Abstract

It has been suggested that accommodation induces increases in axial eye length which could contribute to the development of myopia. However, it is debated whether changes in eye length occur during accommodation as the degree of change varies widely across literature. In this study, an extended-depth optical coherence tomography (OCT) system that provides dynamic whole eye biometry was utilized to assess changes in lens thickness (LT) and axial eye length (AEL) in young subjects responding to step disaccommodation stimuli of amplitude 2D, 4D, and 6D. The decrease in lens thickness with disaccommodation was strongly correlated with stimulus amplitude. No statistically significant changes in AEL during accommodation were observed.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging

Marco Ruggeri, Carolina de Freitas, Siobhan Williams, Victor M. Hernandez, Florence Cabot, Nilufer Yesilirmak, Karam Alawa, Yu-Cherng Chang, Sonia H. Yoo, Giovanni Gregori, Jean-Marie Parel, and Fabrice Manns
Biomed. Opt. Express 7(4) 1351-1364 (2016)

Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch

Marco Ruggeri, Stephen R. Uhlhorn, Carolina De Freitas, Arthur Ho, Fabrice Manns, and Jean-Marie Parel
Biomed. Opt. Express 3(7) 1506-1520 (2012)

High-speed OCT-based ocular biometer combined with an air-puff system for determination of induced retraction-free eye dynamics

Alfonso Jiménez-villar, Ewa Mączyńska, Artur Cichański, Maciej Wojtkowski, Bartłomiej J. Kałużny, and Ireneusz Grulkowski
Biomed. Opt. Express 10(7) 3663-3680 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Saw, W. H. Chua, C. Y. Hong, H. M. Wu, W. Y. Chan, K. S. Chia, R. A. Stone, and D. Tan, “Nearwork in early-onset myopia,” Invest. Ophthalmol. Vis. Sci. 43(2), 332–339 (2002).
    [PubMed]
  2. A. N. French, I. G. Morgan, P. Mitchell, and K. A. Rose, “Risk factors for incident myopia in Australian schoolchildren: the Sydney adolescent vascular and eye study,” Ophthalmology 120(10), 2100–2108 (2013).
    [Crossref] [PubMed]
  3. J. E. Gwiazda, L. Hyman, T. T. Norton, M. E. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, D. Everett, and COMET Grouup, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Vis. Sci. 45(7), 2143–2151 (2004).
    [Crossref] [PubMed]
  4. M. L. Abbott, K. L. Schmid, and N. C. Strang, “Differences in the accommodation stimulus response curves of adult myopes and emmetropes,” Ophthalmic Physiol. Opt. 18(1), 13–20 (1998).
    [Crossref] [PubMed]
  5. P. M. Allen and D. J. O’Leary, “Accommodation functions: co-dependency and relationship to refractive error,” Vision Res. 46(4), 491–505 (2006).
    [Crossref] [PubMed]
  6. S. A. Read, M. J. Collins, E. C. Woodman, and S. H. Cheong, “Axial length changes during accommodation in myopes and emmetropes,” Optom. Vis. Sci. 87(9), 656–662 (2010).
    [Crossref] [PubMed]
  7. W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci. 39(11), 2140–2147 (1998).
    [PubMed]
  8. E. A. Mallen, P. Kashyap, and K. M. Hampson, “Transient axial length change during the accommodation response in young adults,” Invest. Ophthalmol. Vis. Sci. 47(3), 1251–1254 (2006).
    [Crossref] [PubMed]
  9. J. Zhong, A. Tao, Z. Xu, H. Jiang, Y. Shao, H. Zhang, C. Liu, and J. Wang, “Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157(5), 1064–1069 (2014).
    [Crossref] [PubMed]
  10. S. Fan, L. Li, Q. Li, C. Dai, Q. Ren, S. Jiao, and C. Zhou, “Dual band dual focus optical coherence tomography for imaging the whole eye segment,” Biomed. Opt. Express 6(7), 2481–2493 (2015).
    [Crossref] [PubMed]
  11. D. A. Atchison and G. Smith, “Possible errors in determining axial length changes during accommodation with the IOLMaster,” Optom. Vis. Sci. 81(4), 283–286 (2004).
    [Crossref] [PubMed]
  12. M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
    [Crossref] [PubMed]
  13. M. Ruggeri, C. de Freitas, S. Williams, V. M. Hernandez, F. Cabot, N. Yesilirmak, K. Alawa, Y.-C. Chang, S. H. Yoo, G. Gregori, J.-M. Parel, and F. Manns, “Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging,” Biomed. Opt. Express 7(4), 1351–1364 (2016).
    [Crossref] [PubMed]
  14. D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
    [Crossref] [PubMed]
  15. W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, and A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66(1), 25–33 (1998).
    [Crossref] [PubMed]
  16. S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
    [Crossref] [PubMed]
  17. M. Faria-Ribeiro, D. Lopes-Ferreira, N. López-Gil, J. Jorge, and J. M. González-Méijome, “Errors associated with IOLMaster biometry as a function of internal ocular dimensions,” J. Optom. 7(2), 75–78 (2014).
    [Crossref] [PubMed]
  18. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
    [Crossref] [PubMed]
  19. J. T. Enright, “Ocular translation and cyclotorsion due to changes in fixation distance,” Vision Res. 20(7), 595–601 (1980).
    [Crossref] [PubMed]
  20. C. K. Hitzenberger, “Optical measurement of the axial eye length by laser Doppler interferometry,” Invest. Ophthalmol. Vis. Sci. 32(3), 616–624 (1991).
    [PubMed]
  21. J. Santodomingo-Rubido, E. A. Mallen, B. Gilmartin, and J. S. Wolffsohn, “A new non-contact optical device for ocular biometry,” Br. J. Ophthalmol. 86(4), 458–462 (2002).
    [Crossref] [PubMed]
  22. A. K. Lam, R. Chan, and P. C. Pang, “The repeatability and accuracy of axial length and anterior chamber depth measurements from the IOLMaster,” Ophthalmic Physiol. Opt. 21(6), 477–483 (2001).
    [Crossref] [PubMed]
  23. K. Rohrer, B. E. Frueh, R. Wälti, I. A. Clemetson, C. Tappeiner, and D. Goldblum, “Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer,” Ophthalmology 116(11), 2087–2092 (2009).
    [Crossref] [PubMed]
  24. L. P. Cruysberg, M. Doors, F. Verbakel, T. T. Berendschot, J. De Brabander, and R. M. Nuijts, “Evaluation of the Lenstar LS 900 non-contact biometer,” Br. J. Ophthalmol. 94(1), 106–110 (2010).
    [Crossref] [PubMed]
  25. M. P. Holzer, M. Mamusa, and G. U. Auffarth, “Accuracy of a new partial coherence interferometry analyser for biometric measurements,” Br. J. Ophthalmol. 93(6), 807–810 (2009).
    [Crossref] [PubMed]
  26. P. J. Buckhurst, J. S. Wolffsohn, S. Shah, S. A. Naroo, L. N. Davies, and E. J. Berrow, “A new optical low coherence reflectometry device for ocular biometry in cataract patients,” Br. J. Ophthalmol. 93(7), 949–953 (2009).
    [Crossref] [PubMed]
  27. J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, H. Zhang, and J. Wang, “Axial biometry of the entire eye using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157, 412–420 (2014).

2016 (1)

2015 (1)

2014 (3)

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, H. Zhang, and J. Wang, “Axial biometry of the entire eye using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157, 412–420 (2014).

J. Zhong, A. Tao, Z. Xu, H. Jiang, Y. Shao, H. Zhang, C. Liu, and J. Wang, “Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157(5), 1064–1069 (2014).
[Crossref] [PubMed]

M. Faria-Ribeiro, D. Lopes-Ferreira, N. López-Gil, J. Jorge, and J. M. González-Méijome, “Errors associated with IOLMaster biometry as a function of internal ocular dimensions,” J. Optom. 7(2), 75–78 (2014).
[Crossref] [PubMed]

2013 (1)

A. N. French, I. G. Morgan, P. Mitchell, and K. A. Rose, “Risk factors for incident myopia in Australian schoolchildren: the Sydney adolescent vascular and eye study,” Ophthalmology 120(10), 2100–2108 (2013).
[Crossref] [PubMed]

2012 (1)

2010 (2)

L. P. Cruysberg, M. Doors, F. Verbakel, T. T. Berendschot, J. De Brabander, and R. M. Nuijts, “Evaluation of the Lenstar LS 900 non-contact biometer,” Br. J. Ophthalmol. 94(1), 106–110 (2010).
[Crossref] [PubMed]

S. A. Read, M. J. Collins, E. C. Woodman, and S. H. Cheong, “Axial length changes during accommodation in myopes and emmetropes,” Optom. Vis. Sci. 87(9), 656–662 (2010).
[Crossref] [PubMed]

2009 (3)

K. Rohrer, B. E. Frueh, R. Wälti, I. A. Clemetson, C. Tappeiner, and D. Goldblum, “Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer,” Ophthalmology 116(11), 2087–2092 (2009).
[Crossref] [PubMed]

M. P. Holzer, M. Mamusa, and G. U. Auffarth, “Accuracy of a new partial coherence interferometry analyser for biometric measurements,” Br. J. Ophthalmol. 93(6), 807–810 (2009).
[Crossref] [PubMed]

P. J. Buckhurst, J. S. Wolffsohn, S. Shah, S. A. Naroo, L. N. Davies, and E. J. Berrow, “A new optical low coherence reflectometry device for ocular biometry in cataract patients,” Br. J. Ophthalmol. 93(7), 949–953 (2009).
[Crossref] [PubMed]

2008 (2)

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

2006 (2)

E. A. Mallen, P. Kashyap, and K. M. Hampson, “Transient axial length change during the accommodation response in young adults,” Invest. Ophthalmol. Vis. Sci. 47(3), 1251–1254 (2006).
[Crossref] [PubMed]

P. M. Allen and D. J. O’Leary, “Accommodation functions: co-dependency and relationship to refractive error,” Vision Res. 46(4), 491–505 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (2)

D. A. Atchison and G. Smith, “Possible errors in determining axial length changes during accommodation with the IOLMaster,” Optom. Vis. Sci. 81(4), 283–286 (2004).
[Crossref] [PubMed]

J. E. Gwiazda, L. Hyman, T. T. Norton, M. E. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, D. Everett, and COMET Grouup, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Vis. Sci. 45(7), 2143–2151 (2004).
[Crossref] [PubMed]

2002 (2)

S. M. Saw, W. H. Chua, C. Y. Hong, H. M. Wu, W. Y. Chan, K. S. Chia, R. A. Stone, and D. Tan, “Nearwork in early-onset myopia,” Invest. Ophthalmol. Vis. Sci. 43(2), 332–339 (2002).
[PubMed]

J. Santodomingo-Rubido, E. A. Mallen, B. Gilmartin, and J. S. Wolffsohn, “A new non-contact optical device for ocular biometry,” Br. J. Ophthalmol. 86(4), 458–462 (2002).
[Crossref] [PubMed]

2001 (1)

A. K. Lam, R. Chan, and P. C. Pang, “The repeatability and accuracy of axial length and anterior chamber depth measurements from the IOLMaster,” Ophthalmic Physiol. Opt. 21(6), 477–483 (2001).
[Crossref] [PubMed]

1998 (3)

M. L. Abbott, K. L. Schmid, and N. C. Strang, “Differences in the accommodation stimulus response curves of adult myopes and emmetropes,” Ophthalmic Physiol. Opt. 18(1), 13–20 (1998).
[Crossref] [PubMed]

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci. 39(11), 2140–2147 (1998).
[PubMed]

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, and A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66(1), 25–33 (1998).
[Crossref] [PubMed]

1991 (1)

C. K. Hitzenberger, “Optical measurement of the axial eye length by laser Doppler interferometry,” Invest. Ophthalmol. Vis. Sci. 32(3), 616–624 (1991).
[PubMed]

1980 (1)

J. T. Enright, “Ocular translation and cyclotorsion due to changes in fixation distance,” Vision Res. 20(7), 595–601 (1980).
[Crossref] [PubMed]

Abbott, M. L.

M. L. Abbott, K. L. Schmid, and N. C. Strang, “Differences in the accommodation stimulus response curves of adult myopes and emmetropes,” Ophthalmic Physiol. Opt. 18(1), 13–20 (1998).
[Crossref] [PubMed]

Alawa, K.

Allen, P. M.

P. M. Allen and D. J. O’Leary, “Accommodation functions: co-dependency and relationship to refractive error,” Vision Res. 46(4), 491–505 (2006).
[Crossref] [PubMed]

Atchison, D. A.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
[Crossref] [PubMed]

D. A. Atchison and G. Smith, “Possible errors in determining axial length changes during accommodation with the IOLMaster,” Optom. Vis. Sci. 81(4), 283–286 (2004).
[Crossref] [PubMed]

Auffarth, G. U.

M. P. Holzer, M. Mamusa, and G. U. Auffarth, “Accuracy of a new partial coherence interferometry analyser for biometric measurements,” Br. J. Ophthalmol. 93(6), 807–810 (2009).
[Crossref] [PubMed]

Baumgartner, A.

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, and A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66(1), 25–33 (1998).
[Crossref] [PubMed]

Berendschot, T. T.

L. P. Cruysberg, M. Doors, F. Verbakel, T. T. Berendschot, J. De Brabander, and R. M. Nuijts, “Evaluation of the Lenstar LS 900 non-contact biometer,” Br. J. Ophthalmol. 94(1), 106–110 (2010).
[Crossref] [PubMed]

Berrow, E. J.

P. J. Buckhurst, J. S. Wolffsohn, S. Shah, S. A. Naroo, L. N. Davies, and E. J. Berrow, “A new optical low coherence reflectometry device for ocular biometry in cataract patients,” Br. J. Ophthalmol. 93(7), 949–953 (2009).
[Crossref] [PubMed]

Borja, D.

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

Buckhurst, P. J.

P. J. Buckhurst, J. S. Wolffsohn, S. Shah, S. A. Naroo, L. N. Davies, and E. J. Berrow, “A new optical low coherence reflectometry device for ocular biometry in cataract patients,” Br. J. Ophthalmol. 93(7), 949–953 (2009).
[Crossref] [PubMed]

Cabot, F.

Chan, R.

A. K. Lam, R. Chan, and P. C. Pang, “The repeatability and accuracy of axial length and anterior chamber depth measurements from the IOLMaster,” Ophthalmic Physiol. Opt. 21(6), 477–483 (2001).
[Crossref] [PubMed]

Chan, W. Y.

S. M. Saw, W. H. Chua, C. Y. Hong, H. M. Wu, W. Y. Chan, K. S. Chia, R. A. Stone, and D. Tan, “Nearwork in early-onset myopia,” Invest. Ophthalmol. Vis. Sci. 43(2), 332–339 (2002).
[PubMed]

Chang, Y.-C.

Cheong, S. H.

S. A. Read, M. J. Collins, E. C. Woodman, and S. H. Cheong, “Axial length changes during accommodation in myopes and emmetropes,” Optom. Vis. Sci. 87(9), 656–662 (2010).
[Crossref] [PubMed]

Chia, K. S.

S. M. Saw, W. H. Chua, C. Y. Hong, H. M. Wu, W. Y. Chan, K. S. Chia, R. A. Stone, and D. Tan, “Nearwork in early-onset myopia,” Invest. Ophthalmol. Vis. Sci. 43(2), 332–339 (2002).
[PubMed]

Chua, W. H.

S. M. Saw, W. H. Chua, C. Y. Hong, H. M. Wu, W. Y. Chan, K. S. Chia, R. A. Stone, and D. Tan, “Nearwork in early-onset myopia,” Invest. Ophthalmol. Vis. Sci. 43(2), 332–339 (2002).
[PubMed]

Clemetson, I. A.

K. Rohrer, B. E. Frueh, R. Wälti, I. A. Clemetson, C. Tappeiner, and D. Goldblum, “Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer,” Ophthalmology 116(11), 2087–2092 (2009).
[Crossref] [PubMed]

Collins, M. J.

S. A. Read, M. J. Collins, E. C. Woodman, and S. H. Cheong, “Axial length changes during accommodation in myopes and emmetropes,” Optom. Vis. Sci. 87(9), 656–662 (2010).
[Crossref] [PubMed]

Cruysberg, L. P.

L. P. Cruysberg, M. Doors, F. Verbakel, T. T. Berendschot, J. De Brabander, and R. M. Nuijts, “Evaluation of the Lenstar LS 900 non-contact biometer,” Br. J. Ophthalmol. 94(1), 106–110 (2010).
[Crossref] [PubMed]

Dai, C.

Davies, L. N.

P. J. Buckhurst, J. S. Wolffsohn, S. Shah, S. A. Naroo, L. N. Davies, and E. J. Berrow, “A new optical low coherence reflectometry device for ocular biometry in cataract patients,” Br. J. Ophthalmol. 93(7), 949–953 (2009).
[Crossref] [PubMed]

De Brabander, J.

L. P. Cruysberg, M. Doors, F. Verbakel, T. T. Berendschot, J. De Brabander, and R. M. Nuijts, “Evaluation of the Lenstar LS 900 non-contact biometer,” Br. J. Ophthalmol. 94(1), 106–110 (2010).
[Crossref] [PubMed]

de Freitas, C.

Doors, M.

L. P. Cruysberg, M. Doors, F. Verbakel, T. T. Berendschot, J. De Brabander, and R. M. Nuijts, “Evaluation of the Lenstar LS 900 non-contact biometer,” Br. J. Ophthalmol. 94(1), 106–110 (2010).
[Crossref] [PubMed]

Drexler, W.

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci. 39(11), 2140–2147 (1998).
[PubMed]

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, and A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66(1), 25–33 (1998).
[Crossref] [PubMed]

Enright, J. T.

J. T. Enright, “Ocular translation and cyclotorsion due to changes in fixation distance,” Vision Res. 20(7), 595–601 (1980).
[Crossref] [PubMed]

Everett, D.

J. E. Gwiazda, L. Hyman, T. T. Norton, M. E. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, D. Everett, and COMET Grouup, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Vis. Sci. 45(7), 2143–2151 (2004).
[Crossref] [PubMed]

Fan, S.

Faria-Ribeiro, M.

M. Faria-Ribeiro, D. Lopes-Ferreira, N. López-Gil, J. Jorge, and J. M. González-Méijome, “Errors associated with IOLMaster biometry as a function of internal ocular dimensions,” J. Optom. 7(2), 75–78 (2014).
[Crossref] [PubMed]

Fercher, A. F.

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, and A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66(1), 25–33 (1998).
[Crossref] [PubMed]

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci. 39(11), 2140–2147 (1998).
[PubMed]

Findl, O.

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci. 39(11), 2140–2147 (1998).
[PubMed]

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, and A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66(1), 25–33 (1998).
[Crossref] [PubMed]

French, A. N.

A. N. French, I. G. Morgan, P. Mitchell, and K. A. Rose, “Risk factors for incident myopia in Australian schoolchildren: the Sydney adolescent vascular and eye study,” Ophthalmology 120(10), 2100–2108 (2013).
[Crossref] [PubMed]

Frueh, B. E.

K. Rohrer, B. E. Frueh, R. Wälti, I. A. Clemetson, C. Tappeiner, and D. Goldblum, “Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer,” Ophthalmology 116(11), 2087–2092 (2009).
[Crossref] [PubMed]

Gilmartin, B.

J. Santodomingo-Rubido, E. A. Mallen, B. Gilmartin, and J. S. Wolffsohn, “A new non-contact optical device for ocular biometry,” Br. J. Ophthalmol. 86(4), 458–462 (2002).
[Crossref] [PubMed]

Goldblum, D.

K. Rohrer, B. E. Frueh, R. Wälti, I. A. Clemetson, C. Tappeiner, and D. Goldblum, “Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer,” Ophthalmology 116(11), 2087–2092 (2009).
[Crossref] [PubMed]

González-Méijome, J. M.

M. Faria-Ribeiro, D. Lopes-Ferreira, N. López-Gil, J. Jorge, and J. M. González-Méijome, “Errors associated with IOLMaster biometry as a function of internal ocular dimensions,” J. Optom. 7(2), 75–78 (2014).
[Crossref] [PubMed]

Gregori, G.

Gwiazda, J. E.

J. E. Gwiazda, L. Hyman, T. T. Norton, M. E. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, D. Everett, and COMET Grouup, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Vis. Sci. 45(7), 2143–2151 (2004).
[Crossref] [PubMed]

Hampson, K. M.

E. A. Mallen, P. Kashyap, and K. M. Hampson, “Transient axial length change during the accommodation response in young adults,” Invest. Ophthalmol. Vis. Sci. 47(3), 1251–1254 (2006).
[Crossref] [PubMed]

Hernandez, V. M.

Hitzenberger, C. K.

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, and A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66(1), 25–33 (1998).
[Crossref] [PubMed]

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci. 39(11), 2140–2147 (1998).
[PubMed]

C. K. Hitzenberger, “Optical measurement of the axial eye length by laser Doppler interferometry,” Invest. Ophthalmol. Vis. Sci. 32(3), 616–624 (1991).
[PubMed]

Ho, A.

Holzer, M. P.

M. P. Holzer, M. Mamusa, and G. U. Auffarth, “Accuracy of a new partial coherence interferometry analyser for biometric measurements,” Br. J. Ophthalmol. 93(6), 807–810 (2009).
[Crossref] [PubMed]

Hong, C. Y.

S. M. Saw, W. H. Chua, C. Y. Hong, H. M. Wu, W. Y. Chan, K. S. Chia, R. A. Stone, and D. Tan, “Nearwork in early-onset myopia,” Invest. Ophthalmol. Vis. Sci. 43(2), 332–339 (2002).
[PubMed]

Hussein, M. E.

J. E. Gwiazda, L. Hyman, T. T. Norton, M. E. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, D. Everett, and COMET Grouup, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Vis. Sci. 45(7), 2143–2151 (2004).
[Crossref] [PubMed]

Hyman, L.

J. E. Gwiazda, L. Hyman, T. T. Norton, M. E. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, D. Everett, and COMET Grouup, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Vis. Sci. 45(7), 2143–2151 (2004).
[Crossref] [PubMed]

Jiang, H.

J. Zhong, A. Tao, Z. Xu, H. Jiang, Y. Shao, H. Zhang, C. Liu, and J. Wang, “Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157(5), 1064–1069 (2014).
[Crossref] [PubMed]

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, H. Zhang, and J. Wang, “Axial biometry of the entire eye using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157, 412–420 (2014).

Jiao, S.

Jorge, J.

M. Faria-Ribeiro, D. Lopes-Ferreira, N. López-Gil, J. Jorge, and J. M. González-Méijome, “Errors associated with IOLMaster biometry as a function of internal ocular dimensions,” J. Optom. 7(2), 75–78 (2014).
[Crossref] [PubMed]

Kashyap, P.

E. A. Mallen, P. Kashyap, and K. M. Hampson, “Transient axial length change during the accommodation response in young adults,” Invest. Ophthalmol. Vis. Sci. 47(3), 1251–1254 (2006).
[Crossref] [PubMed]

Kasthurirangan, S.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

Lam, A. K.

A. K. Lam, R. Chan, and P. C. Pang, “The repeatability and accuracy of axial length and anterior chamber depth measurements from the IOLMaster,” Ophthalmic Physiol. Opt. 21(6), 477–483 (2001).
[Crossref] [PubMed]

Li, L.

Li, Q.

Liu, C.

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, H. Zhang, and J. Wang, “Axial biometry of the entire eye using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157, 412–420 (2014).

J. Zhong, A. Tao, Z. Xu, H. Jiang, Y. Shao, H. Zhang, C. Liu, and J. Wang, “Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157(5), 1064–1069 (2014).
[Crossref] [PubMed]

Lopes-Ferreira, D.

M. Faria-Ribeiro, D. Lopes-Ferreira, N. López-Gil, J. Jorge, and J. M. González-Méijome, “Errors associated with IOLMaster biometry as a function of internal ocular dimensions,” J. Optom. 7(2), 75–78 (2014).
[Crossref] [PubMed]

López-Gil, N.

M. Faria-Ribeiro, D. Lopes-Ferreira, N. López-Gil, J. Jorge, and J. M. González-Méijome, “Errors associated with IOLMaster biometry as a function of internal ocular dimensions,” J. Optom. 7(2), 75–78 (2014).
[Crossref] [PubMed]

Mallen, E. A.

E. A. Mallen, P. Kashyap, and K. M. Hampson, “Transient axial length change during the accommodation response in young adults,” Invest. Ophthalmol. Vis. Sci. 47(3), 1251–1254 (2006).
[Crossref] [PubMed]

J. Santodomingo-Rubido, E. A. Mallen, B. Gilmartin, and J. S. Wolffsohn, “A new non-contact optical device for ocular biometry,” Br. J. Ophthalmol. 86(4), 458–462 (2002).
[Crossref] [PubMed]

Mamusa, M.

M. P. Holzer, M. Mamusa, and G. U. Auffarth, “Accuracy of a new partial coherence interferometry analyser for biometric measurements,” Br. J. Ophthalmol. 93(6), 807–810 (2009).
[Crossref] [PubMed]

Manns, F.

Manny, R.

J. E. Gwiazda, L. Hyman, T. T. Norton, M. E. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, D. Everett, and COMET Grouup, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Vis. Sci. 45(7), 2143–2151 (2004).
[Crossref] [PubMed]

Markwell, E. L.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

Marsh-Tootle, W.

J. E. Gwiazda, L. Hyman, T. T. Norton, M. E. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, D. Everett, and COMET Grouup, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Vis. Sci. 45(7), 2143–2151 (2004).
[Crossref] [PubMed]

Mitchell, P.

A. N. French, I. G. Morgan, P. Mitchell, and K. A. Rose, “Risk factors for incident myopia in Australian schoolchildren: the Sydney adolescent vascular and eye study,” Ophthalmology 120(10), 2100–2108 (2013).
[Crossref] [PubMed]

Morgan, I. G.

A. N. French, I. G. Morgan, P. Mitchell, and K. A. Rose, “Risk factors for incident myopia in Australian schoolchildren: the Sydney adolescent vascular and eye study,” Ophthalmology 120(10), 2100–2108 (2013).
[Crossref] [PubMed]

Naroo, S. A.

P. J. Buckhurst, J. S. Wolffsohn, S. Shah, S. A. Naroo, L. N. Davies, and E. J. Berrow, “A new optical low coherence reflectometry device for ocular biometry in cataract patients,” Br. J. Ophthalmol. 93(7), 949–953 (2009).
[Crossref] [PubMed]

Norton, T. T.

J. E. Gwiazda, L. Hyman, T. T. Norton, M. E. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, D. Everett, and COMET Grouup, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Vis. Sci. 45(7), 2143–2151 (2004).
[Crossref] [PubMed]

Nuijts, R. M.

L. P. Cruysberg, M. Doors, F. Verbakel, T. T. Berendschot, J. De Brabander, and R. M. Nuijts, “Evaluation of the Lenstar LS 900 non-contact biometer,” Br. J. Ophthalmol. 94(1), 106–110 (2010).
[Crossref] [PubMed]

O’Leary, D. J.

P. M. Allen and D. J. O’Leary, “Accommodation functions: co-dependency and relationship to refractive error,” Vision Res. 46(4), 491–505 (2006).
[Crossref] [PubMed]

Pang, P. C.

A. K. Lam, R. Chan, and P. C. Pang, “The repeatability and accuracy of axial length and anterior chamber depth measurements from the IOLMaster,” Ophthalmic Physiol. Opt. 21(6), 477–483 (2001).
[Crossref] [PubMed]

Parel, J. M.

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

Parel, J.-M.

Pope, J. M.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

Read, S. A.

S. A. Read, M. J. Collins, E. C. Woodman, and S. H. Cheong, “Axial length changes during accommodation in myopes and emmetropes,” Optom. Vis. Sci. 87(9), 656–662 (2010).
[Crossref] [PubMed]

Ren, Q.

Rohrer, K.

K. Rohrer, B. E. Frueh, R. Wälti, I. A. Clemetson, C. Tappeiner, and D. Goldblum, “Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer,” Ophthalmology 116(11), 2087–2092 (2009).
[Crossref] [PubMed]

Rose, K. A.

A. N. French, I. G. Morgan, P. Mitchell, and K. A. Rose, “Risk factors for incident myopia in Australian schoolchildren: the Sydney adolescent vascular and eye study,” Ophthalmology 120(10), 2100–2108 (2013).
[Crossref] [PubMed]

Ruggeri, M.

Santodomingo-Rubido, J.

J. Santodomingo-Rubido, E. A. Mallen, B. Gilmartin, and J. S. Wolffsohn, “A new non-contact optical device for ocular biometry,” Br. J. Ophthalmol. 86(4), 458–462 (2002).
[Crossref] [PubMed]

Sattmann, H.

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, and A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66(1), 25–33 (1998).
[Crossref] [PubMed]

Saw, S. M.

S. M. Saw, W. H. Chua, C. Y. Hong, H. M. Wu, W. Y. Chan, K. S. Chia, R. A. Stone, and D. Tan, “Nearwork in early-onset myopia,” Invest. Ophthalmol. Vis. Sci. 43(2), 332–339 (2002).
[PubMed]

Schmetterer, L.

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci. 39(11), 2140–2147 (1998).
[PubMed]

Schmid, K. L.

M. L. Abbott, K. L. Schmid, and N. C. Strang, “Differences in the accommodation stimulus response curves of adult myopes and emmetropes,” Ophthalmic Physiol. Opt. 18(1), 13–20 (1998).
[Crossref] [PubMed]

Shah, S.

P. J. Buckhurst, J. S. Wolffsohn, S. Shah, S. A. Naroo, L. N. Davies, and E. J. Berrow, “A new optical low coherence reflectometry device for ocular biometry in cataract patients,” Br. J. Ophthalmol. 93(7), 949–953 (2009).
[Crossref] [PubMed]

Shao, Y.

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, H. Zhang, and J. Wang, “Axial biometry of the entire eye using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157, 412–420 (2014).

J. Zhong, A. Tao, Z. Xu, H. Jiang, Y. Shao, H. Zhang, C. Liu, and J. Wang, “Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157(5), 1064–1069 (2014).
[Crossref] [PubMed]

Smith, G.

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
[Crossref] [PubMed]

D. A. Atchison and G. Smith, “Possible errors in determining axial length changes during accommodation with the IOLMaster,” Optom. Vis. Sci. 81(4), 283–286 (2004).
[Crossref] [PubMed]

Stone, R. A.

S. M. Saw, W. H. Chua, C. Y. Hong, H. M. Wu, W. Y. Chan, K. S. Chia, R. A. Stone, and D. Tan, “Nearwork in early-onset myopia,” Invest. Ophthalmol. Vis. Sci. 43(2), 332–339 (2002).
[PubMed]

Strang, N. C.

M. L. Abbott, K. L. Schmid, and N. C. Strang, “Differences in the accommodation stimulus response curves of adult myopes and emmetropes,” Ophthalmic Physiol. Opt. 18(1), 13–20 (1998).
[Crossref] [PubMed]

Tan, D.

S. M. Saw, W. H. Chua, C. Y. Hong, H. M. Wu, W. Y. Chan, K. S. Chia, R. A. Stone, and D. Tan, “Nearwork in early-onset myopia,” Invest. Ophthalmol. Vis. Sci. 43(2), 332–339 (2002).
[PubMed]

Tao, A.

J. Zhong, A. Tao, Z. Xu, H. Jiang, Y. Shao, H. Zhang, C. Liu, and J. Wang, “Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157(5), 1064–1069 (2014).
[Crossref] [PubMed]

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, H. Zhang, and J. Wang, “Axial biometry of the entire eye using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157, 412–420 (2014).

Tappeiner, C.

K. Rohrer, B. E. Frueh, R. Wälti, I. A. Clemetson, C. Tappeiner, and D. Goldblum, “Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer,” Ophthalmology 116(11), 2087–2092 (2009).
[Crossref] [PubMed]

Uhlhorn, S. R.

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

Verbakel, F.

L. P. Cruysberg, M. Doors, F. Verbakel, T. T. Berendschot, J. De Brabander, and R. M. Nuijts, “Evaluation of the Lenstar LS 900 non-contact biometer,” Br. J. Ophthalmol. 94(1), 106–110 (2010).
[Crossref] [PubMed]

Wälti, R.

K. Rohrer, B. E. Frueh, R. Wälti, I. A. Clemetson, C. Tappeiner, and D. Goldblum, “Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer,” Ophthalmology 116(11), 2087–2092 (2009).
[Crossref] [PubMed]

Wang, J.

J. Zhong, A. Tao, Z. Xu, H. Jiang, Y. Shao, H. Zhang, C. Liu, and J. Wang, “Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157(5), 1064–1069 (2014).
[Crossref] [PubMed]

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, H. Zhang, and J. Wang, “Axial biometry of the entire eye using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157, 412–420 (2014).

Wang, Y.

J. E. Gwiazda, L. Hyman, T. T. Norton, M. E. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, D. Everett, and COMET Grouup, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Vis. Sci. 45(7), 2143–2151 (2004).
[Crossref] [PubMed]

Williams, S.

Wolffsohn, J. S.

P. J. Buckhurst, J. S. Wolffsohn, S. Shah, S. A. Naroo, L. N. Davies, and E. J. Berrow, “A new optical low coherence reflectometry device for ocular biometry in cataract patients,” Br. J. Ophthalmol. 93(7), 949–953 (2009).
[Crossref] [PubMed]

J. Santodomingo-Rubido, E. A. Mallen, B. Gilmartin, and J. S. Wolffsohn, “A new non-contact optical device for ocular biometry,” Br. J. Ophthalmol. 86(4), 458–462 (2002).
[Crossref] [PubMed]

Woodman, E. C.

S. A. Read, M. J. Collins, E. C. Woodman, and S. H. Cheong, “Axial length changes during accommodation in myopes and emmetropes,” Optom. Vis. Sci. 87(9), 656–662 (2010).
[Crossref] [PubMed]

Wu, H. M.

S. M. Saw, W. H. Chua, C. Y. Hong, H. M. Wu, W. Y. Chan, K. S. Chia, R. A. Stone, and D. Tan, “Nearwork in early-onset myopia,” Invest. Ophthalmol. Vis. Sci. 43(2), 332–339 (2002).
[PubMed]

Xu, Z.

J. Zhong, A. Tao, Z. Xu, H. Jiang, Y. Shao, H. Zhang, C. Liu, and J. Wang, “Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157(5), 1064–1069 (2014).
[Crossref] [PubMed]

Yesilirmak, N.

Yoo, S. H.

Zhang, H.

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, H. Zhang, and J. Wang, “Axial biometry of the entire eye using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157, 412–420 (2014).

J. Zhong, A. Tao, Z. Xu, H. Jiang, Y. Shao, H. Zhang, C. Liu, and J. Wang, “Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157(5), 1064–1069 (2014).
[Crossref] [PubMed]

Zhong, J.

J. Zhong, A. Tao, Z. Xu, H. Jiang, Y. Shao, H. Zhang, C. Liu, and J. Wang, “Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157(5), 1064–1069 (2014).
[Crossref] [PubMed]

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, H. Zhang, and J. Wang, “Axial biometry of the entire eye using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157, 412–420 (2014).

Zhou, C.

Am. J. Ophthalmol. (2)

J. Zhong, A. Tao, Z. Xu, H. Jiang, Y. Shao, H. Zhang, C. Liu, and J. Wang, “Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157(5), 1064–1069 (2014).
[Crossref] [PubMed]

J. Zhong, Y. Shao, A. Tao, H. Jiang, C. Liu, H. Zhang, and J. Wang, “Axial biometry of the entire eye using ultra-long scan depth optical coherence tomography,” Am. J. Ophthalmol. 157, 412–420 (2014).

Biomed. Opt. Express (3)

Br. J. Ophthalmol. (4)

J. Santodomingo-Rubido, E. A. Mallen, B. Gilmartin, and J. S. Wolffsohn, “A new non-contact optical device for ocular biometry,” Br. J. Ophthalmol. 86(4), 458–462 (2002).
[Crossref] [PubMed]

L. P. Cruysberg, M. Doors, F. Verbakel, T. T. Berendschot, J. De Brabander, and R. M. Nuijts, “Evaluation of the Lenstar LS 900 non-contact biometer,” Br. J. Ophthalmol. 94(1), 106–110 (2010).
[Crossref] [PubMed]

M. P. Holzer, M. Mamusa, and G. U. Auffarth, “Accuracy of a new partial coherence interferometry analyser for biometric measurements,” Br. J. Ophthalmol. 93(6), 807–810 (2009).
[Crossref] [PubMed]

P. J. Buckhurst, J. S. Wolffsohn, S. Shah, S. A. Naroo, L. N. Davies, and E. J. Berrow, “A new optical low coherence reflectometry device for ocular biometry in cataract patients,” Br. J. Ophthalmol. 93(7), 949–953 (2009).
[Crossref] [PubMed]

Exp. Eye Res. (1)

W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, and A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res. 66(1), 25–33 (1998).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (6)

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci. 39(11), 2140–2147 (1998).
[PubMed]

E. A. Mallen, P. Kashyap, and K. M. Hampson, “Transient axial length change during the accommodation response in young adults,” Invest. Ophthalmol. Vis. Sci. 47(3), 1251–1254 (2006).
[Crossref] [PubMed]

S. M. Saw, W. H. Chua, C. Y. Hong, H. M. Wu, W. Y. Chan, K. S. Chia, R. A. Stone, and D. Tan, “Nearwork in early-onset myopia,” Invest. Ophthalmol. Vis. Sci. 43(2), 332–339 (2002).
[PubMed]

J. E. Gwiazda, L. Hyman, T. T. Norton, M. E. Hussein, W. Marsh-Tootle, R. Manny, Y. Wang, D. Everett, and COMET Grouup, “Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children,” Invest. Ophthalmol. Vis. Sci. 45(7), 2143–2151 (2004).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Vis. Sci. 49(6), 2531–2540 (2008).
[Crossref] [PubMed]

C. K. Hitzenberger, “Optical measurement of the axial eye length by laser Doppler interferometry,” Invest. Ophthalmol. Vis. Sci. 32(3), 616–624 (1991).
[PubMed]

J. Opt. Soc. Am. A (1)

J. Optom. (1)

M. Faria-Ribeiro, D. Lopes-Ferreira, N. López-Gil, J. Jorge, and J. M. González-Méijome, “Errors associated with IOLMaster biometry as a function of internal ocular dimensions,” J. Optom. 7(2), 75–78 (2014).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (2)

A. K. Lam, R. Chan, and P. C. Pang, “The repeatability and accuracy of axial length and anterior chamber depth measurements from the IOLMaster,” Ophthalmic Physiol. Opt. 21(6), 477–483 (2001).
[Crossref] [PubMed]

M. L. Abbott, K. L. Schmid, and N. C. Strang, “Differences in the accommodation stimulus response curves of adult myopes and emmetropes,” Ophthalmic Physiol. Opt. 18(1), 13–20 (1998).
[Crossref] [PubMed]

Ophthalmology (2)

A. N. French, I. G. Morgan, P. Mitchell, and K. A. Rose, “Risk factors for incident myopia in Australian schoolchildren: the Sydney adolescent vascular and eye study,” Ophthalmology 120(10), 2100–2108 (2013).
[Crossref] [PubMed]

K. Rohrer, B. E. Frueh, R. Wälti, I. A. Clemetson, C. Tappeiner, and D. Goldblum, “Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer,” Ophthalmology 116(11), 2087–2092 (2009).
[Crossref] [PubMed]

Optom. Vis. Sci. (2)

S. A. Read, M. J. Collins, E. C. Woodman, and S. H. Cheong, “Axial length changes during accommodation in myopes and emmetropes,” Optom. Vis. Sci. 87(9), 656–662 (2010).
[Crossref] [PubMed]

D. A. Atchison and G. Smith, “Possible errors in determining axial length changes during accommodation with the IOLMaster,” Optom. Vis. Sci. 81(4), 283–286 (2004).
[Crossref] [PubMed]

Vision Res. (3)

J. T. Enright, “Ocular translation and cyclotorsion due to changes in fixation distance,” Vision Res. 20(7), 595–601 (1980).
[Crossref] [PubMed]

P. M. Allen and D. J. O’Leary, “Accommodation functions: co-dependency and relationship to refractive error,” Vision Res. 46(4), 491–505 (2006).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

Supplementary Material (2)

NameDescription
» Data File 1: CSV (2 KB)      LT and AEL changes from each trial at each accommodative level for each subject after removing trials with errant subject behavior, excessive noise in biometry, or issues in acquisition.
» Visualization 1: AVI (34719 KB)      Example video of a disaccommodative response to a 6 D stimulus by a 23 y.o. subject

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Example of measurements derived from SD-OCT images. The figure shows images of the eye and the corresponding intensity profile of the A-line at the corneal apex while accommodated in response to stimulus at 6 D (left) and while relaxed at 0 D (right). Boundaries of ocular structures were determined through automated segmentation and are indicated by points on the A-line of the corneal apex and on the intensity profile (AC = anterior cornea, PC = posterior cornea, AL = anterior lens, PL = posterior lens, RPE = retinal pigment epithelium). A video of an example response to a stimulus at 6 D from the same subject is shown in Visualization 1.
Fig. 2
Fig. 2 Sample disaccommodative responses from three different trials (indicated by square, circle, and asterisk points) of a subject responding to 2, 4, and 6 D step stimuli to distance (shown from top to bottom, respectively). Lens thickness is shown in plots on the left, whereas axial eye length is shown on the right. Stimulus presentation is indicated by the dotted line.
Fig. 3
Fig. 3 (Left) Lens thickness accommodative change (difference between accommodated and relaxed states) averaged over trials (if more than one trial was performed) for subjects from 2, 4, and 6 D to distance. Different symbols represent results from different subjects. LT change was significantly correlated with stimulus amplitude (p < 0.001). (Right) AEL accommodative change from the same subject in the same session as the recorded lens thickness changes. AEL change was not correlated with stimulus amplitude (p = 0.62). See Data File 1 for lens thickness and AEL accommodative change from individual trials for each subject.
Fig. 4
Fig. 4 Average and standard deviation of axial eye length change (change from baseline axial eye length at accommodation) over all subject trials at each timepoint. Individual plots shown from left to right represent responses at 2, 4 and 6 D stimulus conditions, respectively. The timing of stimulus presentation is indicated by a dotted red line.
Fig. 5
Fig. 5 AEL accommodative change (difference between accommodated and relaxed states) versus lens thickness accommodative change from responses for each subject at each stimulus level. A linear mixed model shows no significant relationship (p = 0.114, y = 0.0387 x - 4.7) between LT and AEL change.

Tables (3)

Tables Icon

Table 1 Accommodative change (difference between accommodated and relaxed states) in axial eye length in response to stimuli at 2, 4, and 6 D upon conversion of axial eye length from optical to geometric path length using an average refractive index of the eye and, alternatively, refractive indices of individual media. Mean and 95% confidence intervals are shown for both cases in each cell (RI = Refractive Index).

Tables Icon

Table 2 Table shows mean and standard deviation of LT accommodative change (difference between accommodated and relaxed states), mean and standard deviation of the standard deviation of LT in first 13 frames (when accommodated), and of the standard deviation of LT in last 13 frames (when unaccommodated) over 10 trials for two subjects at 2, 4, and 6 D.

Tables Icon

Table 3 Table shows mean and standard deviation of AEL accommodative change (difference between accommodated and relaxed states), mean and standard deviation of the standard deviation of AEL in first 13 frames (when accommodated), and of the standard deviation of AEL in last 13 frames (when unaccommodated) over 10 trials for two subjects at 2, 4, and 6 D.

Metrics