Abstract

In photoacoustic computed tomography, the limited directivity of the detectors may cause deformation of off-center targets and lead to an imbalanced resolution in the imaging area. To improve the directivity of the acoustic detectors, several negative acoustic lenses have been proposed. In this study, we develop a new compound acoustic lens fabricated by integrating a concave polydimethylsiloxane (PDMS) lens and a convex epoxy lens. Both theoretical simulations and experimental evaluations demonstrate that the compound lens provides a larger directivity compared to single lenses made of PDMS, epoxy, and liquid. The measured acceptance angles of a 6-mm piezoelectric acoustic transducer equipped with the compound, epoxy, liquid, and PDMS lenses are 55°, 36°, 25°, and 20°, respectively. No deformation is observed in the off-center targets by using compound lens. However, serious deformation appears in the cases using single lenses.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Liquid acoustic lens for photoacoustic tomography

Chaolong Song, Lei Xi, and Huabei Jiang
Opt. Lett. 38(15) 2930-2933 (2013)

Photoacoustic computed tomography with lens-free focused fiber-laser ultrasound sensor

Xue Bai, Yumeng Qi, Yizhi Liang, Jun Ma, Long Jin, and Bai-ou Guan
Biomed. Opt. Express 10(5) 2504-2512 (2019)

Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography

Wenfeng Xia, Daniele Piras, Mithun K. A. Singh, Johan C. G. van Hespen, Ton G. van Leeuwen, Wiendelt Steenbergen, and Srirang Manohar
Biomed. Opt. Express 4(11) 2555-2569 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  2. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
    [Crossref] [PubMed]
  3. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [Crossref] [PubMed]
  4. M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
    [Crossref] [PubMed]
  5. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [Crossref] [PubMed]
  6. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
    [Crossref] [PubMed]
  7. L. Xi, L. Zhou, and H. Jiang, “C-scan photoacoustic microscopy for in vivo imaging of Drosophila pupae,” Appl. Phys. Lett. 101(1), 013702 (2012).
    [Crossref]
  8. X. Wang, D. L. Chamberland, and G. Xi, “Noninvasive reflection mode photoacoustic imaging through infant skull toward imaging of neonatal brains,” J. Neurosci. Methods 168(2), 412–421 (2008).
    [Crossref] [PubMed]
  9. L. Nie, Z. Guo, and L. V. Wang, “Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers,” J. Biomed. Opt. 16(7), 076005 (2011).
    [Crossref] [PubMed]
  10. N. Huang, H. Guo, W. Qi, Z. Zhang, J. Rong, Z. Yuan, W. Ge, H. Jiang, and L. Xi, “Whole-body multispectral photoacoustic imaging of adult zebrafish,” Biomed. Opt. Express 7(9), 3543–3550 (2016).
    [Crossref] [PubMed]
  11. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
    [Crossref] [PubMed]
  12. M. Pramanik, G. Ku, and L. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14(2), 024028 (2009).
    [Crossref] [PubMed]
  13. G. Drozdov and A. Rosenthal, “Analysis of Negative focused ultrasound detectors in optoacoustic tomography,” IEEE Trans. Med. Imaging 36(1), 301–309 (2017).
    [Crossref] [PubMed]
  14. A. D. Pierce and R. T. Beyer, “Acoustics: An Introduction to Its Physical Principles and Applications,” J. Acoust. Soc. Am. 87(4), 1826–1827 (1990).
    [Crossref]
  15. W. Xia, D. Piras, M. Heijblom, J. C. G. Van Hespen, S. V. Veldhoven, C. Prins, W. Steenbergen, T. G. V. Leeuwen and S. Manohar, “Enlarged acceptance angle of a finite size detector in photoacoustic imaging using acoustic lenses,” European Conferences on Biomedical Optics, International Society for Optics and Photonics, 8090(3), 298–306 (2011).
  16. Y. He, Z. Tang, Z. Chen, W. Wan, and J. Li, “A novel photoacoustic tomography based on a time-resolved technique and an acoustic lens imaging system,” Phys. Med. Biol. 51(10), 2671–2680 (2006).
    [Crossref] [PubMed]
  17. M. Pilatou, N. Voogd, F. Mul, W. Steenbergen, and L. Adrichem, “Analysis of three-dimensional photoacoustic imaging of a vascular tree in vitro,” Rev. Sci. Instrum. 74(10), 4495–4499 (2003).
    [Crossref]
  18. I. Abdulhalim and C. N. Pannell, “Acousto-optic in-Fibre Modulator using Acoustic Focusing,” IEEE Photonics Technol. Lett. 5(9), 999–1002 (1993).
    [Crossref]
  19. C. N. Pannell, B. F. Wacogne, and I. Abdulhalim, “In-Fiber and Fiber-Compatible Acoustooptic Components,” J. Lightwave Technol. 13(7), 1429–1434 (1995).
    [Crossref]
  20. C. Li, G. Ku, and L. V. Wang, “Negative lens concept for photoacoustic tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021901 (2008).
    [Crossref] [PubMed]
  21. W. Xia, D. Piras, J. C. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013).
    [Crossref] [PubMed]
  22. C. Chang, K. Firouzi, K. K. Park, A. Sarioglu, A. Nikoozadeh, H. Toon, S. Vaithilingam, T. Carver, and B. Khuri-Yakub, “Acoustic lens for capacitive micromachined ultrasonic transducers,” J. Micromech. Microeng. 24(8), 085007 (2014).
    [Crossref]
  23. C. Song, L. Xi, and H. Jiang, “Liquid acoustic lens for photoacoustic tomography,” Opt. Lett. 38(15), 2930–2933 (2013).
    [Crossref] [PubMed]
  24. L. Xi, C. Song, and H. Jiang, “Confocal photoacoustic microscopy using a single multifunctional lens,” Opt. Lett. 39(11), 3328–3331 (2014).
    [Crossref] [PubMed]
  25. C. G. A. Hoelen and F. F. M. de Mul, “Image reconstruction for photoacoustic scanning of tissue structures,” Appl. Opt. 39(31), 5872–5883 (2000).
    [Crossref] [PubMed]

2017 (1)

G. Drozdov and A. Rosenthal, “Analysis of Negative focused ultrasound detectors in optoacoustic tomography,” IEEE Trans. Med. Imaging 36(1), 301–309 (2017).
[Crossref] [PubMed]

2016 (1)

2014 (2)

C. Chang, K. Firouzi, K. K. Park, A. Sarioglu, A. Nikoozadeh, H. Toon, S. Vaithilingam, T. Carver, and B. Khuri-Yakub, “Acoustic lens for capacitive micromachined ultrasonic transducers,” J. Micromech. Microeng. 24(8), 085007 (2014).
[Crossref]

L. Xi, C. Song, and H. Jiang, “Confocal photoacoustic microscopy using a single multifunctional lens,” Opt. Lett. 39(11), 3328–3331 (2014).
[Crossref] [PubMed]

2013 (2)

C. Song, L. Xi, and H. Jiang, “Liquid acoustic lens for photoacoustic tomography,” Opt. Lett. 38(15), 2930–2933 (2013).
[Crossref] [PubMed]

W. Xia, D. Piras, J. C. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013).
[Crossref] [PubMed]

2012 (2)

L. Xi, L. Zhou, and H. Jiang, “C-scan photoacoustic microscopy for in vivo imaging of Drosophila pupae,” Appl. Phys. Lett. 101(1), 013702 (2012).
[Crossref]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

2011 (2)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

L. Nie, Z. Guo, and L. V. Wang, “Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers,” J. Biomed. Opt. 16(7), 076005 (2011).
[Crossref] [PubMed]

2009 (4)

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[Crossref] [PubMed]

M. Pramanik, G. Ku, and L. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14(2), 024028 (2009).
[Crossref] [PubMed]

2008 (2)

X. Wang, D. L. Chamberland, and G. Xi, “Noninvasive reflection mode photoacoustic imaging through infant skull toward imaging of neonatal brains,” J. Neurosci. Methods 168(2), 412–421 (2008).
[Crossref] [PubMed]

C. Li, G. Ku, and L. V. Wang, “Negative lens concept for photoacoustic tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021901 (2008).
[Crossref] [PubMed]

2006 (2)

Y. He, Z. Tang, Z. Chen, W. Wan, and J. Li, “A novel photoacoustic tomography based on a time-resolved technique and an acoustic lens imaging system,” Phys. Med. Biol. 51(10), 2671–2680 (2006).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

2003 (2)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

M. Pilatou, N. Voogd, F. Mul, W. Steenbergen, and L. Adrichem, “Analysis of three-dimensional photoacoustic imaging of a vascular tree in vitro,” Rev. Sci. Instrum. 74(10), 4495–4499 (2003).
[Crossref]

2000 (1)

1995 (1)

C. N. Pannell, B. F. Wacogne, and I. Abdulhalim, “In-Fiber and Fiber-Compatible Acoustooptic Components,” J. Lightwave Technol. 13(7), 1429–1434 (1995).
[Crossref]

1993 (1)

I. Abdulhalim and C. N. Pannell, “Acousto-optic in-Fibre Modulator using Acoustic Focusing,” IEEE Photonics Technol. Lett. 5(9), 999–1002 (1993).
[Crossref]

1990 (1)

A. D. Pierce and R. T. Beyer, “Acoustics: An Introduction to Its Physical Principles and Applications,” J. Acoust. Soc. Am. 87(4), 1826–1827 (1990).
[Crossref]

Abdulhalim, I.

C. N. Pannell, B. F. Wacogne, and I. Abdulhalim, “In-Fiber and Fiber-Compatible Acoustooptic Components,” J. Lightwave Technol. 13(7), 1429–1434 (1995).
[Crossref]

I. Abdulhalim and C. N. Pannell, “Acousto-optic in-Fibre Modulator using Acoustic Focusing,” IEEE Photonics Technol. Lett. 5(9), 999–1002 (1993).
[Crossref]

Adrichem, L.

M. Pilatou, N. Voogd, F. Mul, W. Steenbergen, and L. Adrichem, “Analysis of three-dimensional photoacoustic imaging of a vascular tree in vitro,” Rev. Sci. Instrum. 74(10), 4495–4499 (2003).
[Crossref]

Beard, P.

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

Beyer, R. T.

A. D. Pierce and R. T. Beyer, “Acoustics: An Introduction to Its Physical Principles and Applications,” J. Acoust. Soc. Am. 87(4), 1826–1827 (1990).
[Crossref]

Carver, T.

C. Chang, K. Firouzi, K. K. Park, A. Sarioglu, A. Nikoozadeh, H. Toon, S. Vaithilingam, T. Carver, and B. Khuri-Yakub, “Acoustic lens for capacitive micromachined ultrasonic transducers,” J. Micromech. Microeng. 24(8), 085007 (2014).
[Crossref]

Chamberland, D. L.

X. Wang, D. L. Chamberland, and G. Xi, “Noninvasive reflection mode photoacoustic imaging through infant skull toward imaging of neonatal brains,” J. Neurosci. Methods 168(2), 412–421 (2008).
[Crossref] [PubMed]

Chang, C.

C. Chang, K. Firouzi, K. K. Park, A. Sarioglu, A. Nikoozadeh, H. Toon, S. Vaithilingam, T. Carver, and B. Khuri-Yakub, “Acoustic lens for capacitive micromachined ultrasonic transducers,” J. Micromech. Microeng. 24(8), 085007 (2014).
[Crossref]

Chen, Z.

Y. He, Z. Tang, Z. Chen, W. Wan, and J. Li, “A novel photoacoustic tomography based on a time-resolved technique and an acoustic lens imaging system,” Phys. Med. Biol. 51(10), 2671–2680 (2006).
[Crossref] [PubMed]

Conjusteau, A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[Crossref] [PubMed]

de Mul, F. F. M.

Drozdov, G.

G. Drozdov and A. Rosenthal, “Analysis of Negative focused ultrasound detectors in optoacoustic tomography,” IEEE Trans. Med. Imaging 36(1), 301–309 (2017).
[Crossref] [PubMed]

Ermilov, S. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[Crossref] [PubMed]

Firouzi, K.

C. Chang, K. Firouzi, K. K. Park, A. Sarioglu, A. Nikoozadeh, H. Toon, S. Vaithilingam, T. Carver, and B. Khuri-Yakub, “Acoustic lens for capacitive micromachined ultrasonic transducers,” J. Micromech. Microeng. 24(8), 085007 (2014).
[Crossref]

Ge, W.

Gill-Sharp, K. L.

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

Guo, H.

Guo, Z.

L. Nie, Z. Guo, and L. V. Wang, “Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers,” J. Biomed. Opt. 16(7), 076005 (2011).
[Crossref] [PubMed]

He, Y.

Y. He, Z. Tang, Z. Chen, W. Wan, and J. Li, “A novel photoacoustic tomography based on a time-resolved technique and an acoustic lens imaging system,” Phys. Med. Biol. 51(10), 2671–2680 (2006).
[Crossref] [PubMed]

Hoelen, C. G. A.

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Huang, N.

Jiang, H.

Khamapirad, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[Crossref] [PubMed]

Khuri-Yakub, B.

C. Chang, K. Firouzi, K. K. Park, A. Sarioglu, A. Nikoozadeh, H. Toon, S. Vaithilingam, T. Carver, and B. Khuri-Yakub, “Acoustic lens for capacitive micromachined ultrasonic transducers,” J. Micromech. Microeng. 24(8), 085007 (2014).
[Crossref]

Ku, G.

M. Pramanik, G. Ku, and L. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14(2), 024028 (2009).
[Crossref] [PubMed]

C. Li, G. Ku, and L. V. Wang, “Negative lens concept for photoacoustic tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021901 (2008).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Lacewell, R.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[Crossref] [PubMed]

Leonard, M. H.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[Crossref] [PubMed]

Li, C.

C. Li, G. Ku, and L. V. Wang, “Negative lens concept for photoacoustic tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021901 (2008).
[Crossref] [PubMed]

Li, J.

Y. He, Z. Tang, Z. Chen, W. Wan, and J. Li, “A novel photoacoustic tomography based on a time-resolved technique and an acoustic lens imaging system,” Phys. Med. Biol. 51(10), 2671–2680 (2006).
[Crossref] [PubMed]

Li, M. L.

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

Manohar, S.

W. Xia, D. Piras, J. C. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013).
[Crossref] [PubMed]

Maslov, K.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Mehta, K.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[Crossref] [PubMed]

Miller, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[Crossref] [PubMed]

Mul, F.

M. Pilatou, N. Voogd, F. Mul, W. Steenbergen, and L. Adrichem, “Analysis of three-dimensional photoacoustic imaging of a vascular tree in vitro,” Rev. Sci. Instrum. 74(10), 4495–4499 (2003).
[Crossref]

Nie, L.

L. Nie, Z. Guo, and L. V. Wang, “Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers,” J. Biomed. Opt. 16(7), 076005 (2011).
[Crossref] [PubMed]

Nikoozadeh, A.

C. Chang, K. Firouzi, K. K. Park, A. Sarioglu, A. Nikoozadeh, H. Toon, S. Vaithilingam, T. Carver, and B. Khuri-Yakub, “Acoustic lens for capacitive micromachined ultrasonic transducers,” J. Micromech. Microeng. 24(8), 085007 (2014).
[Crossref]

Oraevsky, A. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[Crossref] [PubMed]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Pannell, C. N.

C. N. Pannell, B. F. Wacogne, and I. Abdulhalim, “In-Fiber and Fiber-Compatible Acoustooptic Components,” J. Lightwave Technol. 13(7), 1429–1434 (1995).
[Crossref]

I. Abdulhalim and C. N. Pannell, “Acousto-optic in-Fibre Modulator using Acoustic Focusing,” IEEE Photonics Technol. Lett. 5(9), 999–1002 (1993).
[Crossref]

Park, K. K.

C. Chang, K. Firouzi, K. K. Park, A. Sarioglu, A. Nikoozadeh, H. Toon, S. Vaithilingam, T. Carver, and B. Khuri-Yakub, “Acoustic lens for capacitive micromachined ultrasonic transducers,” J. Micromech. Microeng. 24(8), 085007 (2014).
[Crossref]

Pierce, A. D.

A. D. Pierce and R. T. Beyer, “Acoustics: An Introduction to Its Physical Principles and Applications,” J. Acoust. Soc. Am. 87(4), 1826–1827 (1990).
[Crossref]

Pilatou, M.

M. Pilatou, N. Voogd, F. Mul, W. Steenbergen, and L. Adrichem, “Analysis of three-dimensional photoacoustic imaging of a vascular tree in vitro,” Rev. Sci. Instrum. 74(10), 4495–4499 (2003).
[Crossref]

Piras, D.

W. Xia, D. Piras, J. C. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013).
[Crossref] [PubMed]

Pramanik, M.

M. Pramanik, G. Ku, and L. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14(2), 024028 (2009).
[Crossref] [PubMed]

Qi, W.

Rong, J.

Rosenthal, A.

G. Drozdov and A. Rosenthal, “Analysis of Negative focused ultrasound detectors in optoacoustic tomography,” IEEE Trans. Med. Imaging 36(1), 301–309 (2017).
[Crossref] [PubMed]

Sarioglu, A.

C. Chang, K. Firouzi, K. K. Park, A. Sarioglu, A. Nikoozadeh, H. Toon, S. Vaithilingam, T. Carver, and B. Khuri-Yakub, “Acoustic lens for capacitive micromachined ultrasonic transducers,” J. Micromech. Microeng. 24(8), 085007 (2014).
[Crossref]

Schwartz, J. A.

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

Song, C.

Steenbergen, W.

W. Xia, D. Piras, J. C. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013).
[Crossref] [PubMed]

M. Pilatou, N. Voogd, F. Mul, W. Steenbergen, and L. Adrichem, “Analysis of three-dimensional photoacoustic imaging of a vascular tree in vitro,” Rev. Sci. Instrum. 74(10), 4495–4499 (2003).
[Crossref]

Stoica, G.

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Tang, Z.

Y. He, Z. Tang, Z. Chen, W. Wan, and J. Li, “A novel photoacoustic tomography based on a time-resolved technique and an acoustic lens imaging system,” Phys. Med. Biol. 51(10), 2671–2680 (2006).
[Crossref] [PubMed]

Toon, H.

C. Chang, K. Firouzi, K. K. Park, A. Sarioglu, A. Nikoozadeh, H. Toon, S. Vaithilingam, T. Carver, and B. Khuri-Yakub, “Acoustic lens for capacitive micromachined ultrasonic transducers,” J. Micromech. Microeng. 24(8), 085007 (2014).
[Crossref]

Vaithilingam, S.

C. Chang, K. Firouzi, K. K. Park, A. Sarioglu, A. Nikoozadeh, H. Toon, S. Vaithilingam, T. Carver, and B. Khuri-Yakub, “Acoustic lens for capacitive micromachined ultrasonic transducers,” J. Micromech. Microeng. 24(8), 085007 (2014).
[Crossref]

van Hespen, J. C.

W. Xia, D. Piras, J. C. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013).
[Crossref] [PubMed]

Voogd, N.

M. Pilatou, N. Voogd, F. Mul, W. Steenbergen, and L. Adrichem, “Analysis of three-dimensional photoacoustic imaging of a vascular tree in vitro,” Rev. Sci. Instrum. 74(10), 4495–4499 (2003).
[Crossref]

Wacogne, B. F.

C. N. Pannell, B. F. Wacogne, and I. Abdulhalim, “In-Fiber and Fiber-Compatible Acoustooptic Components,” J. Lightwave Technol. 13(7), 1429–1434 (1995).
[Crossref]

Wan, W.

Y. He, Z. Tang, Z. Chen, W. Wan, and J. Li, “A novel photoacoustic tomography based on a time-resolved technique and an acoustic lens imaging system,” Phys. Med. Biol. 51(10), 2671–2680 (2006).
[Crossref] [PubMed]

Wang, J. C.

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

Wang, L. V.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

L. Nie, Z. Guo, and L. V. Wang, “Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers,” J. Biomed. Opt. 16(7), 076005 (2011).
[Crossref] [PubMed]

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

M. Pramanik, G. Ku, and L. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14(2), 024028 (2009).
[Crossref] [PubMed]

C. Li, G. Ku, and L. V. Wang, “Negative lens concept for photoacoustic tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021901 (2008).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Wang, X.

X. Wang, D. L. Chamberland, and G. Xi, “Noninvasive reflection mode photoacoustic imaging through infant skull toward imaging of neonatal brains,” J. Neurosci. Methods 168(2), 412–421 (2008).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Xi, G.

X. Wang, D. L. Chamberland, and G. Xi, “Noninvasive reflection mode photoacoustic imaging through infant skull toward imaging of neonatal brains,” J. Neurosci. Methods 168(2), 412–421 (2008).
[Crossref] [PubMed]

Xi, L.

Xia, W.

W. Xia, D. Piras, J. C. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013).
[Crossref] [PubMed]

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Yuan, Z.

Zhang, H. F.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Zhang, Z.

Zhou, L.

L. Xi, L. Zhou, and H. Jiang, “C-scan photoacoustic microscopy for in vivo imaging of Drosophila pupae,” Appl. Phys. Lett. 101(1), 013702 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

L. Xi, L. Zhou, and H. Jiang, “C-scan photoacoustic microscopy for in vivo imaging of Drosophila pupae,” Appl. Phys. Lett. 101(1), 013702 (2012).
[Crossref]

Biomed. Opt. Express (1)

IEEE Photonics Technol. Lett. (1)

I. Abdulhalim and C. N. Pannell, “Acousto-optic in-Fibre Modulator using Acoustic Focusing,” IEEE Photonics Technol. Lett. 5(9), 999–1002 (1993).
[Crossref]

IEEE Trans. Med. Imaging (1)

G. Drozdov and A. Rosenthal, “Analysis of Negative focused ultrasound detectors in optoacoustic tomography,” IEEE Trans. Med. Imaging 36(1), 301–309 (2017).
[Crossref] [PubMed]

Interface Focus (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (1)

A. D. Pierce and R. T. Beyer, “Acoustics: An Introduction to Its Physical Principles and Applications,” J. Acoust. Soc. Am. 87(4), 1826–1827 (1990).
[Crossref]

J. Biomed. Opt. (4)

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[Crossref] [PubMed]

M. Pramanik, G. Ku, and L. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14(2), 024028 (2009).
[Crossref] [PubMed]

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

L. Nie, Z. Guo, and L. V. Wang, “Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers,” J. Biomed. Opt. 16(7), 076005 (2011).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

C. N. Pannell, B. F. Wacogne, and I. Abdulhalim, “In-Fiber and Fiber-Compatible Acoustooptic Components,” J. Lightwave Technol. 13(7), 1429–1434 (1995).
[Crossref]

J. Micromech. Microeng. (1)

C. Chang, K. Firouzi, K. K. Park, A. Sarioglu, A. Nikoozadeh, H. Toon, S. Vaithilingam, T. Carver, and B. Khuri-Yakub, “Acoustic lens for capacitive micromachined ultrasonic transducers,” J. Micromech. Microeng. 24(8), 085007 (2014).
[Crossref]

J. Neurosci. Methods (1)

X. Wang, D. L. Chamberland, and G. Xi, “Noninvasive reflection mode photoacoustic imaging through infant skull toward imaging of neonatal brains,” J. Neurosci. Methods 168(2), 412–421 (2008).
[Crossref] [PubMed]

Nat. Biotechnol. (2)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Nat. Photonics (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

Opt. Lett. (2)

Photoacoustics (1)

W. Xia, D. Piras, J. C. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

Y. He, Z. Tang, Z. Chen, W. Wan, and J. Li, “A novel photoacoustic tomography based on a time-resolved technique and an acoustic lens imaging system,” Phys. Med. Biol. 51(10), 2671–2680 (2006).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

C. Li, G. Ku, and L. V. Wang, “Negative lens concept for photoacoustic tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021901 (2008).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

M. Pilatou, N. Voogd, F. Mul, W. Steenbergen, and L. Adrichem, “Analysis of three-dimensional photoacoustic imaging of a vascular tree in vitro,” Rev. Sci. Instrum. 74(10), 4495–4499 (2003).
[Crossref]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Other (1)

W. Xia, D. Piras, M. Heijblom, J. C. G. Van Hespen, S. V. Veldhoven, C. Prins, W. Steenbergen, T. G. V. Leeuwen and S. Manohar, “Enlarged acceptance angle of a finite size detector in photoacoustic imaging using acoustic lenses,” European Conferences on Biomedical Optics, International Society for Optics and Photonics, 8090(3), 298–306 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Fabrication process of the lenses. (a) The lens mold was built using a 3D printer, (b) PDMS liquid was poured into the mold and a steel ball was dipped into the PDMS solution, (c) after cured at 80 °C, PDMS lens was peeled off, (d) the epoxy liquid was filled into the PDMS lens to make the compound lens, (e) epoxy acoustic lens was peeled off from the compound lens, (f) liquid was infused into the chamber through the holes to form a liquid lens.
Fig. 2
Fig. 2 The schematic of the experimental systems to evaluate the flat and lensed transducers. (a) Acoustic mapping system to measure the acoustic distributions of the flat and lensed transducers. (b) A typical circular-scanning-based PACT system. M: Motorized stage; PC: Personal computer; DAQ: Data acquisition card; AMP: Amplifier; UST: Ultrasound transducer; P/R: Pulser/Receiver; R: Rotator; RM: Reflection Mirror; CL: Concave lens; GG: Ground glass; S: Samples.
Fig. 3
Fig. 3 Geometries of the proposed acoustic lenses in the experiments. (a) Epoxy and liquid lenses have a convex shape. (b) PDMS lens has a concave shape. (c, d) The schematic of the compound and compound-reverse lenses.
Fig. 4
Fig. 4 Simulated and experimental acoustic distributions of the transducer without lens (a), and with compound lens (b), compound–reverse lens (c), epoxy lens (d), liquid lens (e) and PDMS lens (f). The dashed rectangles in the simulations represent the corresponding scanned areas in the experiments. Simu: simulated; Exp: experimental. All the images have the same scale bar of 10 mm.
Fig. 5
Fig. 5 Photoacoustic images of a pencil lead phantom. (a) The photograph of the phantom with pencil leads embedded. (b-f) Image results and profiles of a selected pencil lead indicated by the red arrows in the cases without using lens (b), and with using the compound lens (c), epoxy lens (d), liquid lens (e) and PDMS lens (f).
Fig. 6
Fig. 6 Photographs and photoacoustic images of tumor and vasculature mimicking phantoms. (a, d, g) Photographs of the phantoms. (b, e, h) Photoacoustic images without lens. (e, f, i) Improved photoacoustic images with the compound lens.
Fig. 7
Fig. 7 Comparison of the tangential resolutions in the cases with and without the compound lens. (a-c) Edge spread functions (ESF) of target 1, 2, and 3. (d-f) Point spread functions (PSFs) derived from the ESFs in (a-c).

Tables (3)

Tables Icon

Table 1 Acoustic properties of different lenses

Tables Icon

Table 2 Simulated and experimental directivity, measured acoustic pressure and center frequency of the lensed transducers.

Tables Icon

Table 3 Comparison of the tangential resolutions with and without the compound lens

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sinα ν = sinβ ν

Metrics