Abstract

Camera-based pulse-oximetry has recently shown to be feasible, even when the signal is corrupted by noise and motion artifacts. Earlier work showed that using three instead of the common two wavelengths improves robustness of the measurement, however without a thorough investigation on the optimal wavelength selection. We therefore performed a search to identify these wavelengths to further improve the robustness of the measurement. Besides motion, it is empirically known that there are several other factors that influence the measurement leading to falsely-low or falsely-high SpO2 readings. These factors include the presence of dyshemoglobins or other species. In this paper, we use a theoretical skin-model to study how these factors influence the measurement, and how a proper wavelength selection can reduce the impact on the measurement. Additionally, we show that adding a third wavelength does not only improve robustness, but can also be exploited to create a reliability index for the measurement. Finally, we show that the presence of dyshemoglobins in arterial blood can not only be detected but also quantified. We illustrate this by comparing the estimated COHb levels of a small group of smokers and non-smokers, which typically have different CO-levels.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Pulse oximetry optical sensor using oxygen-bound haemoglobin

Z. J. V Cohen, S. Haxha, and A. Aggoun
Opt. Express 24(9) 10115-10131 (2016)

Non-contact measurement of oxygen saturation with an RGB camera

Alessandro R. Guazzi, Mauricio Villarroel, João Jorge, Jonathan Daly, Matthew C. Frise, Peter A. Robbins, and Lionel Tarassenko
Biomed. Opt. Express 6(9) 3320-3338 (2015)

Noninvasive optical method of measuring tissue and arterial saturation:?an application to absolute pulse oximetry of the brain

Maria Angela Franceschini, Enrico Gratton, and Sergio Fantini
Opt. Lett. 24(12) 829-831 (1999)

References

  • View by:
  • |
  • |
  • |

  1. T. Aoyagi, M. Kishi, K. Yamaguchi, and S. Watanabe, “Improvement of the earpiece oximeter,” Japanese Society of Medical Electronics and Biological Engineering,  197490–91 (1974).
  2. W. Verkruysse, M. Bartula, E. Bresch, M. Rocque, M. Meftah, and I. Kirenko, “Calibration of contactless pulse oximetry,” Anesth. Analg. 124(1), 136 (2017).
    [Crossref]
  3. M. van Gastel, S. Stuijk, and G. de Haan, “New principle for measuring arterial blood oxygenation, enabling motion-robust remote monitoring,” Sci. Rep. 6, 38609 (2016).
    [Crossref] [PubMed]
  4. R. Miller, L. Eriksson, L. Fleisher, J. Wiener-Kronish, and W. Young, Anesthesia (Elsevier Health Sciences, 2009).
  5. S. J. Barker and K. K. Tremper, “The effect of carbon monoxide inhalation on pulse oximetry and transcutaneous PO2,“ Anesthesiology 66(5), 677–679 (1987).
    [Crossref] [PubMed]
  6. S. Barker and J. Badal, “The measurement of dyshemoglobins and total hemoglobin by pulse oximetry,” Current Opinion in Anesthesiology 21(6), 805–810 (2008).
    [Crossref] [PubMed]
  7. S. Barker, K. Tremper, and J. Hyatt, “Effects of methemoglobinemia on pulse oximetry and mixed venous oximetry,” Anesthesiology 70(1), 112–117 (1989).
    [Crossref] [PubMed]
  8. G. Clarke, A. Chan, and A. Adler, “Effects of motion artifact on the blood oxygen saturation estimate in pulse oximetry,” in Medical Measurements and Applications (MeMeA), 2014 IEEE International Symposium on, (IEEE, 2014), pp. 1–4.
  9. T. Jensen, S. Duun, J. Larsen, R. Haahr, M. Toft, B. Belhage, and E. Thomsen, “Independent component analysis applied to pulse oximetry in the estimation of the arterial oxygen saturation (SpO2)-a comparative study,” in Engineering in Medicine and Biology Society, 2009. Annual International Conference of the IEEE, (IEEE, 2009), pp. 4039–4044.
  10. M. Ram, K. Madhav, E. Krishna, N. Komalla, and K. Reddy, “A novel approach for motion artifact reduction in ppg signals based on as-lms adaptive filter,” IEEE Trans. Instrum. Meas. 61(5), 1445–1457 (2012).
    [Crossref]
  11. E. Chan, M. Chan, and M. Chan, “Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations,” Respir. Med. 107(6), 789–799 (2013).
    [Crossref] [PubMed]
  12. C. Secker and P. Spiers, “Accuracy of pulse oximetry in patients with low systemic vascular resistance,” Anaesthesia 52(2), 127–130 (1997).
    [Crossref] [PubMed]
  13. B. Wilson, H. Cowan, J. Lord, D. Zuege, and D. Zygun, “The accuracy of pulse oximetry in emergency department patients with severe sepsis and septic shock: a retrospective cohort study,” BMC Emerg. Med. 10(1), 9 (2010).
    [Crossref] [PubMed]
  14. A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5, 10494 (2015).
    [Crossref] [PubMed]
  15. M. V. Volkov, N. B. Margaryants, A. V. Potemkin, M. A. Volynsky, I. P. Gurov, O. V. Mamontov, and A. A. Kamshilin, “Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance,” Sci. Rep. 7, 13298 (2017).
    [Crossref] [PubMed]
  16. J. L. Reuss and D. Siker, “The pulse in reflectance pulse oximetry: modeling and experimental studies,” J. Clin. Monit. Comput. 18(4), 289–299 (2004).
    [Crossref]
  17. J. L. Reuss, “Multilayer modeling of reflectance pulse oximetry,” IEEE Trans. Biomed. Eng. 52(2), 153–159 (2005).
    [Crossref] [PubMed]
  18. M. Marshall, S. Kales, D. Christiani, and R. Goldman, “Are reference intervals for carboxyhemoglobin appropriate? A survey of Boston area laboratories,” Clin. Chem. 41(10), 1434–1438 (1995).
    [PubMed]
  19. W. Zijlstra, A. Buursma, and W. Meeuwsen-Van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
    [PubMed]
  20. V. Rajadurai, A. Walker, V. Yu, and A. Oates, “Effect of fetal haemoglobin on the accuracy of pulse oximetry in preterm infants,” J. Paediatr. Child Health 28(1), 43–46 (1992).
    [Crossref] [PubMed]
  21. P. Cornelissen, C. van Woensel, W. Van Oel, and P. De Jong, “Correction factors for hemoglobin derivatives in fetal blood, as measured with the il 282 co-oximeter,” Clin. Chem. 29(8), 1555–1556 (1983).
    [PubMed]

2017 (2)

W. Verkruysse, M. Bartula, E. Bresch, M. Rocque, M. Meftah, and I. Kirenko, “Calibration of contactless pulse oximetry,” Anesth. Analg. 124(1), 136 (2017).
[Crossref]

M. V. Volkov, N. B. Margaryants, A. V. Potemkin, M. A. Volynsky, I. P. Gurov, O. V. Mamontov, and A. A. Kamshilin, “Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance,” Sci. Rep. 7, 13298 (2017).
[Crossref] [PubMed]

2016 (1)

M. van Gastel, S. Stuijk, and G. de Haan, “New principle for measuring arterial blood oxygenation, enabling motion-robust remote monitoring,” Sci. Rep. 6, 38609 (2016).
[Crossref] [PubMed]

2015 (1)

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5, 10494 (2015).
[Crossref] [PubMed]

2013 (1)

E. Chan, M. Chan, and M. Chan, “Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations,” Respir. Med. 107(6), 789–799 (2013).
[Crossref] [PubMed]

2012 (1)

M. Ram, K. Madhav, E. Krishna, N. Komalla, and K. Reddy, “A novel approach for motion artifact reduction in ppg signals based on as-lms adaptive filter,” IEEE Trans. Instrum. Meas. 61(5), 1445–1457 (2012).
[Crossref]

2010 (1)

B. Wilson, H. Cowan, J. Lord, D. Zuege, and D. Zygun, “The accuracy of pulse oximetry in emergency department patients with severe sepsis and septic shock: a retrospective cohort study,” BMC Emerg. Med. 10(1), 9 (2010).
[Crossref] [PubMed]

2008 (1)

S. Barker and J. Badal, “The measurement of dyshemoglobins and total hemoglobin by pulse oximetry,” Current Opinion in Anesthesiology 21(6), 805–810 (2008).
[Crossref] [PubMed]

2005 (1)

J. L. Reuss, “Multilayer modeling of reflectance pulse oximetry,” IEEE Trans. Biomed. Eng. 52(2), 153–159 (2005).
[Crossref] [PubMed]

2004 (1)

J. L. Reuss and D. Siker, “The pulse in reflectance pulse oximetry: modeling and experimental studies,” J. Clin. Monit. Comput. 18(4), 289–299 (2004).
[Crossref]

1997 (1)

C. Secker and P. Spiers, “Accuracy of pulse oximetry in patients with low systemic vascular resistance,” Anaesthesia 52(2), 127–130 (1997).
[Crossref] [PubMed]

1995 (1)

M. Marshall, S. Kales, D. Christiani, and R. Goldman, “Are reference intervals for carboxyhemoglobin appropriate? A survey of Boston area laboratories,” Clin. Chem. 41(10), 1434–1438 (1995).
[PubMed]

1992 (1)

V. Rajadurai, A. Walker, V. Yu, and A. Oates, “Effect of fetal haemoglobin on the accuracy of pulse oximetry in preterm infants,” J. Paediatr. Child Health 28(1), 43–46 (1992).
[Crossref] [PubMed]

1991 (1)

W. Zijlstra, A. Buursma, and W. Meeuwsen-Van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
[PubMed]

1989 (1)

S. Barker, K. Tremper, and J. Hyatt, “Effects of methemoglobinemia on pulse oximetry and mixed venous oximetry,” Anesthesiology 70(1), 112–117 (1989).
[Crossref] [PubMed]

1987 (1)

S. J. Barker and K. K. Tremper, “The effect of carbon monoxide inhalation on pulse oximetry and transcutaneous PO2,“ Anesthesiology 66(5), 677–679 (1987).
[Crossref] [PubMed]

1983 (1)

P. Cornelissen, C. van Woensel, W. Van Oel, and P. De Jong, “Correction factors for hemoglobin derivatives in fetal blood, as measured with the il 282 co-oximeter,” Clin. Chem. 29(8), 1555–1556 (1983).
[PubMed]

1974 (1)

T. Aoyagi, M. Kishi, K. Yamaguchi, and S. Watanabe, “Improvement of the earpiece oximeter,” Japanese Society of Medical Electronics and Biological Engineering,  197490–91 (1974).

Adler, A.

G. Clarke, A. Chan, and A. Adler, “Effects of motion artifact on the blood oxygen saturation estimate in pulse oximetry,” in Medical Measurements and Applications (MeMeA), 2014 IEEE International Symposium on, (IEEE, 2014), pp. 1–4.

Aoyagi, T.

T. Aoyagi, M. Kishi, K. Yamaguchi, and S. Watanabe, “Improvement of the earpiece oximeter,” Japanese Society of Medical Electronics and Biological Engineering,  197490–91 (1974).

Badal, J.

S. Barker and J. Badal, “The measurement of dyshemoglobins and total hemoglobin by pulse oximetry,” Current Opinion in Anesthesiology 21(6), 805–810 (2008).
[Crossref] [PubMed]

Barker, S.

S. Barker and J. Badal, “The measurement of dyshemoglobins and total hemoglobin by pulse oximetry,” Current Opinion in Anesthesiology 21(6), 805–810 (2008).
[Crossref] [PubMed]

S. Barker, K. Tremper, and J. Hyatt, “Effects of methemoglobinemia on pulse oximetry and mixed venous oximetry,” Anesthesiology 70(1), 112–117 (1989).
[Crossref] [PubMed]

Barker, S. J.

S. J. Barker and K. K. Tremper, “The effect of carbon monoxide inhalation on pulse oximetry and transcutaneous PO2,“ Anesthesiology 66(5), 677–679 (1987).
[Crossref] [PubMed]

Bartula, M.

W. Verkruysse, M. Bartula, E. Bresch, M. Rocque, M. Meftah, and I. Kirenko, “Calibration of contactless pulse oximetry,” Anesth. Analg. 124(1), 136 (2017).
[Crossref]

Belhage, B.

T. Jensen, S. Duun, J. Larsen, R. Haahr, M. Toft, B. Belhage, and E. Thomsen, “Independent component analysis applied to pulse oximetry in the estimation of the arterial oxygen saturation (SpO2)-a comparative study,” in Engineering in Medicine and Biology Society, 2009. Annual International Conference of the IEEE, (IEEE, 2009), pp. 4039–4044.

Bresch, E.

W. Verkruysse, M. Bartula, E. Bresch, M. Rocque, M. Meftah, and I. Kirenko, “Calibration of contactless pulse oximetry,” Anesth. Analg. 124(1), 136 (2017).
[Crossref]

Buursma, A.

W. Zijlstra, A. Buursma, and W. Meeuwsen-Van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
[PubMed]

Chan, A.

G. Clarke, A. Chan, and A. Adler, “Effects of motion artifact on the blood oxygen saturation estimate in pulse oximetry,” in Medical Measurements and Applications (MeMeA), 2014 IEEE International Symposium on, (IEEE, 2014), pp. 1–4.

Chan, E.

E. Chan, M. Chan, and M. Chan, “Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations,” Respir. Med. 107(6), 789–799 (2013).
[Crossref] [PubMed]

Chan, M.

E. Chan, M. Chan, and M. Chan, “Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations,” Respir. Med. 107(6), 789–799 (2013).
[Crossref] [PubMed]

E. Chan, M. Chan, and M. Chan, “Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations,” Respir. Med. 107(6), 789–799 (2013).
[Crossref] [PubMed]

Christiani, D.

M. Marshall, S. Kales, D. Christiani, and R. Goldman, “Are reference intervals for carboxyhemoglobin appropriate? A survey of Boston area laboratories,” Clin. Chem. 41(10), 1434–1438 (1995).
[PubMed]

Clarke, G.

G. Clarke, A. Chan, and A. Adler, “Effects of motion artifact on the blood oxygen saturation estimate in pulse oximetry,” in Medical Measurements and Applications (MeMeA), 2014 IEEE International Symposium on, (IEEE, 2014), pp. 1–4.

Cornelissen, P.

P. Cornelissen, C. van Woensel, W. Van Oel, and P. De Jong, “Correction factors for hemoglobin derivatives in fetal blood, as measured with the il 282 co-oximeter,” Clin. Chem. 29(8), 1555–1556 (1983).
[PubMed]

Cowan, H.

B. Wilson, H. Cowan, J. Lord, D. Zuege, and D. Zygun, “The accuracy of pulse oximetry in emergency department patients with severe sepsis and septic shock: a retrospective cohort study,” BMC Emerg. Med. 10(1), 9 (2010).
[Crossref] [PubMed]

de Haan, G.

M. van Gastel, S. Stuijk, and G. de Haan, “New principle for measuring arterial blood oxygenation, enabling motion-robust remote monitoring,” Sci. Rep. 6, 38609 (2016).
[Crossref] [PubMed]

De Jong, P.

P. Cornelissen, C. van Woensel, W. Van Oel, and P. De Jong, “Correction factors for hemoglobin derivatives in fetal blood, as measured with the il 282 co-oximeter,” Clin. Chem. 29(8), 1555–1556 (1983).
[PubMed]

Duun, S.

T. Jensen, S. Duun, J. Larsen, R. Haahr, M. Toft, B. Belhage, and E. Thomsen, “Independent component analysis applied to pulse oximetry in the estimation of the arterial oxygen saturation (SpO2)-a comparative study,” in Engineering in Medicine and Biology Society, 2009. Annual International Conference of the IEEE, (IEEE, 2009), pp. 4039–4044.

Eriksson, L.

R. Miller, L. Eriksson, L. Fleisher, J. Wiener-Kronish, and W. Young, Anesthesia (Elsevier Health Sciences, 2009).

Erofeev, N. P.

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5, 10494 (2015).
[Crossref] [PubMed]

Fleisher, L.

R. Miller, L. Eriksson, L. Fleisher, J. Wiener-Kronish, and W. Young, Anesthesia (Elsevier Health Sciences, 2009).

Goldman, R.

M. Marshall, S. Kales, D. Christiani, and R. Goldman, “Are reference intervals for carboxyhemoglobin appropriate? A survey of Boston area laboratories,” Clin. Chem. 41(10), 1434–1438 (1995).
[PubMed]

Gurov, I. P.

M. V. Volkov, N. B. Margaryants, A. V. Potemkin, M. A. Volynsky, I. P. Gurov, O. V. Mamontov, and A. A. Kamshilin, “Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance,” Sci. Rep. 7, 13298 (2017).
[Crossref] [PubMed]

Haahr, R.

T. Jensen, S. Duun, J. Larsen, R. Haahr, M. Toft, B. Belhage, and E. Thomsen, “Independent component analysis applied to pulse oximetry in the estimation of the arterial oxygen saturation (SpO2)-a comparative study,” in Engineering in Medicine and Biology Society, 2009. Annual International Conference of the IEEE, (IEEE, 2009), pp. 4039–4044.

Hyatt, J.

S. Barker, K. Tremper, and J. Hyatt, “Effects of methemoglobinemia on pulse oximetry and mixed venous oximetry,” Anesthesiology 70(1), 112–117 (1989).
[Crossref] [PubMed]

Jensen, T.

T. Jensen, S. Duun, J. Larsen, R. Haahr, M. Toft, B. Belhage, and E. Thomsen, “Independent component analysis applied to pulse oximetry in the estimation of the arterial oxygen saturation (SpO2)-a comparative study,” in Engineering in Medicine and Biology Society, 2009. Annual International Conference of the IEEE, (IEEE, 2009), pp. 4039–4044.

Kales, S.

M. Marshall, S. Kales, D. Christiani, and R. Goldman, “Are reference intervals for carboxyhemoglobin appropriate? A survey of Boston area laboratories,” Clin. Chem. 41(10), 1434–1438 (1995).
[PubMed]

Kamshilin, A. A.

M. V. Volkov, N. B. Margaryants, A. V. Potemkin, M. A. Volynsky, I. P. Gurov, O. V. Mamontov, and A. A. Kamshilin, “Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance,” Sci. Rep. 7, 13298 (2017).
[Crossref] [PubMed]

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5, 10494 (2015).
[Crossref] [PubMed]

Kirenko, I.

W. Verkruysse, M. Bartula, E. Bresch, M. Rocque, M. Meftah, and I. Kirenko, “Calibration of contactless pulse oximetry,” Anesth. Analg. 124(1), 136 (2017).
[Crossref]

Kishi, M.

T. Aoyagi, M. Kishi, K. Yamaguchi, and S. Watanabe, “Improvement of the earpiece oximeter,” Japanese Society of Medical Electronics and Biological Engineering,  197490–91 (1974).

Komalla, N.

M. Ram, K. Madhav, E. Krishna, N. Komalla, and K. Reddy, “A novel approach for motion artifact reduction in ppg signals based on as-lms adaptive filter,” IEEE Trans. Instrum. Meas. 61(5), 1445–1457 (2012).
[Crossref]

Krishna, E.

M. Ram, K. Madhav, E. Krishna, N. Komalla, and K. Reddy, “A novel approach for motion artifact reduction in ppg signals based on as-lms adaptive filter,” IEEE Trans. Instrum. Meas. 61(5), 1445–1457 (2012).
[Crossref]

Larsen, J.

T. Jensen, S. Duun, J. Larsen, R. Haahr, M. Toft, B. Belhage, and E. Thomsen, “Independent component analysis applied to pulse oximetry in the estimation of the arterial oxygen saturation (SpO2)-a comparative study,” in Engineering in Medicine and Biology Society, 2009. Annual International Conference of the IEEE, (IEEE, 2009), pp. 4039–4044.

Lord, J.

B. Wilson, H. Cowan, J. Lord, D. Zuege, and D. Zygun, “The accuracy of pulse oximetry in emergency department patients with severe sepsis and septic shock: a retrospective cohort study,” BMC Emerg. Med. 10(1), 9 (2010).
[Crossref] [PubMed]

Madhav, K.

M. Ram, K. Madhav, E. Krishna, N. Komalla, and K. Reddy, “A novel approach for motion artifact reduction in ppg signals based on as-lms adaptive filter,” IEEE Trans. Instrum. Meas. 61(5), 1445–1457 (2012).
[Crossref]

Mamontov, O. V.

M. V. Volkov, N. B. Margaryants, A. V. Potemkin, M. A. Volynsky, I. P. Gurov, O. V. Mamontov, and A. A. Kamshilin, “Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance,” Sci. Rep. 7, 13298 (2017).
[Crossref] [PubMed]

Margaryants, N. B.

M. V. Volkov, N. B. Margaryants, A. V. Potemkin, M. A. Volynsky, I. P. Gurov, O. V. Mamontov, and A. A. Kamshilin, “Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance,” Sci. Rep. 7, 13298 (2017).
[Crossref] [PubMed]

Marshall, M.

M. Marshall, S. Kales, D. Christiani, and R. Goldman, “Are reference intervals for carboxyhemoglobin appropriate? A survey of Boston area laboratories,” Clin. Chem. 41(10), 1434–1438 (1995).
[PubMed]

Meeuwsen-Van der Roest, W.

W. Zijlstra, A. Buursma, and W. Meeuwsen-Van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
[PubMed]

Meftah, M.

W. Verkruysse, M. Bartula, E. Bresch, M. Rocque, M. Meftah, and I. Kirenko, “Calibration of contactless pulse oximetry,” Anesth. Analg. 124(1), 136 (2017).
[Crossref]

Miller, R.

R. Miller, L. Eriksson, L. Fleisher, J. Wiener-Kronish, and W. Young, Anesthesia (Elsevier Health Sciences, 2009).

Nippolainen, E.

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5, 10494 (2015).
[Crossref] [PubMed]

Oates, A.

V. Rajadurai, A. Walker, V. Yu, and A. Oates, “Effect of fetal haemoglobin on the accuracy of pulse oximetry in preterm infants,” J. Paediatr. Child Health 28(1), 43–46 (1992).
[Crossref] [PubMed]

Podolian, N. P.

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5, 10494 (2015).
[Crossref] [PubMed]

Potemkin, A. V.

M. V. Volkov, N. B. Margaryants, A. V. Potemkin, M. A. Volynsky, I. P. Gurov, O. V. Mamontov, and A. A. Kamshilin, “Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance,” Sci. Rep. 7, 13298 (2017).
[Crossref] [PubMed]

Rajadurai, V.

V. Rajadurai, A. Walker, V. Yu, and A. Oates, “Effect of fetal haemoglobin on the accuracy of pulse oximetry in preterm infants,” J. Paediatr. Child Health 28(1), 43–46 (1992).
[Crossref] [PubMed]

Ram, M.

M. Ram, K. Madhav, E. Krishna, N. Komalla, and K. Reddy, “A novel approach for motion artifact reduction in ppg signals based on as-lms adaptive filter,” IEEE Trans. Instrum. Meas. 61(5), 1445–1457 (2012).
[Crossref]

Reddy, K.

M. Ram, K. Madhav, E. Krishna, N. Komalla, and K. Reddy, “A novel approach for motion artifact reduction in ppg signals based on as-lms adaptive filter,” IEEE Trans. Instrum. Meas. 61(5), 1445–1457 (2012).
[Crossref]

Reuss, J. L.

J. L. Reuss, “Multilayer modeling of reflectance pulse oximetry,” IEEE Trans. Biomed. Eng. 52(2), 153–159 (2005).
[Crossref] [PubMed]

J. L. Reuss and D. Siker, “The pulse in reflectance pulse oximetry: modeling and experimental studies,” J. Clin. Monit. Comput. 18(4), 289–299 (2004).
[Crossref]

Rocque, M.

W. Verkruysse, M. Bartula, E. Bresch, M. Rocque, M. Meftah, and I. Kirenko, “Calibration of contactless pulse oximetry,” Anesth. Analg. 124(1), 136 (2017).
[Crossref]

Romashko, R. V.

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5, 10494 (2015).
[Crossref] [PubMed]

Secker, C.

C. Secker and P. Spiers, “Accuracy of pulse oximetry in patients with low systemic vascular resistance,” Anaesthesia 52(2), 127–130 (1997).
[Crossref] [PubMed]

Sidorov, I. S.

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5, 10494 (2015).
[Crossref] [PubMed]

Siker, D.

J. L. Reuss and D. Siker, “The pulse in reflectance pulse oximetry: modeling and experimental studies,” J. Clin. Monit. Comput. 18(4), 289–299 (2004).
[Crossref]

Spiers, P.

C. Secker and P. Spiers, “Accuracy of pulse oximetry in patients with low systemic vascular resistance,” Anaesthesia 52(2), 127–130 (1997).
[Crossref] [PubMed]

Stuijk, S.

M. van Gastel, S. Stuijk, and G. de Haan, “New principle for measuring arterial blood oxygenation, enabling motion-robust remote monitoring,” Sci. Rep. 6, 38609 (2016).
[Crossref] [PubMed]

Thomsen, E.

T. Jensen, S. Duun, J. Larsen, R. Haahr, M. Toft, B. Belhage, and E. Thomsen, “Independent component analysis applied to pulse oximetry in the estimation of the arterial oxygen saturation (SpO2)-a comparative study,” in Engineering in Medicine and Biology Society, 2009. Annual International Conference of the IEEE, (IEEE, 2009), pp. 4039–4044.

Toft, M.

T. Jensen, S. Duun, J. Larsen, R. Haahr, M. Toft, B. Belhage, and E. Thomsen, “Independent component analysis applied to pulse oximetry in the estimation of the arterial oxygen saturation (SpO2)-a comparative study,” in Engineering in Medicine and Biology Society, 2009. Annual International Conference of the IEEE, (IEEE, 2009), pp. 4039–4044.

Tremper, K.

S. Barker, K. Tremper, and J. Hyatt, “Effects of methemoglobinemia on pulse oximetry and mixed venous oximetry,” Anesthesiology 70(1), 112–117 (1989).
[Crossref] [PubMed]

Tremper, K. K.

S. J. Barker and K. K. Tremper, “The effect of carbon monoxide inhalation on pulse oximetry and transcutaneous PO2,“ Anesthesiology 66(5), 677–679 (1987).
[Crossref] [PubMed]

van Gastel, M.

M. van Gastel, S. Stuijk, and G. de Haan, “New principle for measuring arterial blood oxygenation, enabling motion-robust remote monitoring,” Sci. Rep. 6, 38609 (2016).
[Crossref] [PubMed]

Van Oel, W.

P. Cornelissen, C. van Woensel, W. Van Oel, and P. De Jong, “Correction factors for hemoglobin derivatives in fetal blood, as measured with the il 282 co-oximeter,” Clin. Chem. 29(8), 1555–1556 (1983).
[PubMed]

van Woensel, C.

P. Cornelissen, C. van Woensel, W. Van Oel, and P. De Jong, “Correction factors for hemoglobin derivatives in fetal blood, as measured with the il 282 co-oximeter,” Clin. Chem. 29(8), 1555–1556 (1983).
[PubMed]

Vasilev, P. V.

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5, 10494 (2015).
[Crossref] [PubMed]

Verkruysse, W.

W. Verkruysse, M. Bartula, E. Bresch, M. Rocque, M. Meftah, and I. Kirenko, “Calibration of contactless pulse oximetry,” Anesth. Analg. 124(1), 136 (2017).
[Crossref]

Volkov, M. V.

M. V. Volkov, N. B. Margaryants, A. V. Potemkin, M. A. Volynsky, I. P. Gurov, O. V. Mamontov, and A. A. Kamshilin, “Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance,” Sci. Rep. 7, 13298 (2017).
[Crossref] [PubMed]

Volynsky, M. A.

M. V. Volkov, N. B. Margaryants, A. V. Potemkin, M. A. Volynsky, I. P. Gurov, O. V. Mamontov, and A. A. Kamshilin, “Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance,” Sci. Rep. 7, 13298 (2017).
[Crossref] [PubMed]

Walker, A.

V. Rajadurai, A. Walker, V. Yu, and A. Oates, “Effect of fetal haemoglobin on the accuracy of pulse oximetry in preterm infants,” J. Paediatr. Child Health 28(1), 43–46 (1992).
[Crossref] [PubMed]

Watanabe, S.

T. Aoyagi, M. Kishi, K. Yamaguchi, and S. Watanabe, “Improvement of the earpiece oximeter,” Japanese Society of Medical Electronics and Biological Engineering,  197490–91 (1974).

Wiener-Kronish, J.

R. Miller, L. Eriksson, L. Fleisher, J. Wiener-Kronish, and W. Young, Anesthesia (Elsevier Health Sciences, 2009).

Wilson, B.

B. Wilson, H. Cowan, J. Lord, D. Zuege, and D. Zygun, “The accuracy of pulse oximetry in emergency department patients with severe sepsis and septic shock: a retrospective cohort study,” BMC Emerg. Med. 10(1), 9 (2010).
[Crossref] [PubMed]

Yamaguchi, K.

T. Aoyagi, M. Kishi, K. Yamaguchi, and S. Watanabe, “Improvement of the earpiece oximeter,” Japanese Society of Medical Electronics and Biological Engineering,  197490–91 (1974).

Young, W.

R. Miller, L. Eriksson, L. Fleisher, J. Wiener-Kronish, and W. Young, Anesthesia (Elsevier Health Sciences, 2009).

Yu, V.

V. Rajadurai, A. Walker, V. Yu, and A. Oates, “Effect of fetal haemoglobin on the accuracy of pulse oximetry in preterm infants,” J. Paediatr. Child Health 28(1), 43–46 (1992).
[Crossref] [PubMed]

Zijlstra, W.

W. Zijlstra, A. Buursma, and W. Meeuwsen-Van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
[PubMed]

Zuege, D.

B. Wilson, H. Cowan, J. Lord, D. Zuege, and D. Zygun, “The accuracy of pulse oximetry in emergency department patients with severe sepsis and septic shock: a retrospective cohort study,” BMC Emerg. Med. 10(1), 9 (2010).
[Crossref] [PubMed]

Zygun, D.

B. Wilson, H. Cowan, J. Lord, D. Zuege, and D. Zygun, “The accuracy of pulse oximetry in emergency department patients with severe sepsis and septic shock: a retrospective cohort study,” BMC Emerg. Med. 10(1), 9 (2010).
[Crossref] [PubMed]

Anaesthesia (1)

C. Secker and P. Spiers, “Accuracy of pulse oximetry in patients with low systemic vascular resistance,” Anaesthesia 52(2), 127–130 (1997).
[Crossref] [PubMed]

Anesth. Analg. (1)

W. Verkruysse, M. Bartula, E. Bresch, M. Rocque, M. Meftah, and I. Kirenko, “Calibration of contactless pulse oximetry,” Anesth. Analg. 124(1), 136 (2017).
[Crossref]

Anesthesiology (2)

S. J. Barker and K. K. Tremper, “The effect of carbon monoxide inhalation on pulse oximetry and transcutaneous PO2,“ Anesthesiology 66(5), 677–679 (1987).
[Crossref] [PubMed]

S. Barker, K. Tremper, and J. Hyatt, “Effects of methemoglobinemia on pulse oximetry and mixed venous oximetry,” Anesthesiology 70(1), 112–117 (1989).
[Crossref] [PubMed]

BMC Emerg. Med. (1)

B. Wilson, H. Cowan, J. Lord, D. Zuege, and D. Zygun, “The accuracy of pulse oximetry in emergency department patients with severe sepsis and septic shock: a retrospective cohort study,” BMC Emerg. Med. 10(1), 9 (2010).
[Crossref] [PubMed]

Clin. Chem. (3)

M. Marshall, S. Kales, D. Christiani, and R. Goldman, “Are reference intervals for carboxyhemoglobin appropriate? A survey of Boston area laboratories,” Clin. Chem. 41(10), 1434–1438 (1995).
[PubMed]

W. Zijlstra, A. Buursma, and W. Meeuwsen-Van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991).
[PubMed]

P. Cornelissen, C. van Woensel, W. Van Oel, and P. De Jong, “Correction factors for hemoglobin derivatives in fetal blood, as measured with the il 282 co-oximeter,” Clin. Chem. 29(8), 1555–1556 (1983).
[PubMed]

Current Opinion in Anesthesiology (1)

S. Barker and J. Badal, “The measurement of dyshemoglobins and total hemoglobin by pulse oximetry,” Current Opinion in Anesthesiology 21(6), 805–810 (2008).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

J. L. Reuss, “Multilayer modeling of reflectance pulse oximetry,” IEEE Trans. Biomed. Eng. 52(2), 153–159 (2005).
[Crossref] [PubMed]

IEEE Trans. Instrum. Meas. (1)

M. Ram, K. Madhav, E. Krishna, N. Komalla, and K. Reddy, “A novel approach for motion artifact reduction in ppg signals based on as-lms adaptive filter,” IEEE Trans. Instrum. Meas. 61(5), 1445–1457 (2012).
[Crossref]

J. Clin. Monit. Comput. (1)

J. L. Reuss and D. Siker, “The pulse in reflectance pulse oximetry: modeling and experimental studies,” J. Clin. Monit. Comput. 18(4), 289–299 (2004).
[Crossref]

J. Paediatr. Child Health (1)

V. Rajadurai, A. Walker, V. Yu, and A. Oates, “Effect of fetal haemoglobin on the accuracy of pulse oximetry in preterm infants,” J. Paediatr. Child Health 28(1), 43–46 (1992).
[Crossref] [PubMed]

Japanese Society of Medical Electronics and Biological Engineering (1)

T. Aoyagi, M. Kishi, K. Yamaguchi, and S. Watanabe, “Improvement of the earpiece oximeter,” Japanese Society of Medical Electronics and Biological Engineering,  197490–91 (1974).

Respir. Med. (1)

E. Chan, M. Chan, and M. Chan, “Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations,” Respir. Med. 107(6), 789–799 (2013).
[Crossref] [PubMed]

Sci. Rep. (3)

M. van Gastel, S. Stuijk, and G. de Haan, “New principle for measuring arterial blood oxygenation, enabling motion-robust remote monitoring,” Sci. Rep. 6, 38609 (2016).
[Crossref] [PubMed]

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5, 10494 (2015).
[Crossref] [PubMed]

M. V. Volkov, N. B. Margaryants, A. V. Potemkin, M. A. Volynsky, I. P. Gurov, O. V. Mamontov, and A. A. Kamshilin, “Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance,” Sci. Rep. 7, 13298 (2017).
[Crossref] [PubMed]

Other (3)

R. Miller, L. Eriksson, L. Fleisher, J. Wiener-Kronish, and W. Young, Anesthesia (Elsevier Health Sciences, 2009).

G. Clarke, A. Chan, and A. Adler, “Effects of motion artifact on the blood oxygen saturation estimate in pulse oximetry,” in Medical Measurements and Applications (MeMeA), 2014 IEEE International Symposium on, (IEEE, 2014), pp. 1–4.

T. Jensen, S. Duun, J. Larsen, R. Haahr, M. Toft, B. Belhage, and E. Thomsen, “Independent component analysis applied to pulse oximetry in the estimation of the arterial oxygen saturation (SpO2)-a comparative study,” in Engineering in Medicine and Biology Society, 2009. Annual International Conference of the IEEE, (IEEE, 2009), pp. 4039–4044.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Optical absorbance spectra of oxyhemoglobin (HbO2), reduced hemoglobin (Hb), carboxyhemoglobin (COHb) and methemoglobin (MetHb) [4].
Fig. 2
Fig. 2 Using three instead of two wavelengths for APBV improves robustness since motion affects all wavelengths equally. In contrast to the three wavelength calibration model (right), there does exist a motion-similar pulse signature when using two wavelengths, making it unable to distinguish between the pulse signal and motion.
Fig. 3
Fig. 3 Simulations on how the ratio-of-ratios based SpO2 readings are affected for different concentrations of the dyshemoglobins (a) carboxyhemoglobin and (b) methemoglobin. The two wavelengths used are 660 and 940nm, which are commonly used in pulse-oximeters.
Fig. 4
Fig. 4 Simulations on how the APBV-based SpO2 readings are affected for different concentrations of the dyshemoglobins (a) carboxyhemoglobin and (b) methemoglobin. The two wavelengths used are 660 and 940nm, which are commonly used in pulse-oximeters. Although in large agreements with Fig. 3, there are differences observable because of the different selection criterium and restricted search area.
Fig. 5
Fig. 5 Illustration of the simultaneous SpO2 and dyshemoglobin concentration measurement principle based on synthetic PPG data, with the oxygenation level set at 95% and the dyshemoglobin concentration set at 5%.
Fig. 6
Fig. 6 The results of the wavelengths search for (left) SpO2 contrast, and (right) motion robustness. The displayed values represent the angle (in degrees) between the pulse vector at 0% and 100% SpO2 (left), and the angle between the pulse and motion vector (right).
Fig. 7
Fig. 7 Motion robustness is a function of the blood oxygenation level. We therefore investigated the robustness for 80, 90 and 100% SpO2. It can be observed that within this range motion robustness reduces for decreasing oxygenation levels.
Fig. 8
Fig. 8 Normalized error for COHb (a) and MetHb (b) when SpO2 is calibrated for functional SaO2 (left) and fractional SaO2 (right). The error is calculated for a three wavelengths system with the middle wavelength linearly interpolated between the first and third wavelength.
Fig. 9
Fig. 9 Results of the combined objective function with equal weights and λ 2 = λ 1 + λ 3 2.
Fig. 10
Fig. 10 Comparison between the calibration curves of fetal and adult hemoglobin (left) and the corresponding error (right).

Tables (3)

Tables Icon

Table 1 Results from the full-search for a combination of objective functions. Allowing only invisible NIR wavelengths shifts the shortest wavelength to 700nm. The corresponding objective value reduction is denoted with ∆.

Tables Icon

Table 2 Results of the extended RR and APBV methods to simultaneously measure SpO2 and the dyshemoglobin concentration. The results are obtained on synthetic PPG data with a CO-level of 10%.

Tables Icon

Table 3 Results obtained on the smokers (S) versus non-smokers (N-S) dataset.

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 e A = I 0 e ϵ ( λ ) c l ,
I = I 0 e i = 1 N ϵ i ( λ ) c i l i .
I = I 0 e [ ϵ D C c D C l D C + ϵ A C c A C l A C ] .
S a O 2 = c H b O 2 c H b + c H b O 2 × 100 % ,
I s I d = I m i n I m a x = I 0 e ϵ D C c D C l D C ϵ A C c A C ( l A C + Δ l ) I 0 e ϵ D C c D C l D C ϵ A C c A C l A C = I 0 e ϵ D C c D C l D C [ ϵ H b c H b + ϵ H b O 2 c H b O 2 ] ( l a + Δ l ) I 0 e ϵ D C c D C l D C [ ϵ H b c H b + ϵ H b O 2 c H b O 2 ] l a ,
l n ( I s I d ) = [ ϵ H b c H b + ϵ H b O 2 c H b O 2 ] Δ l = Δ A A C D C ,
R = Δ A ( λ 1 ) Δ A ( λ 2 ) = A s y s t o l e ( λ 1 ) A d i a s t o l e ( λ 1 ) A s y s t o l e ( λ 2 ) A d i a s t o l e ( λ 2 ) = [ ϵ H b ( λ 1 ) c H b + ϵ H b O 2 ( λ 1 ) c H b O 2 ] Δ l 1 [ ϵ H b ( λ 2 ) c H b + ϵ H b O 2 ( λ 2 ) c H b O 2 ] Δ l 2 .
R = ϵ H b ( λ 1 ) + S a O 2 [ ϵ H b O 2 ( λ 1 ) ϵ H b ( λ 1 ) ] ϵ H b ( λ 2 ) + S a O 2 [ ϵ H b O 2 ( λ 2 ) ϵ H b ( λ 2 ) ] = l n ( I s I d ) λ 1 l n ( I s I d ) λ 2 ( A C D C ) λ 1 ( A C D C ) λ 2 .
S p O 2 = ϵ H b ( λ 1 ) ϵ H b ( λ 2 ) R ϵ H b ( λ 1 ) ϵ H b O 2 ( λ 1 ) + [ ϵ H b O 2 ( λ 2 ) ϵ H b ( λ 2 ) ] R × 100 %
S p O 2 = arg max S p O 2 ϵ Sp O 2 S N R ( k P b v ( S p O 2 ) [ C n C n T ] 1 W P B V C n ) ,
P b v = [ ( A C D C ) 1 ( A C D C ) 2 ( A C D C ) N ] = [ λ I ( λ ) F 1 ( λ ) C ( λ ) P P G ( λ ) d λ λ I ( λ ) F 1 ( λ ) C ( λ ) ρ s ( λ ) d λ λ I ( λ ) F 2 ( λ ) C ( λ ) P P G ( λ ) d λ λ I ( λ ) F 1 ( λ ) C ( λ ) ρ s ( λ ) d λ λ I ( λ ) F N ( λ ) C ( λ ) P P G ( λ ) d λ λ I ( λ ) F N ( λ ) C ( λ ) ρ s ( λ ) d λ ] .
P P G ( λ ) ϵ H b ( λ ) c H b + ϵ H b O 2 ( λ ) c H b O 2 = ( 1 S a O 2 ) ϵ H b ( λ ) + S a O 2 ϵ H b O 2 ( λ ) = ϵ H b ( λ ) + S a O 2 [ ϵ H b O 2 ( λ ) ϵ H b ( λ ) ] ,
S a O 2 f u n c t i o n a l = c H b O 2 c H b + c H b O 2 .
S a O 2 f u n c t i o n a l = c H b O 2 c H b + c H b O 2 + c D y s H b = c H b O 2 c H b + c H b O 2 + c C O H b + c M e t H b .
χ i = C i i = 1 N C i .
R = Δ A ( λ 1 ) Δ A ( λ 2 ) = χ H b ϵ H b ( λ 1 ) + χ H b O 2 ϵ H b O 2 ( λ 1 ) + χ D y s H b ϵ D y s H b ( λ 1 ) χ H b ϵ H b ( λ 2 ) + χ H b O 2 ϵ H b O 2 ( λ 2 ) + χ D y s H b ϵ D y s H b ( λ 2 ) ,
S p O 2 = χ H b O 2 + χ H b ( ϵ H b ( λ 1 ) ϵ H b ( λ 2 ) ϵ H b ( λ 2 ) ϵ H b ( λ 1 ) ϵ H b ( λ 1 ) ϵ H b O 2 ( λ 2 ) ϵ H b ( λ 2 ) ϵ H b O 2 ( λ 1 ) ) = 0 + χ D y s H b ( ϵ H b ( λ 1 ) ϵ D y s H b ( λ 2 ) ϵ H b ( λ 2 ) ϵ D y s H b ( λ 1 ) ϵ H b ( λ 1 ) ϵ H b O 2 ( λ 2 ) ϵ H b ( λ 2 ) ϵ H b O 2 ( λ 1 ) ) α χ H b O 2 + χ H b ( ϵ H b O 2 ( λ 2 ) ϵ H b ( λ 1 ) ϵ H b O 2 ( λ 1 ) ϵ H b ( λ 2 ) ϵ H b ( λ 1 ) ϵ H b O 2 ( λ 2 ) ϵ H b ( λ 2 ) ϵ H b O 2 ( λ 1 ) ) = 1 + χ D y s H b ( ϵ D y s H b ( λ 2 ) [ ϵ H b ( λ 1 ) ϵ H b O 2 ( λ 1 ) ] ϵ D y s H b ( λ 1 ) ( ϵ H b ( λ 2 ) ϵ H b O 2 ( λ 2 ) ) ϵ H b ( λ 1 ) ϵ H b O 2 ( λ 2 ) ϵ H b ( λ 2 ) ϵ H b O 2 ( λ 1 ) ) β × 100 % ,
S p O 2 = χ H b O 2 + α χ D y s H b χ H b O 2 + χ H b + β χ D y s H b × 100 % .
S a O 2 f r a c t i o n a l = 1 χ H b χ D y s H b S a O 2 f u n c t i o n a l = 1 χ H b χ D y s H b 1 χ D y s H b .
S p O 2 = S a O 2 f r a c t i o n a l + α χ D y s H b 1 + ( β 1 ) χ D y s H b × 100 % S p O 2 = S a O 2 f u n c t i o n a l ( 1 χ D y s H b ) + α χ D y s H b 1 + ( β 1 ) χ D y s H b × 100 % .
P P G ( λ ) χ H b ϵ H b ( λ ) + χ H b O 2 ϵ H b O 2 ( λ ) + χ D y s H b ϵ D y s H b ( λ ) .
P b v ( S a O 2 f r a c t i o n a l , χ D y s H b ) = [ λ I ( λ ) F 1 ( λ ) C ( λ ) [ S a O 2 f r a c t i o n a l ( ϵ H b O 2 ϵ H b ) + χ D y s H b ( ϵ D y s H b ϵ H b ) + ϵ H b ] d λ λ I ( λ ) F 1 ( λ ) C ( λ ) ρ s ( λ ) d λ λ I ( λ ) F 2 ( λ ) C ( λ ) [ S a O 2 f r a c t i o n a l ( ϵ H b O 2 ϵ H b ) + χ D y s H b ( ϵ D y s H b ϵ H b ) + ϵ H b ] d λ λ I ( λ ) F 2 ( λ ) C ( λ ) ρ s ( λ ) d λ λ I ( λ ) F N ( λ ) C ( λ ) [ S a O 2 f r a c t i o n a l ( ϵ H b O 2 ϵ H b ) + χ D y s H b ( ϵ D y s H b ϵ H b ) + ϵ H b ] d λ λ I ( λ ) F N ( λ ) C ( λ ) ρ s ( λ ) d λ ] ,
P b v ( S a O 2 f u n c t i o n a l , χ D y s H b ) = [ λ I ( λ ) F 1 ( λ ) C ( λ ) [ S a O 2 f u n c t i o n a l ( ϵ H b O 2 + ϵ H b ( χ D y s H b 1 ) ) + χ D y s H b ( ϵ D y s H b ϵ H b ) + ϵ H b ] d λ λ I ( λ ) F 1 ( λ ) C ( λ ) ρ s ( λ ) d λ λ I ( λ ) F 2 ( λ ) C ( λ ) [ S a O 2 f u n c t i o n a l ( ϵ H b O 2 + ϵ H b ( χ D y s H b 1 ) ) + χ D y s H b ( ϵ D y s H b ϵ H b ) + ϵ H b ] d λ λ I ( λ ) F 2 ( λ ) C ( λ ) ρ s ( λ ) d λ λ I ( λ ) F N ( λ ) C ( λ ) [ S a O 2 f u n c t i o n a l ( ϵ H b O 2 + ϵ H b ( χ D y s H b 1 ) ) + χ D y s H b ( ϵ D y s H b ϵ H b ) + ϵ H b ] d λ λ I ( λ ) F N ( λ ) C ( λ ) ρ s ( λ ) d λ ] .
M o t i o n = ( S a O 2 Sa O 2 a c o s ( P b v ( S a O 2 ) 1 | P b v ( S a O 2 ) | | 1 | ) ) / S 0 ,
S p O 2 c o n t r a s t = a c o s ( P b v ( S a O 2 = 0 % ) P b v ( S a O 2 = 100 % ) | P b v ( S a O 2 = 0 % ) | | P b v ( S a O 2 = 100 % ) | ) .
{ λ 1 * , λ 2 * , λ 3 * } = arg max λ 1 , λ 2 , λ 3 λ | λ 1 < λ 2 < λ 3 α F S p O 2 c o n t r a s t + β F m o t i o n + γ F D y s H b + δ F P b v   c o n t r a s t .
P b v 1 ( S a O 2 ) = [ ( A C D C ) λ 1 ( A C D C ) λ 2 ( A C D C ) λ 3 ] , P b v 2 ( S a O 2 ) = [ ( A C D C ) λ 1 ( A C D C ) λ 2 ] , P b v 3 ( S a O 2 ) = [ ( A C D C ) λ 1 ( A C D C ) λ 3 ] , P b v 4 ( S a O 2 ) = [ ( A C D C ) λ 2 ( A C D C ) λ 3 ] ,
S i = W i C n i = k P b v i ( S a O 2 ) [ C n i C n iT ] 1 C n i for i = 1 , 2 , 3 , 4 .
S max i = arg max 1 j N F ( S i ) F ( S i ) * for i = 1 , 2 , 3 , 4
ζ = σ ( S m a x 1 , S m a x 2 , S m a x 3 , S m a x 4 ) .
P b v 1 ( S a O 2 , χ D y s H b ) = [ ( A C D C ) λ 1 ( A C D C ) λ 2 ( A C D C ) λ 3 ] , P b v 3 ( S a O 2 , χ D y s H b ) = [ ( A C D C ) λ 1 ( A C D C ) λ 3 ] , P b v 2 ( S a O 2 , χ D y s H b ) = [ ( A C D C ) λ 1 ( A C D C ) λ 2 ] , P b v 4 ( S a O 2 , χ D y s H b ) = [ ( A C D C ) λ 2 ( A C D C ) λ 3 ] ,
S i = W i C n i = k P b v i ( S a O 2 , χ D y s H b ) [ C n i C n iT ] 1 C n i for i = 1 , 2 , 3 , 4
S m a x i = arg max 1 j N F ( S i ) F ( S i ) * for i = 1 , 2 , 3 , 4
( S p O 2 , χ ^ D y s H b ) = arg min S a O 2 Sa O 2 , χ D y s H b χ D y s H b e σ ( S m a x 1 , S m a x 2 , S m a x 3 , S m a x 4 ) μ ( S N R ( S 1 ) , S N R ( S 2 ) , S N R ( S 3 ) , S N R ( S 4 ) ) ,

Metrics