H.

C. H. Kim, J. H. Bahn, S. H. Lee, G. Y. Kim, S. I. Jun, K. Lee, and S. J. Baek, “Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells,” J. Biotechnol. 150(4), 530–538 (2010).
[Crossref] [PubMed]

Lee, S. J.

N. Kaushik, S. J. Lee, T. G. Choi, K. Y. Baik, H. S. Uhm, C. H. Kim, N. K. Kaushik, and E. H. Choi, “Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells,” Sci. Rep. 5, 8726 (2015).
[Crossref] [PubMed]

Lee, Y. J.

Lee, Y. T.

W. T. Chang, H. L. Lin, H. C. Chen, Y. M. Wu, W. J. Chen, Y. T. Lee, and I. Liau, “Real‐time molecular assessment on oxidative injury of single cells using Raman spectroscopy,” J. Raman Spectrosc. 40(9), 1194–1199 (2009).
[Crossref]

Leem, S.

S. J. Kim, T. Chung, S. Bae, and S. Leem, “Induction of apoptosis in human breast cancer cells by a pulsed atmospheric pressure plasma jet,” Appl. Phys. Lett. 97(2), 023702 (2010).
[Crossref]

Leu, S.

P. L. Shao, J. D. Liao, T. W. Wong, Y. C. Wang, S. Leu, and H. K. Yip, “Enhancement of Wound Healing by Non-Thermal N2/Ar Micro-Plasma Exposure in Mice with Fractional-CO2-Laser-Induced Wounds,” PLoS One 11(6), e0156699 (2016).
[Crossref] [PubMed]

Li, Y.

Y. Li, A. Kojtari, G. Friedman, A. D. Brooks, A. Fridman, and H. F. Ji, “Decomposition of L-Valine under Nonthermal Dielectric Barrier Discharge Plasma,” J. Phys. Chem. B 118(6), 1612–1620 (2014).
[Crossref] [PubMed]

Liao, J. D.

P. L. Shao, J. D. Liao, T. W. Wong, Y. C. Wang, S. Leu, and H. K. Yip, “Enhancement of Wound Healing by Non-Thermal N2/Ar Micro-Plasma Exposure in Mice with Fractional-CO2-Laser-Induced Wounds,” PLoS One 11(6), e0156699 (2016).
[Crossref] [PubMed]

M. H. Ngo Thi, P. L. Shao, J. D. Liao, C. C. K. Lin, and H. K. Yip, “Enhancement of Angiogenesis and Epithelialization Processes in Mice with Burn Wounds through ROS/RNS Signals Generated by Non‐Thermal N2/Ar Micro‐Plasma,” Plasma Process. Polym. 11(11), 1076–1088 (2014).
[Crossref]

Liau, I.

W. T. Chang, H. L. Lin, H. C. Chen, Y. M. Wu, W. J. Chen, Y. T. Lee, and I. Liau, “Real‐time molecular assessment on oxidative injury of single cells using Raman spectroscopy,” J. Raman Spectrosc. 40(9), 1194–1199 (2009).
[Crossref]

Lin, C. C. K.

M. H. Ngo Thi, P. L. Shao, J. D. Liao, C. C. K. Lin, and H. K. Yip, “Enhancement of Angiogenesis and Epithelialization Processes in Mice with Burn Wounds through ROS/RNS Signals Generated by Non‐Thermal N2/Ar Micro‐Plasma,” Plasma Process. Polym. 11(11), 1076–1088 (2014).
[Crossref]

Lin, H. L.

W. T. Chang, H. L. Lin, H. C. Chen, Y. M. Wu, W. J. Chen, Y. T. Lee, and I. Liau, “Real‐time molecular assessment on oxidative injury of single cells using Raman spectroscopy,” J. Raman Spectrosc. 40(9), 1194–1199 (2009).
[Crossref]

Lindequist, U.

B. Haertel, T. von Woedtke, K. D. Weltmann, and U. Lindequist, “Non-thermal atmospheric-pressure plasma possible application in wound healing,” Biomol. Ther. (Seoul) 22(6), 477–490 (2014).
[Crossref] [PubMed]

B. Haertel, M. Hähnel, S. Blackert, K. Wende, T. von Woedtke, and U. Lindequist, “Surface molecules on HaCaT keratinocytes after interaction with non-thermal atmospheric pressure plasma,” Cell Biol. Int. 36(12), 1217–1222 (2012).
[Crossref] [PubMed]

López-Callejas, R.

P. Morales-Ramírez, V. Cruz-Vallejo, R. Peña-Eguiluz, R. López-Callejas, B. G. Rodríguez-Méndez, R. Valencia-Alvarado, A. Mercado-Cabrera, and A. E. Muñoz-Castro, “Assessing cellular DNA damage from a helium plasma needle,” Radiat. Res. 179(6), 669–673 (2013).
[Crossref] [PubMed]

Ma, Y.

Y. Ma, C. S. Ha, S. W. Hwang, H. J. Lee, G. C. Kim, K. W. Lee, and K. Song, “Non-thermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ROS stress-response pathways,” PLoS One 9(4), e91947 (2014).
[Crossref] [PubMed]

McDonnell, J. M.

A. Gross, J. M. McDonnell, and S. J. Korsmeyer, “BCL-2 family members and the mitochondria in apoptosis,” Genes Dev. 13(15), 1899–1911 (1999).
[Crossref] [PubMed]

Mercado-Cabrera, A.

P. Morales-Ramírez, V. Cruz-Vallejo, R. Peña-Eguiluz, R. López-Callejas, B. G. Rodríguez-Méndez, R. Valencia-Alvarado, A. Mercado-Cabrera, and A. E. Muñoz-Castro, “Assessing cellular DNA damage from a helium plasma needle,” Radiat. Res. 179(6), 669–673 (2013).
[Crossref] [PubMed]

Miller, V.

N. K. Kaushik, N. Kaushik, B. Min, K. H. Choi, Y. J. Hong, V. Miller, A. Fridman, and E. H. Choi, “Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation,” J. Phys. D Appl. Phys. 49(8), 084001 (2016).
[Crossref]

Min, B.

N. K. Kaushik, N. Kaushik, B. Min, K. H. Choi, Y. J. Hong, V. Miller, A. Fridman, and E. H. Choi, “Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation,” J. Phys. D Appl. Phys. 49(8), 084001 (2016).
[Crossref]

Mizuno, M.

H. Tanaka, M. Mizuno, K. Ishikawa, K. Nakamura, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Plasma-Activated Medium Selectively Kills Glioblastoma Brain Tumor Cells by Down-Regulating a Survival Signaling Molecule, AKT Kinase,” Plasma Medicine 1(3-4), 265–277 (2011).
[Crossref]

Morales-Ramírez, P.

P. Morales-Ramírez, V. Cruz-Vallejo, R. Peña-Eguiluz, R. López-Callejas, B. G. Rodríguez-Méndez, R. Valencia-Alvarado, A. Mercado-Cabrera, and A. E. Muñoz-Castro, “Assessing cellular DNA damage from a helium plasma needle,” Radiat. Res. 179(6), 669–673 (2013).
[Crossref] [PubMed]

Muñoz-Castro, A. E.

P. Morales-Ramírez, V. Cruz-Vallejo, R. Peña-Eguiluz, R. López-Callejas, B. G. Rodríguez-Méndez, R. Valencia-Alvarado, A. Mercado-Cabrera, and A. E. Muñoz-Castro, “Assessing cellular DNA damage from a helium plasma needle,” Radiat. Res. 179(6), 669–673 (2013).
[Crossref] [PubMed]

Nagaraj, G.

S. U. Kalghatgi, G. Fridman, M. Cooper, G. Nagaraj, M. Peddinghaus, M. Balasubramanian, V. N. Vasilets, A. F. Gutsol, A. Fridman, and G. Friedman, “Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma,” IEEE Trans. Plasma Sci. 35(5), 1559–1566 (2007).
[Crossref]

Nakamura, K.

S. Iseki, K. Nakamura, M. Hayashi, H. Tanaka, H. Kondo, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma,” Appl. Phys. Lett. 100(11), 113702 (2012).
[Crossref]

H. Tanaka, M. Mizuno, K. Ishikawa, K. Nakamura, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Plasma-Activated Medium Selectively Kills Glioblastoma Brain Tumor Cells by Down-Regulating a Survival Signaling Molecule, AKT Kinase,” Plasma Medicine 1(3-4), 265–277 (2011).
[Crossref]

Nam, M. K.

K. Panngom, K. Y. Baik, M. K. Nam, J. H. Han, H. Rhim, and E. H. Choi, “Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma,” Cell Death Dis. 4(5), e642 (2013).
[Crossref] [PubMed]

K. Panngom, K. Y. Baik, M. K. Nam, J. H. Han, H. Rhim, and E. H. Choi, “Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma,” Cell Death Dis. 4(5), e642 (2013).
[Crossref] [PubMed]

Neyts, E. C.

J. H. Park, N. Kumar, D. H. Park, M. Yusupov, E. C. Neyts, C. C. Verlackt, A. Bogaerts, M. H. Kang, H. S. Uhm, E. H. Choi, and P. Attri, “A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma,” Sci. Rep. 5(1), 13849 (2015).
[Crossref] [PubMed]

Ngo Thi, M. H.

M. H. Ngo Thi, P. L. Shao, J. D. Liao, C. C. K. Lin, and H. K. Yip, “Enhancement of Angiogenesis and Epithelialization Processes in Mice with Burn Wounds through ROS/RNS Signals Generated by Non‐Thermal N2/Ar Micro‐Plasma,” Plasma Process. Polym. 11(11), 1076–1088 (2014).
[Crossref]

Nikiforov, M.

S. N. Zucker, J. Zirnheld, A. Bagati, T. M. DiSanto, B. Des Soye, J. A. Wawrzyniak, K. Etemadi, M. Nikiforov, and R. Berezney, “Preferential induction of apoptotic cell death in melanoma cells as compared with normal keratinocytes using a non-thermal plasma torch,” Cancer Biol. Ther. 13(13), 1299–1306 (2012).
[Crossref] [PubMed]

Noren Hooten, N.

K. D. Jacob, N. Noren Hooten, A. R. Trzeciak, and M. K. Evans, “Markers of oxidant stress that are clinically relevant in aging and age-related disease,” Mech. Ageing Dev. 134(3-4), 139–157 (2013).
[Crossref] [PubMed]

Oh, P. Y.

P. Y. Oh, J. H. Kim, Y. Hong, S. H. Cho, G. Cho, and E. H. Choi, “Spatiotemporal behavior of excited xenon-atom density in accordance with xenon mole fraction to neon in alternating-current plasma display panels by laser-absorption spectroscopy,” IEEE Trans. Plasma Sci. 36(3), 816–820 (2008).
[Crossref]

Panieri, E.

E. Panieri and M. M. Santoro, “ROS homeostasis and metabolism: a dangerous liason in cancer cells,” Cell Death Dis. 7(6), e2253 (2016).
[Crossref] [PubMed]

Panngom, K.

K. Panngom, K. Y. Baik, M. K. Nam, J. H. Han, H. Rhim, and E. H. Choi, “Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma,” Cell Death Dis. 4(5), e642 (2013).
[Crossref] [PubMed]

K. Panngom, K. Y. Baik, M. K. Nam, J. H. Han, H. Rhim, and E. H. Choi, “Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma,” Cell Death Dis. 4(5), e642 (2013).
[Crossref] [PubMed]

Park, D. H.

J. H. Park, N. Kumar, D. H. Park, M. Yusupov, E. C. Neyts, C. C. Verlackt, A. Bogaerts, M. H. Kang, H. S. Uhm, E. H. Choi, and P. Attri, “A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma,” Sci. Rep. 5(1), 13849 (2015).
[Crossref] [PubMed]

Park, H.-K.

Park, J. H.

J. H. Park, N. Kumar, D. H. Park, M. Yusupov, E. C. Neyts, C. C. Verlackt, A. Bogaerts, M. H. Kang, H. S. Uhm, E. H. Choi, and P. Attri, “A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma,” Sci. Rep. 5(1), 13849 (2015).
[Crossref] [PubMed]

Peddinghaus, M.

S. U. Kalghatgi, G. Fridman, M. Cooper, G. Nagaraj, M. Peddinghaus, M. Balasubramanian, V. N. Vasilets, A. F. Gutsol, A. Fridman, and G. Friedman, “Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma,” IEEE Trans. Plasma Sci. 35(5), 1559–1566 (2007).
[Crossref]

G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol, and A. Brooks, “Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air,” Plasma Chem. Plasma Process. 26(4), 425–442 (2006).
[Crossref]

Peña-Eguiluz, R.

P. Morales-Ramírez, V. Cruz-Vallejo, R. Peña-Eguiluz, R. López-Callejas, B. G. Rodríguez-Méndez, R. Valencia-Alvarado, A. Mercado-Cabrera, and A. E. Muñoz-Castro, “Assessing cellular DNA damage from a helium plasma needle,” Radiat. Res. 179(6), 669–673 (2013).
[Crossref] [PubMed]

Podhorecka, M.

M. Podhorecka, A. Skladanowski, and P. Bozko, “H2AX phosphorylation: its role in DNA damage response and cancer therapy,” J. Nucleic Acids 2010, 920161 (2010).
[Crossref] [PubMed]

Porter, A. G.

A. G. Porter and R. U. Jänicke, “Emerging roles of caspase-3 in apoptosis,” Cell Death Differ. 6(2), 99–104 (1999).
[Crossref] [PubMed]

Rhim, H.

K. Panngom, K. Y. Baik, M. K. Nam, J. H. Han, H. Rhim, and E. H. Choi, “Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma,” Cell Death Dis. 4(5), e642 (2013).
[Crossref] [PubMed]

K. Panngom, K. Y. Baik, M. K. Nam, J. H. Han, H. Rhim, and E. H. Choi, “Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma,” Cell Death Dis. 4(5), e642 (2013).
[Crossref] [PubMed]

Rodríguez-Méndez, B. G.

P. Morales-Ramírez, V. Cruz-Vallejo, R. Peña-Eguiluz, R. López-Callejas, B. G. Rodríguez-Méndez, R. Valencia-Alvarado, A. Mercado-Cabrera, and A. E. Muñoz-Castro, “Assessing cellular DNA damage from a helium plasma needle,” Radiat. Res. 179(6), 669–673 (2013).
[Crossref] [PubMed]

Santoro, M. M.

E. Panieri and M. M. Santoro, “ROS homeostasis and metabolism: a dangerous liason in cancer cells,” Cell Death Dis. 7(6), e2253 (2016).
[Crossref] [PubMed]

Shao, P. L.

P. L. Shao, J. D. Liao, T. W. Wong, Y. C. Wang, S. Leu, and H. K. Yip, “Enhancement of Wound Healing by Non-Thermal N2/Ar Micro-Plasma Exposure in Mice with Fractional-CO2-Laser-Induced Wounds,” PLoS One 11(6), e0156699 (2016).
[Crossref] [PubMed]

M. H. Ngo Thi, P. L. Shao, J. D. Liao, C. C. K. Lin, and H. K. Yip, “Enhancement of Angiogenesis and Epithelialization Processes in Mice with Burn Wounds through ROS/RNS Signals Generated by Non‐Thermal N2/Ar Micro‐Plasma,” Plasma Process. Polym. 11(11), 1076–1088 (2014).
[Crossref]

Shereshevsky, A.

G. Fridman, A. Shereshevsky, M. M. Jost, A. D. Brooks, A. Fridman, A. Gutsol, V. Vasilets, and G. Friedman, “Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines,” Plasma Chem. Plasma Process. 27(2), 163–176 (2007).
[Crossref]

Sinha, A.

A. Sinha, T. T. Chu, M. Dao, and R. Chandramohanadas, “Single-cell evaluation of red blood cell bio-mechanical and nano-structural alterations upon chemically induced oxidative stress,” Sci. Rep. 5(1), 9768 (2015).
[Crossref] [PubMed]

Skladanowski, A.

M. Podhorecka, A. Skladanowski, and P. Bozko, “H2AX phosphorylation: its role in DNA damage response and cancer therapy,” J. Nucleic Acids 2010, 920161 (2010).
[Crossref] [PubMed]

Song, K.

Y. Ma, C. S. Ha, S. W. Hwang, H. J. Lee, G. C. Kim, K. W. Lee, and K. Song, “Non-thermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ROS stress-response pathways,” PLoS One 9(4), e91947 (2014).
[Crossref] [PubMed]

Tanaka, H.

S. Iseki, K. Nakamura, M. Hayashi, H. Tanaka, H. Kondo, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma,” Appl. Phys. Lett. 100(11), 113702 (2012).
[Crossref]

H. Tanaka, M. Mizuno, K. Ishikawa, K. Nakamura, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Plasma-Activated Medium Selectively Kills Glioblastoma Brain Tumor Cells by Down-Regulating a Survival Signaling Molecule, AKT Kinase,” Plasma Medicine 1(3-4), 265–277 (2011).
[Crossref]

Torabi, B.

S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS One 6(1), e16270 (2011).
[Crossref] [PubMed]

Trzeciak, A. R.

K. D. Jacob, N. Noren Hooten, A. R. Trzeciak, and M. K. Evans, “Markers of oxidant stress that are clinically relevant in aging and age-related disease,” Mech. Ageing Dev. 134(3-4), 139–157 (2013).
[Crossref] [PubMed]

Uhm, H.

N. K. Kaushik, H. Uhm, and E. H. Choi, “Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells,” Appl. Phys. Lett. 100(8), 084102 (2012).
[Crossref]

Uhm, H. S.

N. Kaushik, S. J. Lee, T. G. Choi, K. Y. Baik, H. S. Uhm, C. H. Kim, N. K. Kaushik, and E. H. Choi, “Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells,” Sci. Rep. 5, 8726 (2015).
[Crossref] [PubMed]

J. H. Park, N. Kumar, D. H. Park, M. Yusupov, E. C. Neyts, C. C. Verlackt, A. Bogaerts, M. H. Kang, H. S. Uhm, E. H. Choi, and P. Attri, “A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma,” Sci. Rep. 5(1), 13849 (2015).
[Crossref] [PubMed]

Ushio-Fukai, M.

M. Ushio-Fukai and R. W. Alexander, “Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase,” Mol. Cell. Biochem. 264(1-2), 85–97 (2004).
[Crossref] [PubMed]

Valencia-Alvarado, R.

P. Morales-Ramírez, V. Cruz-Vallejo, R. Peña-Eguiluz, R. López-Callejas, B. G. Rodríguez-Méndez, R. Valencia-Alvarado, A. Mercado-Cabrera, and A. E. Muñoz-Castro, “Assessing cellular DNA damage from a helium plasma needle,” Radiat. Res. 179(6), 669–673 (2013).
[Crossref] [PubMed]

Van Gaens, W.

W. Van Gaens and A. Bogaerts, “Kinetic modelling for an atmospheric pressure argon plasma jet in humid air,” J. Phys. D Appl. Phys. 46(27), 275201 (2013).
[Crossref]

Vasilets, V.

G. Fridman, A. Shereshevsky, M. M. Jost, A. D. Brooks, A. Fridman, A. Gutsol, V. Vasilets, and G. Friedman, “Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines,” Plasma Chem. Plasma Process. 27(2), 163–176 (2007).
[Crossref]

Vasilets, V. N.

S. U. Kalghatgi, G. Fridman, M. Cooper, G. Nagaraj, M. Peddinghaus, M. Balasubramanian, V. N. Vasilets, A. F. Gutsol, A. Fridman, and G. Friedman, “Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma,” IEEE Trans. Plasma Sci. 35(5), 1559–1566 (2007).
[Crossref]

Verlackt, C. C.

J. H. Park, N. Kumar, D. H. Park, M. Yusupov, E. C. Neyts, C. C. Verlackt, A. Bogaerts, M. H. Kang, H. S. Uhm, E. H. Choi, and P. Attri, “A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma,” Sci. Rep. 5(1), 13849 (2015).
[Crossref] [PubMed]

von Woedtke, T.

B. Haertel, T. von Woedtke, K. D. Weltmann, and U. Lindequist, “Non-thermal atmospheric-pressure plasma possible application in wound healing,” Biomol. Ther. (Seoul) 22(6), 477–490 (2014).
[Crossref] [PubMed]

B. Haertel, M. Hähnel, S. Blackert, K. Wende, T. von Woedtke, and U. Lindequist, “Surface molecules on HaCaT keratinocytes after interaction with non-thermal atmospheric pressure plasma,” Cell Biol. Int. 36(12), 1217–1222 (2012).
[Crossref] [PubMed]

Wang, Y. C.

P. L. Shao, J. D. Liao, T. W. Wong, Y. C. Wang, S. Leu, and H. K. Yip, “Enhancement of Wound Healing by Non-Thermal N2/Ar Micro-Plasma Exposure in Mice with Fractional-CO2-Laser-Induced Wounds,” PLoS One 11(6), e0156699 (2016).
[Crossref] [PubMed]

Wawrzyniak, J. A.

S. N. Zucker, J. Zirnheld, A. Bagati, T. M. DiSanto, B. Des Soye, J. A. Wawrzyniak, K. Etemadi, M. Nikiforov, and R. Berezney, “Preferential induction of apoptotic cell death in melanoma cells as compared with normal keratinocytes using a non-thermal plasma torch,” Cancer Biol. Ther. 13(13), 1299–1306 (2012).
[Crossref] [PubMed]

Weltmann, K. D.

B. Haertel, T. von Woedtke, K. D. Weltmann, and U. Lindequist, “Non-thermal atmospheric-pressure plasma possible application in wound healing,” Biomol. Ther. (Seoul) 22(6), 477–490 (2014).
[Crossref] [PubMed]

Wende, K.

B. Haertel, M. Hähnel, S. Blackert, K. Wende, T. von Woedtke, and U. Lindequist, “Surface molecules on HaCaT keratinocytes after interaction with non-thermal atmospheric pressure plasma,” Cell Biol. Int. 36(12), 1217–1222 (2012).
[Crossref] [PubMed]

Wong, T. W.

P. L. Shao, J. D. Liao, T. W. Wong, Y. C. Wang, S. Leu, and H. K. Yip, “Enhancement of Wound Healing by Non-Thermal N2/Ar Micro-Plasma Exposure in Mice with Fractional-CO2-Laser-Induced Wounds,” PLoS One 11(6), e0156699 (2016).
[Crossref] [PubMed]

Wu, Y. M.

W. T. Chang, H. L. Lin, H. C. Chen, Y. M. Wu, W. J. Chen, Y. T. Lee, and I. Liau, “Real‐time molecular assessment on oxidative injury of single cells using Raman spectroscopy,” J. Raman Spectrosc. 40(9), 1194–1199 (2009).
[Crossref]

Wunderlich, J.

H. Halfmann, N. Bibinov, J. Wunderlich, and P. Awakowicz, “A double inductively coupled plasma for sterilization of medical devices,” J. Phys. D Appl. Phys. 40(14), 4145–4154 (2007).
[Crossref]

Yip, H. K.

P. L. Shao, J. D. Liao, T. W. Wong, Y. C. Wang, S. Leu, and H. K. Yip, “Enhancement of Wound Healing by Non-Thermal N2/Ar Micro-Plasma Exposure in Mice with Fractional-CO2-Laser-Induced Wounds,” PLoS One 11(6), e0156699 (2016).
[Crossref] [PubMed]

M. H. Ngo Thi, P. L. Shao, J. D. Liao, C. C. K. Lin, and H. K. Yip, “Enhancement of Angiogenesis and Epithelialization Processes in Mice with Burn Wounds through ROS/RNS Signals Generated by Non‐Thermal N2/Ar Micro‐Plasma,” Plasma Process. Polym. 11(11), 1076–1088 (2014).
[Crossref]

Yusupov, M.

J. H. Park, N. Kumar, D. H. Park, M. Yusupov, E. C. Neyts, C. C. Verlackt, A. Bogaerts, M. H. Kang, H. S. Uhm, E. H. Choi, and P. Attri, “A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma,” Sci. Rep. 5(1), 13849 (2015).
[Crossref] [PubMed]

Zirnheld, J.

S. N. Zucker, J. Zirnheld, A. Bagati, T. M. DiSanto, B. Des Soye, J. A. Wawrzyniak, K. Etemadi, M. Nikiforov, and R. Berezney, “Preferential induction of apoptotic cell death in melanoma cells as compared with normal keratinocytes using a non-thermal plasma torch,” Cancer Biol. Ther. 13(13), 1299–1306 (2012).
[Crossref] [PubMed]

Zucker, S. N.

S. N. Zucker, J. Zirnheld, A. Bagati, T. M. DiSanto, B. Des Soye, J. A. Wawrzyniak, K. Etemadi, M. Nikiforov, and R. Berezney, “Preferential induction of apoptotic cell death in melanoma cells as compared with normal keratinocytes using a non-thermal plasma torch,” Cancer Biol. Ther. 13(13), 1299–1306 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

S. J. Kim, T. Chung, S. Bae, and S. Leem, “Induction of apoptosis in human breast cancer cells by a pulsed atmospheric pressure plasma jet,” Appl. Phys. Lett. 97(2), 023702 (2010).
[Crossref]

N. K. Kaushik, H. Uhm, and E. H. Choi, “Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells,” Appl. Phys. Lett. 100(8), 084102 (2012).
[Crossref]

G. Kim, W. Kim, K. Kim, and J. Lee, “DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma,” Appl. Phys. Lett. 96(2), 021502 (2010).
[Crossref]

S. Iseki, K. Nakamura, M. Hayashi, H. Tanaka, H. Kondo, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma,” Appl. Phys. Lett. 100(11), 113702 (2012).
[Crossref]

Biomed. Opt. Express (1)

Biomol. Ther. (Seoul) (1)

B. Haertel, T. von Woedtke, K. D. Weltmann, and U. Lindequist, “Non-thermal atmospheric-pressure plasma possible application in wound healing,” Biomol. Ther. (Seoul) 22(6), 477–490 (2014).
[Crossref] [PubMed]

Cancer Biol. Ther. (1)

S. N. Zucker, J. Zirnheld, A. Bagati, T. M. DiSanto, B. Des Soye, J. A. Wawrzyniak, K. Etemadi, M. Nikiforov, and R. Berezney, “Preferential induction of apoptotic cell death in melanoma cells as compared with normal keratinocytes using a non-thermal plasma torch,” Cancer Biol. Ther. 13(13), 1299–1306 (2012).
[Crossref] [PubMed]

Cell Biol. Int. (1)

B. Haertel, M. Hähnel, S. Blackert, K. Wende, T. von Woedtke, and U. Lindequist, “Surface molecules on HaCaT keratinocytes after interaction with non-thermal atmospheric pressure plasma,” Cell Biol. Int. 36(12), 1217–1222 (2012).
[Crossref] [PubMed]

Cell Death Differ. (1)

A. G. Porter and R. U. Jänicke, “Emerging roles of caspase-3 in apoptosis,” Cell Death Differ. 6(2), 99–104 (1999).
[Crossref] [PubMed]

Cell Death Dis. (3)

E. Panieri and M. M. Santoro, “ROS homeostasis and metabolism: a dangerous liason in cancer cells,” Cell Death Dis. 7(6), e2253 (2016).
[Crossref] [PubMed]

K. Panngom, K. Y. Baik, M. K. Nam, J. H. Han, H. Rhim, and E. H. Choi, “Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma,” Cell Death Dis. 4(5), e642 (2013).
[Crossref] [PubMed]

K. Panngom, K. Y. Baik, M. K. Nam, J. H. Han, H. Rhim, and E. H. Choi, “Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma,” Cell Death Dis. 4(5), e642 (2013).
[Crossref] [PubMed]

Genes Dev. (1)

A. Gross, J. M. McDonnell, and S. J. Korsmeyer, “BCL-2 family members and the mitochondria in apoptosis,” Genes Dev. 13(15), 1899–1911 (1999).
[Crossref] [PubMed]

IEEE Trans. Plasma Sci. (2)

S. U. Kalghatgi, G. Fridman, M. Cooper, G. Nagaraj, M. Peddinghaus, M. Balasubramanian, V. N. Vasilets, A. F. Gutsol, A. Fridman, and G. Friedman, “Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma,” IEEE Trans. Plasma Sci. 35(5), 1559–1566 (2007).
[Crossref]

P. Y. Oh, J. H. Kim, Y. Hong, S. H. Cho, G. Cho, and E. H. Choi, “Spatiotemporal behavior of excited xenon-atom density in accordance with xenon mole fraction to neon in alternating-current plasma display panels by laser-absorption spectroscopy,” IEEE Trans. Plasma Sci. 36(3), 816–820 (2008).
[Crossref]

J. Biotechnol. (1)

C. H. Kim, J. H. Bahn, S. H. Lee, G. Y. Kim, S. I. Jun, K. Lee, and S. J. Baek, “Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells,” J. Biotechnol. 150(4), 530–538 (2010).
[Crossref] [PubMed]

J. Nucleic Acids (1)

M. Podhorecka, A. Skladanowski, and P. Bozko, “H2AX phosphorylation: its role in DNA damage response and cancer therapy,” J. Nucleic Acids 2010, 920161 (2010).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

Y. Li, A. Kojtari, G. Friedman, A. D. Brooks, A. Fridman, and H. F. Ji, “Decomposition of L-Valine under Nonthermal Dielectric Barrier Discharge Plasma,” J. Phys. Chem. B 118(6), 1612–1620 (2014).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (3)

N. K. Kaushik, N. Kaushik, B. Min, K. H. Choi, Y. J. Hong, V. Miller, A. Fridman, and E. H. Choi, “Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation,” J. Phys. D Appl. Phys. 49(8), 084001 (2016).
[Crossref]

W. Van Gaens and A. Bogaerts, “Kinetic modelling for an atmospheric pressure argon plasma jet in humid air,” J. Phys. D Appl. Phys. 46(27), 275201 (2013).
[Crossref]

H. Halfmann, N. Bibinov, J. Wunderlich, and P. Awakowicz, “A double inductively coupled plasma for sterilization of medical devices,” J. Phys. D Appl. Phys. 40(14), 4145–4154 (2007).
[Crossref]

J. R. Soc. Interface (1)

K. P. Arjunan, G. Friedman, A. Fridman, and A. M. Clyne, “Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species,” J. R. Soc. Interface 9(66), 147–157 (2012).
[Crossref] [PubMed]

J. Raman Spectrosc. (1)

W. T. Chang, H. L. Lin, H. C. Chen, Y. M. Wu, W. J. Chen, Y. T. Lee, and I. Liau, “Real‐time molecular assessment on oxidative injury of single cells using Raman spectroscopy,” J. Raman Spectrosc. 40(9), 1194–1199 (2009).
[Crossref]

Mech. Ageing Dev. (1)

K. D. Jacob, N. Noren Hooten, A. R. Trzeciak, and M. K. Evans, “Markers of oxidant stress that are clinically relevant in aging and age-related disease,” Mech. Ageing Dev. 134(3-4), 139–157 (2013).
[Crossref] [PubMed]

Mol. Cell. Biochem. (1)

M. Ushio-Fukai and R. W. Alexander, “Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase,” Mol. Cell. Biochem. 264(1-2), 85–97 (2004).
[Crossref] [PubMed]

Molecules (1)

N. K. Kaushik, P. Attri, N. Kaushik, and E. H. Choi, “A preliminary study of the effect of DBD plasma and osmolytes on T98G brain cancer and HEK non-malignant cells,” Molecules 18(5), 4917–4928 (2013).
[Crossref] [PubMed]

Plasma Chem. Plasma Process. (3)

G. Fridman, A. Shereshevsky, M. M. Jost, A. D. Brooks, A. Fridman, A. Gutsol, V. Vasilets, and G. Friedman, “Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines,” Plasma Chem. Plasma Process. 27(2), 163–176 (2007).
[Crossref]

U. Kogelschatz, “Dielectric-barrier discharges: their history, discharge physics, and industrial applications,” Plasma Chem. Plasma Process. 23(1), 1–46 (2003).
[Crossref]

G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol, and A. Brooks, “Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air,” Plasma Chem. Plasma Process. 26(4), 425–442 (2006).
[Crossref]

Plasma Medicine (1)

H. Tanaka, M. Mizuno, K. Ishikawa, K. Nakamura, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, “Plasma-Activated Medium Selectively Kills Glioblastoma Brain Tumor Cells by Down-Regulating a Survival Signaling Molecule, AKT Kinase,” Plasma Medicine 1(3-4), 265–277 (2011).
[Crossref]

Plasma Process. Polym. (2)

M. H. Ngo Thi, P. L. Shao, J. D. Liao, C. C. K. Lin, and H. K. Yip, “Enhancement of Angiogenesis and Epithelialization Processes in Mice with Burn Wounds through ROS/RNS Signals Generated by Non‐Thermal N2/Ar Micro‐Plasma,” Plasma Process. Polym. 11(11), 1076–1088 (2014).
[Crossref]

S. Kalghatgi, A. Fridman, J. Azizkhan Clifford, and G. Friedman, “DNA Damage in Mammalian Cells by Non‐thermal Atmospheric Pressure Microsecond Pulsed Dielectric Barrier Discharge Plasma is not Mediated by Ozone,” Plasma Process. Polym. 9(7), 726–732 (2012).
[Crossref]

PLoS One (3)

Y. Ma, C. S. Ha, S. W. Hwang, H. J. Lee, G. C. Kim, K. W. Lee, and K. Song, “Non-thermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ROS stress-response pathways,” PLoS One 9(4), e91947 (2014).
[Crossref] [PubMed]

P. L. Shao, J. D. Liao, T. W. Wong, Y. C. Wang, S. Leu, and H. K. Yip, “Enhancement of Wound Healing by Non-Thermal N2/Ar Micro-Plasma Exposure in Mice with Fractional-CO2-Laser-Induced Wounds,” PLoS One 11(6), e0156699 (2016).
[Crossref] [PubMed]

S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS One 6(1), e16270 (2011).
[Crossref] [PubMed]

Radiat. Res. (1)

P. Morales-Ramírez, V. Cruz-Vallejo, R. Peña-Eguiluz, R. López-Callejas, B. G. Rodríguez-Méndez, R. Valencia-Alvarado, A. Mercado-Cabrera, and A. E. Muñoz-Castro, “Assessing cellular DNA damage from a helium plasma needle,” Radiat. Res. 179(6), 669–673 (2013).
[Crossref] [PubMed]

Sci. Rep. (3)

A. Sinha, T. T. Chu, M. Dao, and R. Chandramohanadas, “Single-cell evaluation of red blood cell bio-mechanical and nano-structural alterations upon chemically induced oxidative stress,” Sci. Rep. 5(1), 9768 (2015).
[Crossref] [PubMed]

N. Kaushik, S. J. Lee, T. G. Choi, K. Y. Baik, H. S. Uhm, C. H. Kim, N. K. Kaushik, and E. H. Choi, “Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells,” Sci. Rep. 5, 8726 (2015).
[Crossref] [PubMed]

J. H. Park, N. Kumar, D. H. Park, M. Yusupov, E. C. Neyts, C. C. Verlackt, A. Bogaerts, M. H. Kang, H. S. Uhm, E. H. Choi, and P. Attri, “A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma,” Sci. Rep. 5(1), 13849 (2015).
[Crossref] [PubMed]

Other (3)

T. Furuhashi, Basics of Multivariate Analysis II (Principal Component Analysis): Theory and Exercise using R (Amazon Digital Services LLC, 2015).

T. Furuhashi, Basics of Multivariate Analysis III (Discriminant Analysis): Theory and Exercise using R (Amazon Digital Services LLC, 2016).

“The R Project for Statistical Computing”, retrieved September 21, 2016, https://www.r-project.org .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Anticancer effects of non-thermal plasma on HCT116 cells. (A) Schematic diagram of non-thermal plasma treatment. (B) The microscopic images of HCT116 cells at 24 h after plasma exposure. Scale bar = 100 μm. (C) MTT assay was performed using cells at 24 h after specific treatment. The data are presented as the mean ± SEM. *** denotes p < 0.001 compared to the unexposed cells.
Fig. 2
Fig. 2 Induction of ROS generation in non-thermal plasma-treated HCT116 cells. For measurement of intracellular and mitochondrial ROS levels, the plasma-treated cells were incubated with 0.5 μM of H2DCF-DA (A) and 1 μM of MitoSox (B) and examined under a fluorescence microscope. Scale bar = 20 μm.
Fig. 3
Fig. 3 Non-thermal plasma promotes DNA damage in the HCT116 cells. (A) Red represents stained γ-H2AX foci and blue represents stained nuclei in the plasma-treated HCT116 cells. Scale bar = 20 μm. (B) The inset of (A) was magnified under confocal microscope. Scale bar = 10 μm.
Fig. 4
Fig. 4 Non-thermal plasma induces apoptotic cell death mediated by p53 activation. (A) Immunoblotting was performed using the total cell extract from HCT116 cells at 24 h after plasma exposure as indicated with antibodies against Bax, Bcl2, and α-tubulin. (B) Expression of p53 protein in these cells was examined by western blotting and α-tubulin protein served as a loading control.
Fig. 5
Fig. 5 (A) Raman spectra for the control cells and cells treated with plasma for 15 min. The thick lines show the average Raman spectra and the shaded areas represent standard deviations. (B) Relative intensities of the Raman bands of the control cells and the cells treated with plasma for 15 min. The data are presented as the mean ± SEM. Differences with p-values < 0.05 were considered statistically significant.

Tables (2)

Tables Icon

Table 1 Assignments for the Raman peak positions of the control cells and the cells treated with plasma for 15 min.

Tables Icon

Table 2 Classification results for Raman prediction of the two groups using a principal component analysis-linear discriminant analysis (PCA-LDA) algorithm, where 80% and 20% of the total data set were used for the training and test groups, respectively. The spectra were analyzed by linear discriminant analysis (LDA) using the first eight principal components.

Metrics