Abstract

Optical coherence tomography (OCT) is based on coherence detection of interferometric signals and hence inevitably suffers from speckle noise. To remove speckle noise in OCT images, wavelet domain thresholding has demonstrated significant advantages in suppressing noise magnitude while preserving image sharpness. However, speckle noise in OCT images has different characteristics in different spatial scales, which has not been considered in previous applications of wavelet domain thresholding. In this study, we demonstrate a noise adaptive wavelet thresholding (NAWT) algorithm that exploits the difference of noise characteristics in different wavelet sub-bands. The algorithm is simple, fast, effective and is closely related to the physical origin of speckle noise in OCT image. Our results demonstrate that NAWT outperforms conventional wavelet thresholding.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter

Desmond C. Adler, Tony H. Ko, and James G. Fujimoto
Opt. Lett. 29(24) 2878-2880 (2004)

General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery

Alexander Wong, Akshaya Mishra, Kostadinka Bizheva, and David A. Clausi
Opt. Express 18(8) 8338-8352 (2010)

Speckle noise reduction of multi-frame optical coherence tomography data using multi-linear principal component analysis

Hongli Lv, Shujun Fu, Caiming Zhang, and Lin Zhai
Opt. Express 26(9) 11804-11818 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]
  3. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” BIOMEDO 12, 051403 (2007).
    [Crossref]
  4. J. W. Goodman, Statistical Optics (John Wiley & Sons, 2015).
  5. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66(11), 1145–1150 (1976).
    [Crossref]
  6. X. Liu, J. C. Ramella-Roman, Y. Huang, Y. Guo, and J. U. Kang, “Robust spectral-domain optical coherence tomography speckle model and its cross-correlation coefficient analysis,” J. Opt. Soc. Am. A 30(1), 51–59 (2013).
    [Crossref] [PubMed]
  7. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
    [Crossref] [PubMed]
  8. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25(8), 545–547 (2000).
    [Crossref] [PubMed]
  9. N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
    [Crossref] [PubMed]
  10. M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
    [Crossref] [PubMed]
  11. D. P. Popescu, M. D. Hewko, and M. G. Sowa, “Speckle noise attenuation in optical coherence tomography by compounding images acquired at different positions of the sample,” Opt. Commun. 269(1), 247–251 (2007).
    [Crossref]
  12. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A 24(7), 1901–1910 (2007).
    [Crossref] [PubMed]
  13. J. Rogowska and M. E. Brezinski, “Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging,” IEEE Trans. Med. Imaging 19(12), 1261–1266 (2000).
    [Crossref] [PubMed]
  14. R. C. Gonzalez and R. E. Woods, “Image processing,” in Digital Image Processing (Pearson, 2007).
  15. S. Sudha, G. Suresh, and R. Sukanesh, “Speckle noise reduction in ultrasound images by wavelet thresholding based on weighted variance,” IJACTE 1, 7–12 (2009).
    [Crossref]
  16. H. Guo, J. E. Odegard, M. Lang, R. A. Gopinath, I. W. Selesnick, and C. S. Burrus, “Wavelet based speckle reduction with application to SAR based ATD/R,” in Image Processing, 1994. Proceedings. ICIP-94., IEEE International Conference, (IEEE, 1994), 75–79.
    [Crossref]
  17. D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Opt. Lett. 29(24), 2878–2880 (2004).
    [Crossref] [PubMed]
  18. S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Process. 9(9), 1532–1546 (2000).
    [Crossref] [PubMed]
  19. S. G. Chang, B. Yu, and M. Vetterli, “Spatially adaptive wavelet thresholding with context modeling for image denoising,” IEEE Trans. Image Process. 9(9), 1522–1531 (2000).
    [Crossref] [PubMed]
  20. X. Liu, Y. Huang, and J. U. Kang, “Distortion-free freehand-scanning OCT implemented with real-time scanning speed variance correction,” Opt. Express 20(15), 16567–16583 (2012).
    [Crossref]
  21. X. Liu, M. Kirby, and F. Zhao, “Motion analysis and removal in intensity variation based OCT angiography,” Biomed. Opt. Express 5(11), 3833–3847 (2014).
    [Crossref] [PubMed]
  22. Y. Qiu, Y. Wang, K. D. Belfield, and X. Liu, “Ultrathin lensed fiber-optic probe for optical coherence tomography,” Biomed. Opt. Express 7(6), 2154–2162 (2016).
    [Crossref] [PubMed]
  23. F. Sattar, L. Floreby, G. Salomonsson, and B. Lovstrom, “Image enhancement based on a nonlinear multiscale method,” IEEE Trans. Image Process. 6(6), 888–895 (1997).
    [Crossref] [PubMed]
  24. P. Li, L. Zhou, Y. Ni, Z. Ding, and P. Li, “Angular compounding by full-channel B-scan modulation encoding for optical coherence tomography speckle reduction,” J. Biomed. Opt. 21(8), 086014 (2016).
    [Crossref] [PubMed]

2016 (2)

P. Li, L. Zhou, Y. Ni, Z. Ding, and P. Li, “Angular compounding by full-channel B-scan modulation encoding for optical coherence tomography speckle reduction,” J. Biomed. Opt. 21(8), 086014 (2016).
[Crossref] [PubMed]

Y. Qiu, Y. Wang, K. D. Belfield, and X. Liu, “Ultrathin lensed fiber-optic probe for optical coherence tomography,” Biomed. Opt. Express 7(6), 2154–2162 (2016).
[Crossref] [PubMed]

2014 (1)

2013 (1)

2012 (1)

2009 (1)

S. Sudha, G. Suresh, and R. Sukanesh, “Speckle noise reduction in ultrasound images by wavelet thresholding based on weighted variance,” IJACTE 1, 7–12 (2009).
[Crossref]

2007 (2)

D. P. Popescu, M. D. Hewko, and M. G. Sowa, “Speckle noise attenuation in optical coherence tomography by compounding images acquired at different positions of the sample,” Opt. Commun. 269(1), 247–251 (2007).
[Crossref]

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A 24(7), 1901–1910 (2007).
[Crossref] [PubMed]

2004 (1)

2003 (3)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[Crossref] [PubMed]

2000 (4)

S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Process. 9(9), 1532–1546 (2000).
[Crossref] [PubMed]

S. G. Chang, B. Yu, and M. Vetterli, “Spatially adaptive wavelet thresholding with context modeling for image denoising,” IEEE Trans. Image Process. 9(9), 1522–1531 (2000).
[Crossref] [PubMed]

M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25(8), 545–547 (2000).
[Crossref] [PubMed]

J. Rogowska and M. E. Brezinski, “Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging,” IEEE Trans. Med. Imaging 19(12), 1261–1266 (2000).
[Crossref] [PubMed]

1999 (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

1997 (1)

F. Sattar, L. Floreby, G. Salomonsson, and B. Lovstrom, “Image enhancement based on a nonlinear multiscale method,” IEEE Trans. Image Process. 6(6), 888–895 (1997).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1976 (1)

Adler, D. C.

Bashkansky, M.

Belfield, K. D.

Bilenca, A.

Bouma, B. E.

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A 24(7), 1901–1910 (2007).
[Crossref] [PubMed]

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

Brezinski, M. E.

J. Rogowska and M. E. Brezinski, “Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging,” IEEE Trans. Med. Imaging 19(12), 1261–1266 (2000).
[Crossref] [PubMed]

Chang, S. G.

S. G. Chang, B. Yu, and M. Vetterli, “Spatially adaptive wavelet thresholding with context modeling for image denoising,” IEEE Trans. Image Process. 9(9), 1522–1531 (2000).
[Crossref] [PubMed]

S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Process. 9(9), 1532–1546 (2000).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Desjardins, A. E.

Ding, Z.

P. Li, L. Zhou, Y. Ni, Z. Ding, and P. Li, “Angular compounding by full-channel B-scan modulation encoding for optical coherence tomography speckle reduction,” J. Biomed. Opt. 21(8), 086014 (2016).
[Crossref] [PubMed]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[Crossref] [PubMed]

Floreby, L.

F. Sattar, L. Floreby, G. Salomonsson, and B. Lovstrom, “Image enhancement based on a nonlinear multiscale method,” IEEE Trans. Image Process. 6(6), 888–895 (1997).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

Goodman, J. W.

Götzinger, E.

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Guo, Y.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hewko, M. D.

D. P. Popescu, M. D. Hewko, and M. G. Sowa, “Speckle noise attenuation in optical coherence tomography by compounding images acquired at different positions of the sample,” Opt. Commun. 269(1), 247–251 (2007).
[Crossref]

Hitzenberger, C. K.

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[Crossref] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, Y.

Iftimia, N.

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

Kang, J. U.

Kirby, M.

Ko, T. H.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Leitgeb, R.

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[Crossref] [PubMed]

Li, P.

P. Li, L. Zhou, Y. Ni, Z. Ding, and P. Li, “Angular compounding by full-channel B-scan modulation encoding for optical coherence tomography speckle reduction,” J. Biomed. Opt. 21(8), 086014 (2016).
[Crossref] [PubMed]

P. Li, L. Zhou, Y. Ni, Z. Ding, and P. Li, “Angular compounding by full-channel B-scan modulation encoding for optical coherence tomography speckle reduction,” J. Biomed. Opt. 21(8), 086014 (2016).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, X.

Lovstrom, B.

F. Sattar, L. Floreby, G. Salomonsson, and B. Lovstrom, “Image enhancement based on a nonlinear multiscale method,” IEEE Trans. Image Process. 6(6), 888–895 (1997).
[Crossref] [PubMed]

Ni, Y.

P. Li, L. Zhou, Y. Ni, Z. Ding, and P. Li, “Angular compounding by full-channel B-scan modulation encoding for optical coherence tomography speckle reduction,” J. Biomed. Opt. 21(8), 086014 (2016).
[Crossref] [PubMed]

Ozcan, A.

Pircher, M.

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[Crossref] [PubMed]

Popescu, D. P.

D. P. Popescu, M. D. Hewko, and M. G. Sowa, “Speckle noise attenuation in optical coherence tomography by compounding images acquired at different positions of the sample,” Opt. Commun. 269(1), 247–251 (2007).
[Crossref]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Qiu, Y.

Ramella-Roman, J. C.

Reintjes, J.

Rogowska, J.

J. Rogowska and M. E. Brezinski, “Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging,” IEEE Trans. Med. Imaging 19(12), 1261–1266 (2000).
[Crossref] [PubMed]

Salomonsson, G.

F. Sattar, L. Floreby, G. Salomonsson, and B. Lovstrom, “Image enhancement based on a nonlinear multiscale method,” IEEE Trans. Image Process. 6(6), 888–895 (1997).
[Crossref] [PubMed]

Sattar, F.

F. Sattar, L. Floreby, G. Salomonsson, and B. Lovstrom, “Image enhancement based on a nonlinear multiscale method,” IEEE Trans. Image Process. 6(6), 888–895 (1997).
[Crossref] [PubMed]

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sowa, M. G.

D. P. Popescu, M. D. Hewko, and M. G. Sowa, “Speckle noise attenuation in optical coherence tomography by compounding images acquired at different positions of the sample,” Opt. Commun. 269(1), 247–251 (2007).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sudha, S.

S. Sudha, G. Suresh, and R. Sukanesh, “Speckle noise reduction in ultrasound images by wavelet thresholding based on weighted variance,” IJACTE 1, 7–12 (2009).
[Crossref]

Sukanesh, R.

S. Sudha, G. Suresh, and R. Sukanesh, “Speckle noise reduction in ultrasound images by wavelet thresholding based on weighted variance,” IJACTE 1, 7–12 (2009).
[Crossref]

Suresh, G.

S. Sudha, G. Suresh, and R. Sukanesh, “Speckle noise reduction in ultrasound images by wavelet thresholding based on weighted variance,” IJACTE 1, 7–12 (2009).
[Crossref]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tearney, G. J.

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A 24(7), 1901–1910 (2007).
[Crossref] [PubMed]

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

Vetterli, M.

S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Process. 9(9), 1532–1546 (2000).
[Crossref] [PubMed]

S. G. Chang, B. Yu, and M. Vetterli, “Spatially adaptive wavelet thresholding with context modeling for image denoising,” IEEE Trans. Image Process. 9(9), 1522–1531 (2000).
[Crossref] [PubMed]

Wang, Y.

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Yu, B.

S. G. Chang, B. Yu, and M. Vetterli, “Spatially adaptive wavelet thresholding with context modeling for image denoising,” IEEE Trans. Image Process. 9(9), 1522–1531 (2000).
[Crossref] [PubMed]

S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Process. 9(9), 1532–1546 (2000).
[Crossref] [PubMed]

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Zhao, F.

Zhou, L.

P. Li, L. Zhou, Y. Ni, Z. Ding, and P. Li, “Angular compounding by full-channel B-scan modulation encoding for optical coherence tomography speckle reduction,” J. Biomed. Opt. 21(8), 086014 (2016).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

IEEE Trans. Image Process. (3)

F. Sattar, L. Floreby, G. Salomonsson, and B. Lovstrom, “Image enhancement based on a nonlinear multiscale method,” IEEE Trans. Image Process. 6(6), 888–895 (1997).
[Crossref] [PubMed]

S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denoising and compression,” IEEE Trans. Image Process. 9(9), 1532–1546 (2000).
[Crossref] [PubMed]

S. G. Chang, B. Yu, and M. Vetterli, “Spatially adaptive wavelet thresholding with context modeling for image denoising,” IEEE Trans. Image Process. 9(9), 1522–1531 (2000).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

J. Rogowska and M. E. Brezinski, “Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging,” IEEE Trans. Med. Imaging 19(12), 1261–1266 (2000).
[Crossref] [PubMed]

IJACTE (1)

S. Sudha, G. Suresh, and R. Sukanesh, “Speckle noise reduction in ultrasound images by wavelet thresholding based on weighted variance,” IJACTE 1, 7–12 (2009).
[Crossref]

J. Biomed. Opt. (4)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003).
[Crossref] [PubMed]

P. Li, L. Zhou, Y. Ni, Z. Ding, and P. Li, “Angular compounding by full-channel B-scan modulation encoding for optical coherence tomography speckle reduction,” J. Biomed. Opt. 21(8), 086014 (2016).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

D. P. Popescu, M. D. Hewko, and M. G. Sowa, “Speckle noise attenuation in optical coherence tomography by compounding images acquired at different positions of the sample,” Opt. Commun. 269(1), 247–251 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (4)

R. C. Gonzalez and R. E. Woods, “Image processing,” in Digital Image Processing (Pearson, 2007).

H. Guo, J. E. Odegard, M. Lang, R. A. Gopinath, I. W. Selesnick, and C. S. Burrus, “Wavelet based speckle reduction with application to SAR based ATD/R,” in Image Processing, 1994. Proceedings. ICIP-94., IEEE International Conference, (IEEE, 1994), 75–79.
[Crossref]

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” BIOMEDO 12, 051403 (2007).
[Crossref]

J. W. Goodman, Statistical Optics (John Wiley & Sons, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 2D wavelet decomposition of an image.
Fig. 2
Fig. 2 Signal processing flow chart for the optimized adaptive wavelet thresholding algorithm.
Fig. 3
Fig. 3 OCT Bscan of the scattering phantom. Scale bars indicate 200 µm.
Fig. 4
Fig. 4 Probability distribution of OCT signal magnitude (solid curves), in comparison with the PDF of Rayleigh distribution (dashed).
Fig. 5
Fig. 5 Variance of wavelet coefficients for Bscan image obtained from the homogeneous scattering sample, in H, V, and D directions at four decomposition levels. Clearly, the magnitudes of noise quantified by wavelet coefficient variance are different in different sub-bands.
Fig. 6
Fig. 6 Variance of wavelet coefficients for Bscan image obtained from the homogeneous scattering sample in four different elevation planes (Bscan 1, Bscan 2, Bscan 3, and Bscan 4), in H, V, and D directions at four decomposition levels.
Fig. 7
Fig. 7 (a) raw OCT image of Sample 1 (without any post processing); (b) enlarger region of interest (ROI) enclosed by the rectangle in Fig. 7(a); (c) OCT image of Sample 1 processed by our NAWT algorithm; (d) enlarger ROI enclosed by the rectangle in Fig. 7(c); (e) OCT image of Sample 1 processed by conventional wavelet domain thresholding; (f) enlarger ROI enclosed by the rectangle in Fig. 7(e); (g) OCT image of Sample 1 processed by Gaussian filtering; (h) enlarger ROI enclosed by the rectangle in Fig. 7(g). Scale bars in Fig. 7(a) indicate 500 µm.
Fig. 8
Fig. 8 Ascans at the same lateral location from OCT images processed with different algorithms.
Fig. 9
Fig. 9 (a) Original IR card image (Sample 2), (b) IR card image processed using NAWT; (c) fingertip image (Sample 3), (d) fingertip image processed using NAWT. Scale bars indicates 500 µm. E: epidermis; D dermis; arrows in Fig. 9(c) indicate sweat duct.
Fig. 10
Fig. 10 SNR performance of Gaussian filtering and NAWT.

Tables (1)

Tables Icon

Table 1 Performance of different noise reduction algorithms.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T( σ X )= σ 2 σ X
S T ={ 0; | S |T sgn( S )[ | S |T ]; | S |>T
σ= Median( | S ij | ) 0.6745 , S ij subband H 1
σ X = max( σ S 2 σ 2 ,0 )
T N ( σ X )= σ W 2 σ X
SNR=10 log 10 ( μ I 2 σ I 2 )
β= Γ( I D μ I D , I 0 μ I 0 ) Γ( I D μ I D , I D μ I D )Γ( I 0 μ I 0 , I 0 μ I 0 )

Metrics