Abstract

The ocular damage effects induced by transitional near-infrared (NIR) lasers have been investigated for years. However, no retinal damage thresholds are determined in a wide interval between 0.65 ms and 80 ms, and a definite relationship between corneal damage threshold and spot size cannot be drawn from existing data points. In this paper, the in-vivo corneal damage thresholds (ED50s) were determined in New Zealand white rabbits for a single 5 ms pulse at the wavelength of 1338 nm for spot sizes from 0.28 mm to 3.55 mm. Meanwhile, the retinal damage threshold for this laser was determined in chinchilla grey rabbits under the condition that the beam was collimated, and the incident corneal spot diameter was 5.0 mm. The corneal ED50s given in terms of the corneal radiant exposure for spot diameters of 0.28, 0.94, 1.91, and 3.55 mm were 70.3, 35.6, 29.6 and 30.3 J/cm2, respectively. The retinal ED50 given in terms of total intraocular energy (TIE) was 0.904 J. The most sensitive ocular tissue to this laser changed from the cornea to retina with the increase of spot size.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Retinal thermal damage threshold dependence on exposure duration for the transitional near-infrared laser radiation at 1319 nm

Jiarui Wang, Luguang Jiao, Xiaomin Jing, Hongxia Chen, Xiangjun Hu, and Zaifu Yang
Biomed. Opt. Express 7(5) 2016-2021 (2016)

Comparative study of retinal injuries induced by a 420-750 nm supercontinuum source and a 532 nm laser

Luguang Jiao, Yan Fan, Jiarui Wang, and Zaifu Yang
Biomed. Opt. Express 10(6) 3018-3029 (2019)

Corneal minimal visible lesion thresholds for 2.0 μm laser radiation

Bo Chen, Jeffrey Oliver, Soumak Dutta, Grady H. Rylander III, Sharon L. Thomsen, and Ashley J. Welch
J. Opt. Soc. Am. A 24(10) 3080-3088 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” Proc. SPIE 2391, 112–125 (1995).
    [Crossref]
  2. J. A. Zuclich, D. J. Lund, P. R. Edsall, B. E. Stuck, and G. Hengst, “High power lasers in the 1.3-1.4 μm wavelength range: ocular effects and safety standard implications,” Proc. SPIE 4246, 78–88 (2001).
    [Crossref]
  3. J. A. Zuclich, D. J. Lund, and B. E. Stuck, “Wavelength dependence of ocular damage thresholds in the near-ir to far-ir transition region: proposed revisions to MPES,” Health Phys. 92(1), 15–23 (2007).
    [Crossref] [PubMed]
  4. Y. D. Berezin, E. V. Boiko, V. V. Volkov, V. F. Danilichev, D. V. Ganin, A. F. Gatzu, N. N. Smirnov, V. V. Lazo, and A. M. Tkachuk, “Peculiarities of coagulation action of IR lasers (1-3 μm) radiation on cornea,” Proc. SPIE 2769, 9–13 (1996).
    [Crossref]
  5. B. Ketzenberger, T. E. Johnson, Y. A. Van Gessel, S. P. Wild, and W. P. Roach, “Study of corneal lesions induced by 1,318-nm laser radiation pulses in Dutch belted rabbits (Oryctolagus cuniculus),” Comp. Med. 52(6), 513–517 (2002).
    [PubMed]
  6. R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
    [Crossref] [PubMed]
  7. H. Chen, Z. Yang, J. Wang, P. Chen, and H. Qian, “A comparative study on ocular damage induced by 1319nm laser radiation,” Lasers Surg. Med. 43(4), 306–312 (2011).
    [Crossref] [PubMed]
  8. J. Wang, L. Jiao, H. Chen, Z. Yang, and X. Hu, “Corneal thermal damage threshold dependence on the exposure duration for near-infrared laser radiation at 1319 nm,” J. Biomed. Opt. 21(1), 015011 (2016).
    [Crossref] [PubMed]
  9. J. Wang, L. Jiao, X. Jing, H. Chen, X. Hu, and Z. Yang, “Retinal thermal damage threshold dependence on exposure duration for the transitional near-infrared laser radiation at 1319 nm,” Biomed. Opt. Express 7(5), 2016–2021 (2016).
    [Crossref] [PubMed]
  10. J. A. Zuclich, S. T. Schuschereba, H. Zwick, S. A. Boppart, J. G. Fujimoto, F. E. Cheney, and B. E. Stuck, “A comparison of laser-induced retinal damage from infrared wavelengths from that from visible wavelengths,” Laser Light Ophthalmol. 8(1), 15–29 (1997).
  11. J. A. Zuclich, H. Zwick, S. T. Schuschereba, B. W. Stuck, and F. E. Cheney, “Ophthalmoscopic and pathologic description of ocular damage induced by infrared laser radiation,” J. Laser Appl. 10(3), 114–120 (1998).
    [Crossref]
  12. R. L. Vincelette, A. J. Welch, R. J. Thomas, B. A. Rockwell, and D. J. Lund, “Thermal lensing in ocular media exposed to continuous-wave near-infrared radiation: the 1150-1350-nm region,” J. Biomed. Opt. 13(5), 054005 (2008).
    [Crossref] [PubMed]
  13. G. M. Pocock, J. W. Oliver, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “Follow up study of NIR (1100 to 1319 nm) retinal damage thresholds and trends,” Proc. SPIE 7562, 75620E (2010).
    [Crossref]
  14. ANSI, American National Standard for Safety Use of Lasers, Z136.1, Laser Institute of America, Orlando (2014).
  15. ICNIRP, “Guidelines on limits of exposure to laser radiation of wavelength between 180 nm and 1,000 microns,” Health Phys. 105(3), 271–295 (2013).
  16. D. J. Lund, P. R. Edsall, D. R. Fuller, and S. W. Hoxie, “Bioeffects of near-infrared lasers,” J. Laser Appl. 10(3), 140–143 (1998).
    [Crossref]
  17. R. L. McCally, J. Bonney-Ray, and C. B. Bargeron, “corneal epithelial injury thresholds for exposures to 1.54 microm radiation-dependence on beam diameter,” Health Phys. 87(6), 615–624 (2004).
    [Crossref] [PubMed]
  18. R. L. McCally, R. A. Farrell, and C. B. Bargeron, ““Corneal epithelial damage thresholds in rabbits exposed to Tm: YAG laser radiation at 2.02 μm,” Laser in Surg,” Med. 12(2), 598–603 (1992).
  19. J. A. Zuclich, M. F. Blankenstein, S. J. Thomas, and R. F. Harrison, “Corneal damage induced by pulsed CO2 laser radiation,” Health Phys. 47(6), 829–835 (1984).
    [Crossref] [PubMed]
  20. C. B. Bargeron, O. J. Deters, R. A. Farrell, and R. L. McCally, “Epithelial damage in rabbit corneas exposed to CO2 laser radiation,” Health Phys. 56(1), 85–89 (1989).
    [Crossref] [PubMed]
  21. K. Schulmeister, J. Husinsky, B. Seiser, F. Edthofer, B. Fekete, L. Farmer, and D. J. Lund, “Ex vivo and computer model study on retinal thermal laser-induced damage in the visible wavelength range,” J. Biomed. Opt. 13(5), 054038 (2008).
    [Crossref] [PubMed]
  22. K. Schulmeister, R. Ullah, and M. Jean, “Near infrared ex-vivo bovine and computer model thresholds for laser-induced retinal damage,” Photonics Lasers Med. 1(2), 123–131 (2012).
    [Crossref]
  23. L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range,” Appl. Opt. 32(19), 3531–3540 (1993).
    [Crossref] [PubMed]

2016 (2)

J. Wang, L. Jiao, H. Chen, Z. Yang, and X. Hu, “Corneal thermal damage threshold dependence on the exposure duration for near-infrared laser radiation at 1319 nm,” J. Biomed. Opt. 21(1), 015011 (2016).
[Crossref] [PubMed]

J. Wang, L. Jiao, X. Jing, H. Chen, X. Hu, and Z. Yang, “Retinal thermal damage threshold dependence on exposure duration for the transitional near-infrared laser radiation at 1319 nm,” Biomed. Opt. Express 7(5), 2016–2021 (2016).
[Crossref] [PubMed]

2013 (1)

ICNIRP, “Guidelines on limits of exposure to laser radiation of wavelength between 180 nm and 1,000 microns,” Health Phys. 105(3), 271–295 (2013).

2012 (1)

K. Schulmeister, R. Ullah, and M. Jean, “Near infrared ex-vivo bovine and computer model thresholds for laser-induced retinal damage,” Photonics Lasers Med. 1(2), 123–131 (2012).
[Crossref]

2011 (1)

H. Chen, Z. Yang, J. Wang, P. Chen, and H. Qian, “A comparative study on ocular damage induced by 1319nm laser radiation,” Lasers Surg. Med. 43(4), 306–312 (2011).
[Crossref] [PubMed]

2010 (1)

G. M. Pocock, J. W. Oliver, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “Follow up study of NIR (1100 to 1319 nm) retinal damage thresholds and trends,” Proc. SPIE 7562, 75620E (2010).
[Crossref]

2009 (1)

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

2008 (2)

R. L. Vincelette, A. J. Welch, R. J. Thomas, B. A. Rockwell, and D. J. Lund, “Thermal lensing in ocular media exposed to continuous-wave near-infrared radiation: the 1150-1350-nm region,” J. Biomed. Opt. 13(5), 054005 (2008).
[Crossref] [PubMed]

K. Schulmeister, J. Husinsky, B. Seiser, F. Edthofer, B. Fekete, L. Farmer, and D. J. Lund, “Ex vivo and computer model study on retinal thermal laser-induced damage in the visible wavelength range,” J. Biomed. Opt. 13(5), 054038 (2008).
[Crossref] [PubMed]

2007 (1)

J. A. Zuclich, D. J. Lund, and B. E. Stuck, “Wavelength dependence of ocular damage thresholds in the near-ir to far-ir transition region: proposed revisions to MPES,” Health Phys. 92(1), 15–23 (2007).
[Crossref] [PubMed]

2004 (1)

R. L. McCally, J. Bonney-Ray, and C. B. Bargeron, “corneal epithelial injury thresholds for exposures to 1.54 microm radiation-dependence on beam diameter,” Health Phys. 87(6), 615–624 (2004).
[Crossref] [PubMed]

2002 (1)

B. Ketzenberger, T. E. Johnson, Y. A. Van Gessel, S. P. Wild, and W. P. Roach, “Study of corneal lesions induced by 1,318-nm laser radiation pulses in Dutch belted rabbits (Oryctolagus cuniculus),” Comp. Med. 52(6), 513–517 (2002).
[PubMed]

2001 (1)

J. A. Zuclich, D. J. Lund, P. R. Edsall, B. E. Stuck, and G. Hengst, “High power lasers in the 1.3-1.4 μm wavelength range: ocular effects and safety standard implications,” Proc. SPIE 4246, 78–88 (2001).
[Crossref]

1998 (2)

D. J. Lund, P. R. Edsall, D. R. Fuller, and S. W. Hoxie, “Bioeffects of near-infrared lasers,” J. Laser Appl. 10(3), 140–143 (1998).
[Crossref]

J. A. Zuclich, H. Zwick, S. T. Schuschereba, B. W. Stuck, and F. E. Cheney, “Ophthalmoscopic and pathologic description of ocular damage induced by infrared laser radiation,” J. Laser Appl. 10(3), 114–120 (1998).
[Crossref]

1997 (1)

J. A. Zuclich, S. T. Schuschereba, H. Zwick, S. A. Boppart, J. G. Fujimoto, F. E. Cheney, and B. E. Stuck, “A comparison of laser-induced retinal damage from infrared wavelengths from that from visible wavelengths,” Laser Light Ophthalmol. 8(1), 15–29 (1997).

1996 (1)

Y. D. Berezin, E. V. Boiko, V. V. Volkov, V. F. Danilichev, D. V. Ganin, A. F. Gatzu, N. N. Smirnov, V. V. Lazo, and A. M. Tkachuk, “Peculiarities of coagulation action of IR lasers (1-3 μm) radiation on cornea,” Proc. SPIE 2769, 9–13 (1996).
[Crossref]

1995 (1)

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” Proc. SPIE 2391, 112–125 (1995).
[Crossref]

1993 (1)

1992 (1)

R. L. McCally, R. A. Farrell, and C. B. Bargeron, ““Corneal epithelial damage thresholds in rabbits exposed to Tm: YAG laser radiation at 2.02 μm,” Laser in Surg,” Med. 12(2), 598–603 (1992).

1989 (1)

C. B. Bargeron, O. J. Deters, R. A. Farrell, and R. L. McCally, “Epithelial damage in rabbit corneas exposed to CO2 laser radiation,” Health Phys. 56(1), 85–89 (1989).
[Crossref] [PubMed]

1984 (1)

J. A. Zuclich, M. F. Blankenstein, S. J. Thomas, and R. F. Harrison, “Corneal damage induced by pulsed CO2 laser radiation,” Health Phys. 47(6), 829–835 (1984).
[Crossref] [PubMed]

Bargeron, C. B.

R. L. McCally, J. Bonney-Ray, and C. B. Bargeron, “corneal epithelial injury thresholds for exposures to 1.54 microm radiation-dependence on beam diameter,” Health Phys. 87(6), 615–624 (2004).
[Crossref] [PubMed]

R. L. McCally, R. A. Farrell, and C. B. Bargeron, ““Corneal epithelial damage thresholds in rabbits exposed to Tm: YAG laser radiation at 2.02 μm,” Laser in Surg,” Med. 12(2), 598–603 (1992).

C. B. Bargeron, O. J. Deters, R. A. Farrell, and R. L. McCally, “Epithelial damage in rabbit corneas exposed to CO2 laser radiation,” Health Phys. 56(1), 85–89 (1989).
[Crossref] [PubMed]

Berezin, Y. D.

Y. D. Berezin, E. V. Boiko, V. V. Volkov, V. F. Danilichev, D. V. Ganin, A. F. Gatzu, N. N. Smirnov, V. V. Lazo, and A. M. Tkachuk, “Peculiarities of coagulation action of IR lasers (1-3 μm) radiation on cornea,” Proc. SPIE 2769, 9–13 (1996).
[Crossref]

Blankenstein, M. F.

J. A. Zuclich, M. F. Blankenstein, S. J. Thomas, and R. F. Harrison, “Corneal damage induced by pulsed CO2 laser radiation,” Health Phys. 47(6), 829–835 (1984).
[Crossref] [PubMed]

Boiko, E. V.

Y. D. Berezin, E. V. Boiko, V. V. Volkov, V. F. Danilichev, D. V. Ganin, A. F. Gatzu, N. N. Smirnov, V. V. Lazo, and A. M. Tkachuk, “Peculiarities of coagulation action of IR lasers (1-3 μm) radiation on cornea,” Proc. SPIE 2769, 9–13 (1996).
[Crossref]

Bonney-Ray, J.

R. L. McCally, J. Bonney-Ray, and C. B. Bargeron, “corneal epithelial injury thresholds for exposures to 1.54 microm radiation-dependence on beam diameter,” Health Phys. 87(6), 615–624 (2004).
[Crossref] [PubMed]

Boppart, S. A.

J. A. Zuclich, S. T. Schuschereba, H. Zwick, S. A. Boppart, J. G. Fujimoto, F. E. Cheney, and B. E. Stuck, “A comparison of laser-induced retinal damage from infrared wavelengths from that from visible wavelengths,” Laser Light Ophthalmol. 8(1), 15–29 (1997).

Chen, H.

J. Wang, L. Jiao, H. Chen, Z. Yang, and X. Hu, “Corneal thermal damage threshold dependence on the exposure duration for near-infrared laser radiation at 1319 nm,” J. Biomed. Opt. 21(1), 015011 (2016).
[Crossref] [PubMed]

J. Wang, L. Jiao, X. Jing, H. Chen, X. Hu, and Z. Yang, “Retinal thermal damage threshold dependence on exposure duration for the transitional near-infrared laser radiation at 1319 nm,” Biomed. Opt. Express 7(5), 2016–2021 (2016).
[Crossref] [PubMed]

H. Chen, Z. Yang, J. Wang, P. Chen, and H. Qian, “A comparative study on ocular damage induced by 1319nm laser radiation,” Lasers Surg. Med. 43(4), 306–312 (2011).
[Crossref] [PubMed]

Chen, P.

H. Chen, Z. Yang, J. Wang, P. Chen, and H. Qian, “A comparative study on ocular damage induced by 1319nm laser radiation,” Lasers Surg. Med. 43(4), 306–312 (2011).
[Crossref] [PubMed]

Cheney, F.

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” Proc. SPIE 2391, 112–125 (1995).
[Crossref]

Cheney, F. E.

J. A. Zuclich, H. Zwick, S. T. Schuschereba, B. W. Stuck, and F. E. Cheney, “Ophthalmoscopic and pathologic description of ocular damage induced by infrared laser radiation,” J. Laser Appl. 10(3), 114–120 (1998).
[Crossref]

J. A. Zuclich, S. T. Schuschereba, H. Zwick, S. A. Boppart, J. G. Fujimoto, F. E. Cheney, and B. E. Stuck, “A comparison of laser-induced retinal damage from infrared wavelengths from that from visible wavelengths,” Laser Light Ophthalmol. 8(1), 15–29 (1997).

Chylek, P.

Danilichev, V. F.

Y. D. Berezin, E. V. Boiko, V. V. Volkov, V. F. Danilichev, D. V. Ganin, A. F. Gatzu, N. N. Smirnov, V. V. Lazo, and A. M. Tkachuk, “Peculiarities of coagulation action of IR lasers (1-3 μm) radiation on cornea,” Proc. SPIE 2769, 9–13 (1996).
[Crossref]

Deters, O. J.

C. B. Bargeron, O. J. Deters, R. A. Farrell, and R. L. McCally, “Epithelial damage in rabbit corneas exposed to CO2 laser radiation,” Health Phys. 56(1), 85–89 (1989).
[Crossref] [PubMed]

Edsall, P.

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” Proc. SPIE 2391, 112–125 (1995).
[Crossref]

Edsall, P. R.

J. A. Zuclich, D. J. Lund, P. R. Edsall, B. E. Stuck, and G. Hengst, “High power lasers in the 1.3-1.4 μm wavelength range: ocular effects and safety standard implications,” Proc. SPIE 4246, 78–88 (2001).
[Crossref]

D. J. Lund, P. R. Edsall, D. R. Fuller, and S. W. Hoxie, “Bioeffects of near-infrared lasers,” J. Laser Appl. 10(3), 140–143 (1998).
[Crossref]

Edthofer, F.

K. Schulmeister, J. Husinsky, B. Seiser, F. Edthofer, B. Fekete, L. Farmer, and D. J. Lund, “Ex vivo and computer model study on retinal thermal laser-induced damage in the visible wavelength range,” J. Biomed. Opt. 13(5), 054038 (2008).
[Crossref] [PubMed]

Farmer, L.

K. Schulmeister, J. Husinsky, B. Seiser, F. Edthofer, B. Fekete, L. Farmer, and D. J. Lund, “Ex vivo and computer model study on retinal thermal laser-induced damage in the visible wavelength range,” J. Biomed. Opt. 13(5), 054038 (2008).
[Crossref] [PubMed]

Farrell, R. A.

R. L. McCally, R. A. Farrell, and C. B. Bargeron, ““Corneal epithelial damage thresholds in rabbits exposed to Tm: YAG laser radiation at 2.02 μm,” Laser in Surg,” Med. 12(2), 598–603 (1992).

C. B. Bargeron, O. J. Deters, R. A. Farrell, and R. L. McCally, “Epithelial damage in rabbit corneas exposed to CO2 laser radiation,” Health Phys. 56(1), 85–89 (1989).
[Crossref] [PubMed]

Fekete, B.

K. Schulmeister, J. Husinsky, B. Seiser, F. Edthofer, B. Fekete, L. Farmer, and D. J. Lund, “Ex vivo and computer model study on retinal thermal laser-induced damage in the visible wavelength range,” J. Biomed. Opt. 13(5), 054038 (2008).
[Crossref] [PubMed]

Fujimoto, J. G.

J. A. Zuclich, S. T. Schuschereba, H. Zwick, S. A. Boppart, J. G. Fujimoto, F. E. Cheney, and B. E. Stuck, “A comparison of laser-induced retinal damage from infrared wavelengths from that from visible wavelengths,” Laser Light Ophthalmol. 8(1), 15–29 (1997).

Fuller, D. R.

D. J. Lund, P. R. Edsall, D. R. Fuller, and S. W. Hoxie, “Bioeffects of near-infrared lasers,” J. Laser Appl. 10(3), 140–143 (1998).
[Crossref]

Gagliano, D. A.

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” Proc. SPIE 2391, 112–125 (1995).
[Crossref]

Ganin, D. V.

Y. D. Berezin, E. V. Boiko, V. V. Volkov, V. F. Danilichev, D. V. Ganin, A. F. Gatzu, N. N. Smirnov, V. V. Lazo, and A. M. Tkachuk, “Peculiarities of coagulation action of IR lasers (1-3 μm) radiation on cornea,” Proc. SPIE 2769, 9–13 (1996).
[Crossref]

Gatzu, A. F.

Y. D. Berezin, E. V. Boiko, V. V. Volkov, V. F. Danilichev, D. V. Ganin, A. F. Gatzu, N. N. Smirnov, V. V. Lazo, and A. M. Tkachuk, “Peculiarities of coagulation action of IR lasers (1-3 μm) radiation on cornea,” Proc. SPIE 2769, 9–13 (1996).
[Crossref]

Harrison, R. F.

J. A. Zuclich, M. F. Blankenstein, S. J. Thomas, and R. F. Harrison, “Corneal damage induced by pulsed CO2 laser radiation,” Health Phys. 47(6), 829–835 (1984).
[Crossref] [PubMed]

Hengst, G.

J. A. Zuclich, D. J. Lund, P. R. Edsall, B. E. Stuck, and G. Hengst, “High power lasers in the 1.3-1.4 μm wavelength range: ocular effects and safety standard implications,” Proc. SPIE 4246, 78–88 (2001).
[Crossref]

Hoxie, S. W.

D. J. Lund, P. R. Edsall, D. R. Fuller, and S. W. Hoxie, “Bioeffects of near-infrared lasers,” J. Laser Appl. 10(3), 140–143 (1998).
[Crossref]

Hu, X.

J. Wang, L. Jiao, X. Jing, H. Chen, X. Hu, and Z. Yang, “Retinal thermal damage threshold dependence on exposure duration for the transitional near-infrared laser radiation at 1319 nm,” Biomed. Opt. Express 7(5), 2016–2021 (2016).
[Crossref] [PubMed]

J. Wang, L. Jiao, H. Chen, Z. Yang, and X. Hu, “Corneal thermal damage threshold dependence on the exposure duration for near-infrared laser radiation at 1319 nm,” J. Biomed. Opt. 21(1), 015011 (2016).
[Crossref] [PubMed]

Husinsky, J.

K. Schulmeister, J. Husinsky, B. Seiser, F. Edthofer, B. Fekete, L. Farmer, and D. J. Lund, “Ex vivo and computer model study on retinal thermal laser-induced damage in the visible wavelength range,” J. Biomed. Opt. 13(5), 054038 (2008).
[Crossref] [PubMed]

Jean, M.

K. Schulmeister, R. Ullah, and M. Jean, “Near infrared ex-vivo bovine and computer model thresholds for laser-induced retinal damage,” Photonics Lasers Med. 1(2), 123–131 (2012).
[Crossref]

Jiao, L.

J. Wang, L. Jiao, X. Jing, H. Chen, X. Hu, and Z. Yang, “Retinal thermal damage threshold dependence on exposure duration for the transitional near-infrared laser radiation at 1319 nm,” Biomed. Opt. Express 7(5), 2016–2021 (2016).
[Crossref] [PubMed]

J. Wang, L. Jiao, H. Chen, Z. Yang, and X. Hu, “Corneal thermal damage threshold dependence on the exposure duration for near-infrared laser radiation at 1319 nm,” J. Biomed. Opt. 21(1), 015011 (2016).
[Crossref] [PubMed]

Jing, X.

Johnson, T. E.

B. Ketzenberger, T. E. Johnson, Y. A. Van Gessel, S. P. Wild, and W. P. Roach, “Study of corneal lesions induced by 1,318-nm laser radiation pulses in Dutch belted rabbits (Oryctolagus cuniculus),” Comp. Med. 52(6), 513–517 (2002).
[PubMed]

Ketzenberger, B.

B. Ketzenberger, T. E. Johnson, Y. A. Van Gessel, S. P. Wild, and W. P. Roach, “Study of corneal lesions induced by 1,318-nm laser radiation pulses in Dutch belted rabbits (Oryctolagus cuniculus),” Comp. Med. 52(6), 513–517 (2002).
[PubMed]

Kou, L.

Kumru, S. S.

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

Labrie, D.

Lazo, V. V.

Y. D. Berezin, E. V. Boiko, V. V. Volkov, V. F. Danilichev, D. V. Ganin, A. F. Gatzu, N. N. Smirnov, V. V. Lazo, and A. M. Tkachuk, “Peculiarities of coagulation action of IR lasers (1-3 μm) radiation on cornea,” Proc. SPIE 2769, 9–13 (1996).
[Crossref]

Lund, D. J.

R. L. Vincelette, A. J. Welch, R. J. Thomas, B. A. Rockwell, and D. J. Lund, “Thermal lensing in ocular media exposed to continuous-wave near-infrared radiation: the 1150-1350-nm region,” J. Biomed. Opt. 13(5), 054005 (2008).
[Crossref] [PubMed]

K. Schulmeister, J. Husinsky, B. Seiser, F. Edthofer, B. Fekete, L. Farmer, and D. J. Lund, “Ex vivo and computer model study on retinal thermal laser-induced damage in the visible wavelength range,” J. Biomed. Opt. 13(5), 054038 (2008).
[Crossref] [PubMed]

J. A. Zuclich, D. J. Lund, and B. E. Stuck, “Wavelength dependence of ocular damage thresholds in the near-ir to far-ir transition region: proposed revisions to MPES,” Health Phys. 92(1), 15–23 (2007).
[Crossref] [PubMed]

J. A. Zuclich, D. J. Lund, P. R. Edsall, B. E. Stuck, and G. Hengst, “High power lasers in the 1.3-1.4 μm wavelength range: ocular effects and safety standard implications,” Proc. SPIE 4246, 78–88 (2001).
[Crossref]

D. J. Lund, P. R. Edsall, D. R. Fuller, and S. W. Hoxie, “Bioeffects of near-infrared lasers,” J. Laser Appl. 10(3), 140–143 (1998).
[Crossref]

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” Proc. SPIE 2391, 112–125 (1995).
[Crossref]

McCally, R. L.

R. L. McCally, J. Bonney-Ray, and C. B. Bargeron, “corneal epithelial injury thresholds for exposures to 1.54 microm radiation-dependence on beam diameter,” Health Phys. 87(6), 615–624 (2004).
[Crossref] [PubMed]

R. L. McCally, R. A. Farrell, and C. B. Bargeron, ““Corneal epithelial damage thresholds in rabbits exposed to Tm: YAG laser radiation at 2.02 μm,” Laser in Surg,” Med. 12(2), 598–603 (1992).

C. B. Bargeron, O. J. Deters, R. A. Farrell, and R. L. McCally, “Epithelial damage in rabbit corneas exposed to CO2 laser radiation,” Health Phys. 56(1), 85–89 (1989).
[Crossref] [PubMed]

Noojin, G. D.

G. M. Pocock, J. W. Oliver, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “Follow up study of NIR (1100 to 1319 nm) retinal damage thresholds and trends,” Proc. SPIE 7562, 75620E (2010).
[Crossref]

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

Oliver, J. W.

G. M. Pocock, J. W. Oliver, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “Follow up study of NIR (1100 to 1319 nm) retinal damage thresholds and trends,” Proc. SPIE 7562, 75620E (2010).
[Crossref]

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

Pocock, G. M.

G. M. Pocock, J. W. Oliver, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “Follow up study of NIR (1100 to 1319 nm) retinal damage thresholds and trends,” Proc. SPIE 7562, 75620E (2010).
[Crossref]

Qian, H.

H. Chen, Z. Yang, J. Wang, P. Chen, and H. Qian, “A comparative study on ocular damage induced by 1319nm laser radiation,” Lasers Surg. Med. 43(4), 306–312 (2011).
[Crossref] [PubMed]

Roach, W. P.

B. Ketzenberger, T. E. Johnson, Y. A. Van Gessel, S. P. Wild, and W. P. Roach, “Study of corneal lesions induced by 1,318-nm laser radiation pulses in Dutch belted rabbits (Oryctolagus cuniculus),” Comp. Med. 52(6), 513–517 (2002).
[PubMed]

Rockwell, B. A.

G. M. Pocock, J. W. Oliver, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “Follow up study of NIR (1100 to 1319 nm) retinal damage thresholds and trends,” Proc. SPIE 7562, 75620E (2010).
[Crossref]

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

R. L. Vincelette, A. J. Welch, R. J. Thomas, B. A. Rockwell, and D. J. Lund, “Thermal lensing in ocular media exposed to continuous-wave near-infrared radiation: the 1150-1350-nm region,” J. Biomed. Opt. 13(5), 054005 (2008).
[Crossref] [PubMed]

Schulmeister, K.

K. Schulmeister, R. Ullah, and M. Jean, “Near infrared ex-vivo bovine and computer model thresholds for laser-induced retinal damage,” Photonics Lasers Med. 1(2), 123–131 (2012).
[Crossref]

K. Schulmeister, J. Husinsky, B. Seiser, F. Edthofer, B. Fekete, L. Farmer, and D. J. Lund, “Ex vivo and computer model study on retinal thermal laser-induced damage in the visible wavelength range,” J. Biomed. Opt. 13(5), 054038 (2008).
[Crossref] [PubMed]

Schuschereba, S. T.

J. A. Zuclich, H. Zwick, S. T. Schuschereba, B. W. Stuck, and F. E. Cheney, “Ophthalmoscopic and pathologic description of ocular damage induced by infrared laser radiation,” J. Laser Appl. 10(3), 114–120 (1998).
[Crossref]

J. A. Zuclich, S. T. Schuschereba, H. Zwick, S. A. Boppart, J. G. Fujimoto, F. E. Cheney, and B. E. Stuck, “A comparison of laser-induced retinal damage from infrared wavelengths from that from visible wavelengths,” Laser Light Ophthalmol. 8(1), 15–29 (1997).

Schuster, K. J.

G. M. Pocock, J. W. Oliver, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “Follow up study of NIR (1100 to 1319 nm) retinal damage thresholds and trends,” Proc. SPIE 7562, 75620E (2010).
[Crossref]

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

Seiser, B.

K. Schulmeister, J. Husinsky, B. Seiser, F. Edthofer, B. Fekete, L. Farmer, and D. J. Lund, “Ex vivo and computer model study on retinal thermal laser-induced damage in the visible wavelength range,” J. Biomed. Opt. 13(5), 054038 (2008).
[Crossref] [PubMed]

Shingledecker, A.

G. M. Pocock, J. W. Oliver, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “Follow up study of NIR (1100 to 1319 nm) retinal damage thresholds and trends,” Proc. SPIE 7562, 75620E (2010).
[Crossref]

Shingledecker, A. D.

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

Smirnov, N. N.

Y. D. Berezin, E. V. Boiko, V. V. Volkov, V. F. Danilichev, D. V. Ganin, A. F. Gatzu, N. N. Smirnov, V. V. Lazo, and A. M. Tkachuk, “Peculiarities of coagulation action of IR lasers (1-3 μm) radiation on cornea,” Proc. SPIE 2769, 9–13 (1996).
[Crossref]

Stolarski, D.

G. M. Pocock, J. W. Oliver, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “Follow up study of NIR (1100 to 1319 nm) retinal damage thresholds and trends,” Proc. SPIE 7562, 75620E (2010).
[Crossref]

Stolarski, D. J.

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

Stuck, B. E.

J. A. Zuclich, D. J. Lund, and B. E. Stuck, “Wavelength dependence of ocular damage thresholds in the near-ir to far-ir transition region: proposed revisions to MPES,” Health Phys. 92(1), 15–23 (2007).
[Crossref] [PubMed]

J. A. Zuclich, D. J. Lund, P. R. Edsall, B. E. Stuck, and G. Hengst, “High power lasers in the 1.3-1.4 μm wavelength range: ocular effects and safety standard implications,” Proc. SPIE 4246, 78–88 (2001).
[Crossref]

J. A. Zuclich, S. T. Schuschereba, H. Zwick, S. A. Boppart, J. G. Fujimoto, F. E. Cheney, and B. E. Stuck, “A comparison of laser-induced retinal damage from infrared wavelengths from that from visible wavelengths,” Laser Light Ophthalmol. 8(1), 15–29 (1997).

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” Proc. SPIE 2391, 112–125 (1995).
[Crossref]

Stuck, B. W.

J. A. Zuclich, H. Zwick, S. T. Schuschereba, B. W. Stuck, and F. E. Cheney, “Ophthalmoscopic and pathologic description of ocular damage induced by infrared laser radiation,” J. Laser Appl. 10(3), 114–120 (1998).
[Crossref]

Thomas, R. J.

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

R. L. Vincelette, A. J. Welch, R. J. Thomas, B. A. Rockwell, and D. J. Lund, “Thermal lensing in ocular media exposed to continuous-wave near-infrared radiation: the 1150-1350-nm region,” J. Biomed. Opt. 13(5), 054005 (2008).
[Crossref] [PubMed]

Thomas, S. J.

J. A. Zuclich, M. F. Blankenstein, S. J. Thomas, and R. F. Harrison, “Corneal damage induced by pulsed CO2 laser radiation,” Health Phys. 47(6), 829–835 (1984).
[Crossref] [PubMed]

Tkachuk, A. M.

Y. D. Berezin, E. V. Boiko, V. V. Volkov, V. F. Danilichev, D. V. Ganin, A. F. Gatzu, N. N. Smirnov, V. V. Lazo, and A. M. Tkachuk, “Peculiarities of coagulation action of IR lasers (1-3 μm) radiation on cornea,” Proc. SPIE 2769, 9–13 (1996).
[Crossref]

Ullah, R.

K. Schulmeister, R. Ullah, and M. Jean, “Near infrared ex-vivo bovine and computer model thresholds for laser-induced retinal damage,” Photonics Lasers Med. 1(2), 123–131 (2012).
[Crossref]

Van Gessel, Y. A.

B. Ketzenberger, T. E. Johnson, Y. A. Van Gessel, S. P. Wild, and W. P. Roach, “Study of corneal lesions induced by 1,318-nm laser radiation pulses in Dutch belted rabbits (Oryctolagus cuniculus),” Comp. Med. 52(6), 513–517 (2002).
[PubMed]

Vincelette, R. L.

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

R. L. Vincelette, A. J. Welch, R. J. Thomas, B. A. Rockwell, and D. J. Lund, “Thermal lensing in ocular media exposed to continuous-wave near-infrared radiation: the 1150-1350-nm region,” J. Biomed. Opt. 13(5), 054005 (2008).
[Crossref] [PubMed]

Volkov, V. V.

Y. D. Berezin, E. V. Boiko, V. V. Volkov, V. F. Danilichev, D. V. Ganin, A. F. Gatzu, N. N. Smirnov, V. V. Lazo, and A. M. Tkachuk, “Peculiarities of coagulation action of IR lasers (1-3 μm) radiation on cornea,” Proc. SPIE 2769, 9–13 (1996).
[Crossref]

Wang, J.

J. Wang, L. Jiao, H. Chen, Z. Yang, and X. Hu, “Corneal thermal damage threshold dependence on the exposure duration for near-infrared laser radiation at 1319 nm,” J. Biomed. Opt. 21(1), 015011 (2016).
[Crossref] [PubMed]

J. Wang, L. Jiao, X. Jing, H. Chen, X. Hu, and Z. Yang, “Retinal thermal damage threshold dependence on exposure duration for the transitional near-infrared laser radiation at 1319 nm,” Biomed. Opt. Express 7(5), 2016–2021 (2016).
[Crossref] [PubMed]

H. Chen, Z. Yang, J. Wang, P. Chen, and H. Qian, “A comparative study on ocular damage induced by 1319nm laser radiation,” Lasers Surg. Med. 43(4), 306–312 (2011).
[Crossref] [PubMed]

Welch, A. J.

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

R. L. Vincelette, A. J. Welch, R. J. Thomas, B. A. Rockwell, and D. J. Lund, “Thermal lensing in ocular media exposed to continuous-wave near-infrared radiation: the 1150-1350-nm region,” J. Biomed. Opt. 13(5), 054005 (2008).
[Crossref] [PubMed]

Wild, S. P.

B. Ketzenberger, T. E. Johnson, Y. A. Van Gessel, S. P. Wild, and W. P. Roach, “Study of corneal lesions induced by 1,318-nm laser radiation pulses in Dutch belted rabbits (Oryctolagus cuniculus),” Comp. Med. 52(6), 513–517 (2002).
[PubMed]

Yang, Z.

J. Wang, L. Jiao, H. Chen, Z. Yang, and X. Hu, “Corneal thermal damage threshold dependence on the exposure duration for near-infrared laser radiation at 1319 nm,” J. Biomed. Opt. 21(1), 015011 (2016).
[Crossref] [PubMed]

J. Wang, L. Jiao, X. Jing, H. Chen, X. Hu, and Z. Yang, “Retinal thermal damage threshold dependence on exposure duration for the transitional near-infrared laser radiation at 1319 nm,” Biomed. Opt. Express 7(5), 2016–2021 (2016).
[Crossref] [PubMed]

H. Chen, Z. Yang, J. Wang, P. Chen, and H. Qian, “A comparative study on ocular damage induced by 1319nm laser radiation,” Lasers Surg. Med. 43(4), 306–312 (2011).
[Crossref] [PubMed]

Zuclich, J. A.

J. A. Zuclich, D. J. Lund, and B. E. Stuck, “Wavelength dependence of ocular damage thresholds in the near-ir to far-ir transition region: proposed revisions to MPES,” Health Phys. 92(1), 15–23 (2007).
[Crossref] [PubMed]

J. A. Zuclich, D. J. Lund, P. R. Edsall, B. E. Stuck, and G. Hengst, “High power lasers in the 1.3-1.4 μm wavelength range: ocular effects and safety standard implications,” Proc. SPIE 4246, 78–88 (2001).
[Crossref]

J. A. Zuclich, H. Zwick, S. T. Schuschereba, B. W. Stuck, and F. E. Cheney, “Ophthalmoscopic and pathologic description of ocular damage induced by infrared laser radiation,” J. Laser Appl. 10(3), 114–120 (1998).
[Crossref]

J. A. Zuclich, S. T. Schuschereba, H. Zwick, S. A. Boppart, J. G. Fujimoto, F. E. Cheney, and B. E. Stuck, “A comparison of laser-induced retinal damage from infrared wavelengths from that from visible wavelengths,” Laser Light Ophthalmol. 8(1), 15–29 (1997).

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” Proc. SPIE 2391, 112–125 (1995).
[Crossref]

J. A. Zuclich, M. F. Blankenstein, S. J. Thomas, and R. F. Harrison, “Corneal damage induced by pulsed CO2 laser radiation,” Health Phys. 47(6), 829–835 (1984).
[Crossref] [PubMed]

Zwick, H.

J. A. Zuclich, H. Zwick, S. T. Schuschereba, B. W. Stuck, and F. E. Cheney, “Ophthalmoscopic and pathologic description of ocular damage induced by infrared laser radiation,” J. Laser Appl. 10(3), 114–120 (1998).
[Crossref]

J. A. Zuclich, S. T. Schuschereba, H. Zwick, S. A. Boppart, J. G. Fujimoto, F. E. Cheney, and B. E. Stuck, “A comparison of laser-induced retinal damage from infrared wavelengths from that from visible wavelengths,” Laser Light Ophthalmol. 8(1), 15–29 (1997).

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” Proc. SPIE 2391, 112–125 (1995).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Comp. Med. (1)

B. Ketzenberger, T. E. Johnson, Y. A. Van Gessel, S. P. Wild, and W. P. Roach, “Study of corneal lesions induced by 1,318-nm laser radiation pulses in Dutch belted rabbits (Oryctolagus cuniculus),” Comp. Med. 52(6), 513–517 (2002).
[PubMed]

Health Phys. (5)

J. A. Zuclich, D. J. Lund, and B. E. Stuck, “Wavelength dependence of ocular damage thresholds in the near-ir to far-ir transition region: proposed revisions to MPES,” Health Phys. 92(1), 15–23 (2007).
[Crossref] [PubMed]

ICNIRP, “Guidelines on limits of exposure to laser radiation of wavelength between 180 nm and 1,000 microns,” Health Phys. 105(3), 271–295 (2013).

R. L. McCally, J. Bonney-Ray, and C. B. Bargeron, “corneal epithelial injury thresholds for exposures to 1.54 microm radiation-dependence on beam diameter,” Health Phys. 87(6), 615–624 (2004).
[Crossref] [PubMed]

J. A. Zuclich, M. F. Blankenstein, S. J. Thomas, and R. F. Harrison, “Corneal damage induced by pulsed CO2 laser radiation,” Health Phys. 47(6), 829–835 (1984).
[Crossref] [PubMed]

C. B. Bargeron, O. J. Deters, R. A. Farrell, and R. L. McCally, “Epithelial damage in rabbit corneas exposed to CO2 laser radiation,” Health Phys. 56(1), 85–89 (1989).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

K. Schulmeister, J. Husinsky, B. Seiser, F. Edthofer, B. Fekete, L. Farmer, and D. J. Lund, “Ex vivo and computer model study on retinal thermal laser-induced damage in the visible wavelength range,” J. Biomed. Opt. 13(5), 054038 (2008).
[Crossref] [PubMed]

J. Wang, L. Jiao, H. Chen, Z. Yang, and X. Hu, “Corneal thermal damage threshold dependence on the exposure duration for near-infrared laser radiation at 1319 nm,” J. Biomed. Opt. 21(1), 015011 (2016).
[Crossref] [PubMed]

R. L. Vincelette, A. J. Welch, R. J. Thomas, B. A. Rockwell, and D. J. Lund, “Thermal lensing in ocular media exposed to continuous-wave near-infrared radiation: the 1150-1350-nm region,” J. Biomed. Opt. 13(5), 054005 (2008).
[Crossref] [PubMed]

J. Laser Appl. (2)

J. A. Zuclich, H. Zwick, S. T. Schuschereba, B. W. Stuck, and F. E. Cheney, “Ophthalmoscopic and pathologic description of ocular damage induced by infrared laser radiation,” J. Laser Appl. 10(3), 114–120 (1998).
[Crossref]

D. J. Lund, P. R. Edsall, D. R. Fuller, and S. W. Hoxie, “Bioeffects of near-infrared lasers,” J. Laser Appl. 10(3), 140–143 (1998).
[Crossref]

Laser Light Ophthalmol. (1)

J. A. Zuclich, S. T. Schuschereba, H. Zwick, S. A. Boppart, J. G. Fujimoto, F. E. Cheney, and B. E. Stuck, “A comparison of laser-induced retinal damage from infrared wavelengths from that from visible wavelengths,” Laser Light Ophthalmol. 8(1), 15–29 (1997).

Lasers Surg. Med. (2)

R. L. Vincelette, B. A. Rockwell, J. W. Oliver, S. S. Kumru, R. J. Thomas, K. J. Schuster, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, and A. J. Welch, “Trends in retinal damage thresholds from 100-millisecond near-infrared laser radiation exposures: a study at 1,110, 1,130, 1,150, and 1,319 nm,” Lasers Surg. Med. 41(5), 382–390 (2009).
[Crossref] [PubMed]

H. Chen, Z. Yang, J. Wang, P. Chen, and H. Qian, “A comparative study on ocular damage induced by 1319nm laser radiation,” Lasers Surg. Med. 43(4), 306–312 (2011).
[Crossref] [PubMed]

Med. (1)

R. L. McCally, R. A. Farrell, and C. B. Bargeron, ““Corneal epithelial damage thresholds in rabbits exposed to Tm: YAG laser radiation at 2.02 μm,” Laser in Surg,” Med. 12(2), 598–603 (1992).

Photonics Lasers Med. (1)

K. Schulmeister, R. Ullah, and M. Jean, “Near infrared ex-vivo bovine and computer model thresholds for laser-induced retinal damage,” Photonics Lasers Med. 1(2), 123–131 (2012).
[Crossref]

Proc. SPIE (4)

G. M. Pocock, J. W. Oliver, G. D. Noojin, K. J. Schuster, D. Stolarski, A. Shingledecker, and B. A. Rockwell, “Follow up study of NIR (1100 to 1319 nm) retinal damage thresholds and trends,” Proc. SPIE 7562, 75620E (2010).
[Crossref]

Y. D. Berezin, E. V. Boiko, V. V. Volkov, V. F. Danilichev, D. V. Ganin, A. F. Gatzu, N. N. Smirnov, V. V. Lazo, and A. M. Tkachuk, “Peculiarities of coagulation action of IR lasers (1-3 μm) radiation on cornea,” Proc. SPIE 2769, 9–13 (1996).
[Crossref]

J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, “Ocular effects of penetrating IR laser wavelengths,” Proc. SPIE 2391, 112–125 (1995).
[Crossref]

J. A. Zuclich, D. J. Lund, P. R. Edsall, B. E. Stuck, and G. Hengst, “High power lasers in the 1.3-1.4 μm wavelength range: ocular effects and safety standard implications,” Proc. SPIE 4246, 78–88 (2001).
[Crossref]

Other (1)

ANSI, American National Standard for Safety Use of Lasers, Z136.1, Laser Institute of America, Orlando (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (A) Previous reported retinal damage thresholds in terms of TIE (Total Intraocular Energy) for NIR 1300-1400 nm lasers [1–3,6,7,9]. (B) Selected reported corneal damage thresholds in terms of corneal radiant exposure for NIR 1300-1400 nm lasers [2–5,8] (r denotes the corneal spot size). The texts behind the symbols denote the laser wavelength, the animal species (Rh: Rhesus; Ra: Rabbit), the corneal spot size, and the reference.
Fig. 2
Fig. 2 Schematic drawing of the laser exposure setup for the determinations of rabbit corneal and retinal damage thresholds at the wavelength of 1338 nm. The nominal beam diameters on the corneal plane were 0.3, 1.0, 2.0 and 3.7 mm for corneal damage, and 5.0 mm for retinal damage. For the determination of retinal damage threshold, the incident laser beam was collimated.
Fig. 3
Fig. 3 Radiant exposure profile of the laser spot along the horizontal and vertical center lines with the nominal spot size of 1.0 mm when the incident total pulse energy was set as the damage threshold value (0.247 J). The relative radiant exposure profile was firstly measured by the knife edge method. By integrating the measured curve and multiplying a factor with this integral, the total relative energy could be obtained. Then comparing this value against the total measured energy, a “calibration” factor could be obtained. Finally using this factor, the absolute radiant exposure profile could be determined. The step size of the knife-edge was set as 0.05 mm. The use of the slit between the aperture and the lens simplified the subsequent analysis for the radiant exposure profile. It was shown that the curve could be roughly approximated as a trapezoidal shape. Following this assumption and using the 50% radiant exposure point as the assessment criterion, the actual laser spot diameters for both the horizontal and vertical directions were 0.94 mm, slightly less than the nominal value.
Fig. 4
Fig. 4 Corneal damage observations induced by 1338 nm pulse laser. Arrows in the figure indicated the corneal or lenticular lesions. (A) Lesions with the spot size of 0.28 mm at 6 hours postexposure, and the corneal radiant exposure was 72.1 J/cm2 (about threshold level). (B) Lesions under unaided eye immediately postexposure. The spot size was 1.91 mm and the corneal radiant exposure was 44.4 J/cm2 (about 1.5 times threshold level). (C) Lesions under direct slit-beam illumination immediately postexposure. (D) Lesions under direct slit-beam illumination at 24 hours postexposure. (E) Histological section of corneal tissue at threshold level. The spot size was 0.28 mm and the corneal radiant exposure was 72.1 J/cm2. (F) Histological section of corneal tissue at about 1.5 times threshold level. The spot size was 1.91 mm and the corneal radiant exposure was 44.4 J/cm2.
Fig. 5
Fig. 5 (A) Fundus photograph showing rabbit retinal lesions induced by pulsed 1338 nm laser. Photograph was taken at 24 hours post-exposure. The incident energy was 1.0 J. Arrows indicated the retinal lesions. (B) Histological section of retinal tissue at threshold level. Tissue was fixed at 48-h following laser exposures.
Fig. 6
Fig. 6 Corneal and retinal damage thresholds as a function of the incident corneal spot diameter for 5 ms pulsed 1338 nm laser. According to the action spectrum theory [3,8], the data point from Reference [5] could be adjusted to the data for 1338 nm, using the water absorption coefficients at the wavelengths of 1318 nm and 1338 nm (1.76 cm−1 for 1318 nm and 2.62 cm−1 for 1338 nm [23]). This point was plotted to illustrate the rapid change of damage threshold with the decrease of corneal spot size for small corneal spot sizes; for corneal spot diameters of 1 mm and above no significant spot size dependence could be observed. The green dashed line showed how the retinal damage threshold varied as the corneal spot diameter was decreased down from 5 mm, on the condition that the laser beam remained collimated and the damage threshold was expressed in corneal radiant exposure. The straight line was only an approximate analysis because the optical quality of the eye is much better in the central part than in outer parts and thus a smaller beam could well be focused better as compared to a larger beam, resulting in a smaller damage threshold.

Tables (2)

Tables Icon

Table 1 Corneal damage thresholds induced by 1338 nm laser at different spot sizes for slit lamp imaging at 6 hours post exposure

Tables Icon

Table 2 Ophthalmoscopically visible retinal damage thresholds induced by 1338 nm laser as the corneal spot size was 5.0 mm and the incident beam was collimated (24 eyes were involved and a total of 150 data points were obtained)

Metrics