Abstract

We demonstrate optical resolution photoacoustic microscopy (OR-PAM) of lipid-rich tissue between 1050–1714 nm using a pulsed supercontinuum laser based on a large-mode-area photonic crystal fiber. OR-PAM experiments of lipid-rich samples show the expected optical absorption peaks near 1210 and 1720 nm. These results show that pulsed supercontinuum lasers are promising for OR-PAM applications such as label-free histology of lipid-rich tissue and imaging small animal models of disease.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region

Manoj Kumar Dasa, Christos Markos, Michael Maria, Christian R. Petersen, Peter M. Moselund, and Ole Bang
Biomed. Opt. Express 9(4) 1762-1770 (2018)

Spectroscopic photoacoustic microscopy using a photonic crystal fiber supercontinuum source

Yazan N. Billeh, Mengyang Liu, and Takashi Buma
Opt. Express 18(18) 18519-18524 (2010)

Label-free imaging of zebrafish larvae in vivo by photoacoustic microscopy

Shuoqi Ye, Ran Yang, Jingwei Xiong, K. Kirk Shung, Qifa Zhou, Changhui Li, and Qiushi Ren
Biomed. Opt. Express 3(2) 360-365 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [Crossref]
  2. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  3. T. B. Huff and J.-X. Cheng, “In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue,” J. Microsc. 225(2), 175–182 (2007).
    [Crossref] [PubMed]
  4. C.-R. Hu, D. Zhang, M. N. Slipchenko, J.-X. Cheng, and B. Hu, “Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy,” J. Biomed. Opt. 19(8), 086005 (2014).
    [Crossref] [PubMed]
  5. M. J. den Broeder, M. J. B. Moester, J. H. Kamstra, P. H. Cenijn, V. Davidoiu, L. M. Kamminga, F. Ariese, J. F. de Boer, and J. Legler, “Altered adipogenesis in zebrafish larvae following high fat diet and chemical exposure is visualized by stimulated Raman scattering microscopy,” Int. J. Mol. Sci. 18(4), 894 (2017).
    [Crossref] [PubMed]
  6. C.-H. Chien, W.-W. Chen, J.-T. Wu, and T.-C. Chang, “Label-free imaging of Drosophila in vivo by coherent anti-Stokes Raman scattering and two-photon excitation autofluorescence microscopy,” J. Biomed. Opt. 16(1), 016012 (2011).
    [Crossref] [PubMed]
  7. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [Crossref] [PubMed]
  8. J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2(2), 87–101 (2014).
    [Crossref] [PubMed]
  9. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
    [Crossref] [PubMed]
  10. S. Ye, R. Yang, J. Xiong, K. K. Shung, Q. Zhou, C. Li, and Q. Ren, “Label-free imaging of zebrafish larvae in vivo by photoacoustic microscopy,” Biomed. Opt. Express 3(2), 360–365 (2012).
    [Crossref] [PubMed]
  11. K. Jansen, M. Wu, A. F. W. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
    [Crossref] [PubMed]
  12. B. Wang, A. Karpiouk, D. Yeager, J. Amirian, S. Litovsky, R. Smalling, and S. Emelianov, “Intravascular photoacoustic imaging of lipid in atherosclerotic plaques in the presence of luminal blood,” Opt. Lett. 37(7), 1244–1246 (2012).
    [Crossref] [PubMed]
  13. T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
    [Crossref] [PubMed]
  14. H.-W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J.-X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106(23), 238106 (2011).
    [Crossref] [PubMed]
  15. X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
    [Crossref] [PubMed]
  16. T. P. Matthews, C. Zhang, D.-K. Yao, K. Maslov, and L. V. Wang, “Label-free photoacoustic microscopy of peripheral nerves,” J. Biomed. Opt. 19(1), 016004 (2014).
    [Crossref] [PubMed]
  17. P. Wang, J. R. Rajian, and J.-X. Cheng, “Spectroscopic imaging of deep tissue through photoacoustic detection of molecular vibration,” J. Phys. Chem. Lett. 4(13), 2177–2185 (2013).
    [Crossref] [PubMed]
  18. T. Buma, B. C. Wilkinson, and T. C. Sheehan, “Near-infrared spectroscopic photoacoustic microscopy using a multi-color fiber laser source,” Biomed. Opt. Express 6(8), 2819–2829 (2015).
    [Crossref] [PubMed]
  19. T. Buma, J. L. Farland, and M. R. Ferrari, “Near-infrared multispectral photoacoustic microscopy using a graded-index fiber amplifier,” Photoacoustics 4(3), 83–90 (2016).
    [Crossref] [PubMed]
  20. P. Hajireza, A. Forbrich, and R. Zemp, “In-vivo functional optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source,” Biomed. Opt. Express 5(2), 539–546 (2014).
    [Crossref] [PubMed]
  21. E. M. Strohm, M. J. Moore, and M. C. Kolios, “High resolution ultrasound and photoacoustic imaging of single cells,” Photoacoustics 4(1), 36–42 (2016).
    [Crossref] [PubMed]
  22. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004).
    [Crossref] [PubMed]
  23. G. Agrawal, Nonlinear Fiber Optics, 4th ed., Academic Press, 2006.
  24. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  25. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26(17), 1356–1358 (2001).
    [Crossref] [PubMed]
  26. Y. N. Billeh, M. Liu, and T. Buma, “Spectroscopic photoacoustic microscopy using a photonic crystal fiber supercontinuum source,” Opt. Express 18(18), 18519–18524 (2010).
    [Crossref] [PubMed]
  27. C. Lee, M. Jeon, M. Y. Jeon, J. Kim, and C. Kim, “In vitro photoacoustic measurement of hemoglobin oxygen saturation using a single pulsed broadband supercontinuum laser source,” Appl. Opt. 53(18), 3884–3889 (2014).
    [Crossref] [PubMed]
  28. X. Shu, M. Bondu, B. Dong, A. Podoleanu, L. Leick, and H. F. Zhang, “Single all-fiber-based nanosecond-pulsed supercontinuum source for multispectral photoacoustic microscopy and optical coherence tomography,” Opt. Lett. 41(12), 2743–2746 (2016).
    [Crossref] [PubMed]
  29. M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy,” J. Biomed. Opt. 21(6), 061005 (2016).
    [Crossref] [PubMed]
  30. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref] [PubMed]
  31. R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
    [Crossref] [PubMed]
  32. Datasheet for LMA-PM-10, NKT Photonics, Inc.
  33. J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J.-X. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4(1), 11–21 (2016).
    [Crossref] [PubMed]
  34. E. L. Arrese and J. L. Soulages, “Insect fat body: energy, metabolism, and regulation,” Annu. Rev. Entomol. 55(1), 207–225 (2010).
    [Crossref] [PubMed]
  35. J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12(11), 113001 (2010).
    [Crossref]
  36. G. Genty, T. Ritari, and H. Ludvigsen, “Supercontinuum generation in large mode-area microstructured fibers,” Opt. Express 13(21), 8625–8633 (2005).
    [Crossref] [PubMed]
  37. Q. Chen, T. Jin, W. Qi, X. Mo, and L. Xi, “Label-free photoacoustic imaging of the cardio-cerebrovascular development in the embryonic zebrafish,” Biomed. Opt. Express 8(4), 2359–2367 (2017).
    [Crossref] [PubMed]

2017 (2)

M. J. den Broeder, M. J. B. Moester, J. H. Kamstra, P. H. Cenijn, V. Davidoiu, L. M. Kamminga, F. Ariese, J. F. de Boer, and J. Legler, “Altered adipogenesis in zebrafish larvae following high fat diet and chemical exposure is visualized by stimulated Raman scattering microscopy,” Int. J. Mol. Sci. 18(4), 894 (2017).
[Crossref] [PubMed]

Q. Chen, T. Jin, W. Qi, X. Mo, and L. Xi, “Label-free photoacoustic imaging of the cardio-cerebrovascular development in the embryonic zebrafish,” Biomed. Opt. Express 8(4), 2359–2367 (2017).
[Crossref] [PubMed]

2016 (5)

X. Shu, M. Bondu, B. Dong, A. Podoleanu, L. Leick, and H. F. Zhang, “Single all-fiber-based nanosecond-pulsed supercontinuum source for multispectral photoacoustic microscopy and optical coherence tomography,” Opt. Lett. 41(12), 2743–2746 (2016).
[Crossref] [PubMed]

M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy,” J. Biomed. Opt. 21(6), 061005 (2016).
[Crossref] [PubMed]

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J.-X. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4(1), 11–21 (2016).
[Crossref] [PubMed]

T. Buma, J. L. Farland, and M. R. Ferrari, “Near-infrared multispectral photoacoustic microscopy using a graded-index fiber amplifier,” Photoacoustics 4(3), 83–90 (2016).
[Crossref] [PubMed]

E. M. Strohm, M. J. Moore, and M. C. Kolios, “High resolution ultrasound and photoacoustic imaging of single cells,” Photoacoustics 4(1), 36–42 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (7)

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref] [PubMed]

T. P. Matthews, C. Zhang, D.-K. Yao, K. Maslov, and L. V. Wang, “Label-free photoacoustic microscopy of peripheral nerves,” J. Biomed. Opt. 19(1), 016004 (2014).
[Crossref] [PubMed]

K. Jansen, M. Wu, A. F. W. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2(2), 87–101 (2014).
[Crossref] [PubMed]

C.-R. Hu, D. Zhang, M. N. Slipchenko, J.-X. Cheng, and B. Hu, “Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy,” J. Biomed. Opt. 19(8), 086005 (2014).
[Crossref] [PubMed]

P. Hajireza, A. Forbrich, and R. Zemp, “In-vivo functional optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source,” Biomed. Opt. Express 5(2), 539–546 (2014).
[Crossref] [PubMed]

C. Lee, M. Jeon, M. Y. Jeon, J. Kim, and C. Kim, “In vitro photoacoustic measurement of hemoglobin oxygen saturation using a single pulsed broadband supercontinuum laser source,” Appl. Opt. 53(18), 3884–3889 (2014).
[Crossref] [PubMed]

2013 (1)

P. Wang, J. R. Rajian, and J.-X. Cheng, “Spectroscopic imaging of deep tissue through photoacoustic detection of molecular vibration,” J. Phys. Chem. Lett. 4(13), 2177–2185 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (2)

H.-W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J.-X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106(23), 238106 (2011).
[Crossref] [PubMed]

C.-H. Chien, W.-W. Chen, J.-T. Wu, and T.-C. Chang, “Label-free imaging of Drosophila in vivo by coherent anti-Stokes Raman scattering and two-photon excitation autofluorescence microscopy,” J. Biomed. Opt. 16(1), 016012 (2011).
[Crossref] [PubMed]

2010 (3)

Y. N. Billeh, M. Liu, and T. Buma, “Spectroscopic photoacoustic microscopy using a photonic crystal fiber supercontinuum source,” Opt. Express 18(18), 18519–18524 (2010).
[Crossref] [PubMed]

E. L. Arrese and J. L. Soulages, “Insect fat body: energy, metabolism, and regulation,” Annu. Rev. Entomol. 55(1), 207–225 (2010).
[Crossref] [PubMed]

J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12(11), 113001 (2010).
[Crossref]

2008 (2)

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

2007 (1)

T. B. Huff and J.-X. Cheng, “In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue,” J. Microsc. 225(2), 175–182 (2007).
[Crossref] [PubMed]

2006 (3)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2005 (1)

2004 (1)

2001 (1)

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

1973 (1)

Allen, T. J.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

Amirian, J.

Anderson, R. R.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Ariese, F.

M. J. den Broeder, M. J. B. Moester, J. H. Kamstra, P. H. Cenijn, V. Davidoiu, L. M. Kamminga, F. Ariese, J. F. de Boer, and J. Legler, “Altered adipogenesis in zebrafish larvae following high fat diet and chemical exposure is visualized by stimulated Raman scattering microscopy,” Int. J. Mol. Sci. 18(4), 894 (2017).
[Crossref] [PubMed]

Arrese, E. L.

E. L. Arrese and J. L. Soulages, “Insect fat body: energy, metabolism, and regulation,” Annu. Rev. Entomol. 55(1), 207–225 (2010).
[Crossref] [PubMed]

Bai, X.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref] [PubMed]

Bang, O.

M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy,” J. Biomed. Opt. 21(6), 061005 (2016).
[Crossref] [PubMed]

Beard, P. C.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

Benson, S. V.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Biancalana, F.

Billeh, Y. N.

Birks, T.

Bondu, M.

M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy,” J. Biomed. Opt. 21(6), 061005 (2016).
[Crossref] [PubMed]

X. Shu, M. Bondu, B. Dong, A. Podoleanu, L. Leick, and H. F. Zhang, “Single all-fiber-based nanosecond-pulsed supercontinuum source for multispectral photoacoustic microscopy and optical coherence tomography,” Opt. Lett. 41(12), 2743–2746 (2016).
[Crossref] [PubMed]

Brooks, C.

M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy,” J. Biomed. Opt. 21(6), 061005 (2016).
[Crossref] [PubMed]

Buma, T.

Cenijn, P. H.

M. J. den Broeder, M. J. B. Moester, J. H. Kamstra, P. H. Cenijn, V. Davidoiu, L. M. Kamminga, F. Ariese, J. F. de Boer, and J. Legler, “Altered adipogenesis in zebrafish larvae following high fat diet and chemical exposure is visualized by stimulated Raman scattering microscopy,” Int. J. Mol. Sci. 18(4), 894 (2017).
[Crossref] [PubMed]

Chai, N.

H.-W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J.-X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106(23), 238106 (2011).
[Crossref] [PubMed]

Chandler, W.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Chang, T.-C.

C.-H. Chien, W.-W. Chen, J.-T. Wu, and T.-C. Chang, “Label-free imaging of Drosophila in vivo by coherent anti-Stokes Raman scattering and two-photon excitation autofluorescence microscopy,” J. Biomed. Opt. 16(1), 016012 (2011).
[Crossref] [PubMed]

Chau, A. H. L.

Chen, Q.

Chen, W.-W.

C.-H. Chien, W.-W. Chen, J.-T. Wu, and T.-C. Chang, “Label-free imaging of Drosophila in vivo by coherent anti-Stokes Raman scattering and two-photon excitation autofluorescence microscopy,” J. Biomed. Opt. 16(1), 016012 (2011).
[Crossref] [PubMed]

Cheng, J.-X.

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J.-X. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4(1), 11–21 (2016).
[Crossref] [PubMed]

C.-R. Hu, D. Zhang, M. N. Slipchenko, J.-X. Cheng, and B. Hu, “Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy,” J. Biomed. Opt. 19(8), 086005 (2014).
[Crossref] [PubMed]

P. Wang, J. R. Rajian, and J.-X. Cheng, “Spectroscopic imaging of deep tissue through photoacoustic detection of molecular vibration,” J. Phys. Chem. Lett. 4(13), 2177–2185 (2013).
[Crossref] [PubMed]

H.-W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J.-X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106(23), 238106 (2011).
[Crossref] [PubMed]

T. B. Huff and J.-X. Cheng, “In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue,” J. Microsc. 225(2), 175–182 (2007).
[Crossref] [PubMed]

Chien, C.-H.

C.-H. Chien, W.-W. Chen, J.-T. Wu, and T.-C. Chang, “Label-free imaging of Drosophila in vivo by coherent anti-Stokes Raman scattering and two-photon excitation autofluorescence microscopy,” J. Biomed. Opt. 16(1), 016012 (2011).
[Crossref] [PubMed]

Coen, S.

Davidoiu, V.

M. J. den Broeder, M. J. B. Moester, J. H. Kamstra, P. H. Cenijn, V. Davidoiu, L. M. Kamminga, F. Ariese, J. F. de Boer, and J. Legler, “Altered adipogenesis in zebrafish larvae following high fat diet and chemical exposure is visualized by stimulated Raman scattering microscopy,” Int. J. Mol. Sci. 18(4), 894 (2017).
[Crossref] [PubMed]

de Boer, J. F.

M. J. den Broeder, M. J. B. Moester, J. H. Kamstra, P. H. Cenijn, V. Davidoiu, L. M. Kamminga, F. Ariese, J. F. de Boer, and J. Legler, “Altered adipogenesis in zebrafish larvae following high fat diet and chemical exposure is visualized by stimulated Raman scattering microscopy,” Int. J. Mol. Sci. 18(4), 894 (2017).
[Crossref] [PubMed]

den Broeder, M. J.

M. J. den Broeder, M. J. B. Moester, J. H. Kamstra, P. H. Cenijn, V. Davidoiu, L. M. Kamminga, F. Ariese, J. F. de Boer, and J. Legler, “Altered adipogenesis in zebrafish larvae following high fat diet and chemical exposure is visualized by stimulated Raman scattering microscopy,” Int. J. Mol. Sci. 18(4), 894 (2017).
[Crossref] [PubMed]

Dhillon, A. P.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

Dong, B.

Dou, W.

H.-W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J.-X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106(23), 238106 (2011).
[Crossref] [PubMed]

Douglas, D. R.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dylla, H. F.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Emelianov, S.

Farinelli, W.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Farland, J. L.

T. Buma, J. L. Farland, and M. R. Ferrari, “Near-infrared multispectral photoacoustic microscopy using a graded-index fiber amplifier,” Photoacoustics 4(3), 83–90 (2016).
[Crossref] [PubMed]

Ferrari, M. R.

T. Buma, J. L. Farland, and M. R. Ferrari, “Near-infrared multispectral photoacoustic microscopy using a graded-index fiber amplifier,” Photoacoustics 4(3), 83–90 (2016).
[Crossref] [PubMed]

Forbrich, A.

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

G. Genty, T. Ritari, and H. Ludvigsen, “Supercontinuum generation in large mode-area microstructured fibers,” Opt. Express 13(21), 8625–8633 (2005).
[Crossref] [PubMed]

Goergen, C. J.

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J.-X. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4(1), 11–21 (2016).
[Crossref] [PubMed]

Gong, X.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref] [PubMed]

Gubeli, J.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Hajireza, P.

Hale, G. M.

Hall, A.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

Harvey, J. D.

Hau, W.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref] [PubMed]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Hu, B.

C.-R. Hu, D. Zhang, M. N. Slipchenko, J.-X. Cheng, and B. Hu, “Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy,” J. Biomed. Opt. 19(8), 086005 (2014).
[Crossref] [PubMed]

Hu, C.-R.

C.-R. Hu, D. Zhang, M. N. Slipchenko, J.-X. Cheng, and B. Hu, “Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy,” J. Biomed. Opt. 19(8), 086005 (2014).
[Crossref] [PubMed]

Hu, S.

H.-W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J.-X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106(23), 238106 (2011).
[Crossref] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[Crossref] [PubMed]

Huff, T. B.

T. B. Huff and J.-X. Cheng, “In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue,” J. Microsc. 225(2), 175–182 (2007).
[Crossref] [PubMed]

Hui, J.

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J.-X. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4(1), 11–21 (2016).
[Crossref] [PubMed]

Jakobsen, C.

M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy,” J. Biomed. Opt. 21(6), 061005 (2016).
[Crossref] [PubMed]

Jansen, K.

K. Jansen, M. Wu, A. F. W. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

Jeon, M.

Jeon, M. Y.

Jin, T.

Joly, N.

Jordan, K.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Kamminga, L. M.

M. J. den Broeder, M. J. B. Moester, J. H. Kamstra, P. H. Cenijn, V. Davidoiu, L. M. Kamminga, F. Ariese, J. F. de Boer, and J. Legler, “Altered adipogenesis in zebrafish larvae following high fat diet and chemical exposure is visualized by stimulated Raman scattering microscopy,” Int. J. Mol. Sci. 18(4), 894 (2017).
[Crossref] [PubMed]

Kamstra, J. H.

M. J. den Broeder, M. J. B. Moester, J. H. Kamstra, P. H. Cenijn, V. Davidoiu, L. M. Kamminga, F. Ariese, J. F. de Boer, and J. Legler, “Altered adipogenesis in zebrafish larvae following high fat diet and chemical exposure is visualized by stimulated Raman scattering microscopy,” Int. J. Mol. Sci. 18(4), 894 (2017).
[Crossref] [PubMed]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Karpiouk, A.

Kim, C.

Kim, J.

Knight, J.

Knight, J. C.

Kolios, M. C.

E. M. Strohm, M. J. Moore, and M. C. Kolios, “High resolution ultrasound and photoacoustic imaging of single cells,” Photoacoustics 4(1), 36–42 (2016).
[Crossref] [PubMed]

Laubach, H.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Lee, C.

Legler, J.

M. J. den Broeder, M. J. B. Moester, J. H. Kamstra, P. H. Cenijn, V. Davidoiu, L. M. Kamminga, F. Ariese, J. F. de Boer, and J. Legler, “Altered adipogenesis in zebrafish larvae following high fat diet and chemical exposure is visualized by stimulated Raman scattering microscopy,” Int. J. Mol. Sci. 18(4), 894 (2017).
[Crossref] [PubMed]

Leick, L.

M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy,” J. Biomed. Opt. 21(6), 061005 (2016).
[Crossref] [PubMed]

X. Shu, M. Bondu, B. Dong, A. Podoleanu, L. Leick, and H. F. Zhang, “Single all-fiber-based nanosecond-pulsed supercontinuum source for multispectral photoacoustic microscopy and optical coherence tomography,” Opt. Lett. 41(12), 2743–2746 (2016).
[Crossref] [PubMed]

Leonhardt, R.

Li, C.

Li, R.

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J.-X. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4(1), 11–21 (2016).
[Crossref] [PubMed]

Lin, R.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref] [PubMed]

Litovsky, S.

Liu, C.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref] [PubMed]

Liu, M.

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Lucht, R.

H.-W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J.-X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106(23), 238106 (2011).
[Crossref] [PubMed]

Ludvigsen, H.

Manstein, D.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Maslov, K.

T. P. Matthews, C. Zhang, D.-K. Yao, K. Maslov, and L. V. Wang, “Label-free photoacoustic microscopy of peripheral nerves,” J. Biomed. Opt. 19(1), 016004 (2014).
[Crossref] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Matthews, T. P.

T. P. Matthews, C. Zhang, D.-K. Yao, K. Maslov, and L. V. Wang, “Label-free photoacoustic microscopy of peripheral nerves,” J. Biomed. Opt. 19(1), 016004 (2014).
[Crossref] [PubMed]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Mo, X.

Moester, M. J. B.

M. J. den Broeder, M. J. B. Moester, J. H. Kamstra, P. H. Cenijn, V. Davidoiu, L. M. Kamminga, F. Ariese, J. F. de Boer, and J. Legler, “Altered adipogenesis in zebrafish larvae following high fat diet and chemical exposure is visualized by stimulated Raman scattering microscopy,” Int. J. Mol. Sci. 18(4), 894 (2017).
[Crossref] [PubMed]

Moore, M. J.

E. M. Strohm, M. J. Moore, and M. C. Kolios, “High resolution ultrasound and photoacoustic imaging of single cells,” Photoacoustics 4(1), 36–42 (2016).
[Crossref] [PubMed]

Moselund, P. M.

M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy,” J. Biomed. Opt. 21(6), 061005 (2016).
[Crossref] [PubMed]

Neil, G. R.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Oakes, K.

M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy,” J. Biomed. Opt. 21(6), 061005 (2016).
[Crossref] [PubMed]

Owen, J. S.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

Phillips, E. H.

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J.-X. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4(1), 11–21 (2016).
[Crossref] [PubMed]

Podoleanu, A.

M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy,” J. Biomed. Opt. 21(6), 061005 (2016).
[Crossref] [PubMed]

X. Shu, M. Bondu, B. Dong, A. Podoleanu, L. Leick, and H. F. Zhang, “Single all-fiber-based nanosecond-pulsed supercontinuum source for multispectral photoacoustic microscopy and optical coherence tomography,” Opt. Lett. 41(12), 2743–2746 (2016).
[Crossref] [PubMed]

Qi, W.

Querry, M. R.

Rajian, J. R.

P. Wang, J. R. Rajian, and J.-X. Cheng, “Spectroscopic imaging of deep tissue through photoacoustic detection of molecular vibration,” J. Phys. Chem. Lett. 4(13), 2177–2185 (2013).
[Crossref] [PubMed]

Ren, Q.

Ritari, T.

Russell, P.

Russell, P. S. J.

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Sheehan, T. C.

Shinn, M.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Shu, X.

Shung, K. K.

Slipchenko, M. N.

C.-R. Hu, D. Zhang, M. N. Slipchenko, J.-X. Cheng, and B. Hu, “Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy,” J. Biomed. Opt. 19(8), 086005 (2014).
[Crossref] [PubMed]

Smalling, R.

Song, L.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref] [PubMed]

Soulages, J. L.

E. L. Arrese and J. L. Soulages, “Insect fat body: energy, metabolism, and regulation,” Annu. Rev. Entomol. 55(1), 207–225 (2010).
[Crossref] [PubMed]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Strohm, E. M.

E. M. Strohm, M. J. Moore, and M. C. Kolios, “High resolution ultrasound and photoacoustic imaging of single cells,” Photoacoustics 4(1), 36–42 (2016).
[Crossref] [PubMed]

Sturek, M.

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J.-X. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4(1), 11–21 (2016).
[Crossref] [PubMed]

H.-W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J.-X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106(23), 238106 (2011).
[Crossref] [PubMed]

Travers, J. C.

J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12(11), 113001 (2010).
[Crossref]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Umulis, D.

H.-W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J.-X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106(23), 238106 (2011).
[Crossref] [PubMed]

van der Steen, A. F. W.

K. Jansen, M. Wu, A. F. W. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

van Soest, G.

K. Jansen, M. Wu, A. F. W. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

Wadsworth, W.

Wadsworth, W. J.

Wang, B.

Wang, H.-W.

H.-W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J.-X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106(23), 238106 (2011).
[Crossref] [PubMed]

Wang, L. V.

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2(2), 87–101 (2014).
[Crossref] [PubMed]

T. P. Matthews, C. Zhang, D.-K. Yao, K. Maslov, and L. V. Wang, “Label-free photoacoustic microscopy of peripheral nerves,” J. Biomed. Opt. 19(1), 016004 (2014).
[Crossref] [PubMed]

H.-W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J.-X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106(23), 238106 (2011).
[Crossref] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Wang, P.

P. Wang, J. R. Rajian, and J.-X. Cheng, “Spectroscopic imaging of deep tissue through photoacoustic detection of molecular vibration,” J. Phys. Chem. Lett. 4(13), 2177–2185 (2013).
[Crossref] [PubMed]

H.-W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J.-X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106(23), 238106 (2011).
[Crossref] [PubMed]

Wilkinson, B. C.

Williams, G. P.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Wu, J.-T.

C.-H. Chien, W.-W. Chen, J.-T. Wu, and T.-C. Chang, “Label-free imaging of Drosophila in vivo by coherent anti-Stokes Raman scattering and two-photon excitation autofluorescence microscopy,” J. Biomed. Opt. 16(1), 016012 (2011).
[Crossref] [PubMed]

Wu, M.

K. Jansen, M. Wu, A. F. W. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

Xi, L.

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Xiong, J.

Yang, R.

Yao, D.-K.

T. P. Matthews, C. Zhang, D.-K. Yao, K. Maslov, and L. V. Wang, “Label-free photoacoustic microscopy of peripheral nerves,” J. Biomed. Opt. 19(1), 016004 (2014).
[Crossref] [PubMed]

Yao, J.

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2(2), 87–101 (2014).
[Crossref] [PubMed]

Yaroslavsky, A. N.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Ye, S.

Yeager, D.

Zemp, R.

Zeng, C.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref] [PubMed]

Zhang, C.

T. P. Matthews, C. Zhang, D.-K. Yao, K. Maslov, and L. V. Wang, “Label-free photoacoustic microscopy of peripheral nerves,” J. Biomed. Opt. 19(1), 016004 (2014).
[Crossref] [PubMed]

Zhang, D.

C.-R. Hu, D. Zhang, M. N. Slipchenko, J.-X. Cheng, and B. Hu, “Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy,” J. Biomed. Opt. 19(8), 086005 (2014).
[Crossref] [PubMed]

Zhang, H. F.

Zheng, H.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref] [PubMed]

Zheng, J.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref] [PubMed]

Zhou, Q.

Zou, X.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Annu. Rev. Entomol. (1)

E. L. Arrese and J. L. Soulages, “Insect fat body: energy, metabolism, and regulation,” Annu. Rev. Entomol. 55(1), 207–225 (2010).
[Crossref] [PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (4)

Int. J. Mol. Sci. (1)

M. J. den Broeder, M. J. B. Moester, J. H. Kamstra, P. H. Cenijn, V. Davidoiu, L. M. Kamminga, F. Ariese, J. F. de Boer, and J. Legler, “Altered adipogenesis in zebrafish larvae following high fat diet and chemical exposure is visualized by stimulated Raman scattering microscopy,” Int. J. Mol. Sci. 18(4), 894 (2017).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

C.-H. Chien, W.-W. Chen, J.-T. Wu, and T.-C. Chang, “Label-free imaging of Drosophila in vivo by coherent anti-Stokes Raman scattering and two-photon excitation autofluorescence microscopy,” J. Biomed. Opt. 16(1), 016012 (2011).
[Crossref] [PubMed]

C.-R. Hu, D. Zhang, M. N. Slipchenko, J.-X. Cheng, and B. Hu, “Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy,” J. Biomed. Opt. 19(8), 086005 (2014).
[Crossref] [PubMed]

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

T. P. Matthews, C. Zhang, D.-K. Yao, K. Maslov, and L. V. Wang, “Label-free photoacoustic microscopy of peripheral nerves,” J. Biomed. Opt. 19(1), 016004 (2014).
[Crossref] [PubMed]

M. Bondu, C. Brooks, C. Jakobsen, K. Oakes, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy,” J. Biomed. Opt. 21(6), 061005 (2016).
[Crossref] [PubMed]

J. Microsc. (1)

T. B. Huff and J.-X. Cheng, “In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue,” J. Microsc. 225(2), 175–182 (2007).
[Crossref] [PubMed]

J. Opt. (1)

J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12(11), 113001 (2010).
[Crossref]

J. Phys. Chem. Lett. (1)

P. Wang, J. R. Rajian, and J.-X. Cheng, “Spectroscopic imaging of deep tissue through photoacoustic detection of molecular vibration,” J. Phys. Chem. Lett. 4(13), 2177–2185 (2013).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Photoacoustics (5)

K. Jansen, M. Wu, A. F. W. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

J. Yao and L. V. Wang, “Sensitivity of photoacoustic microscopy,” Photoacoustics 2(2), 87–101 (2014).
[Crossref] [PubMed]

E. M. Strohm, M. J. Moore, and M. C. Kolios, “High resolution ultrasound and photoacoustic imaging of single cells,” Photoacoustics 4(1), 36–42 (2016).
[Crossref] [PubMed]

T. Buma, J. L. Farland, and M. R. Ferrari, “Near-infrared multispectral photoacoustic microscopy using a graded-index fiber amplifier,” Photoacoustics 4(3), 83–90 (2016).
[Crossref] [PubMed]

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J.-X. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4(1), 11–21 (2016).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

H.-W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J.-X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett. 106(23), 238106 (2011).
[Crossref] [PubMed]

PLoS One (1)

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Science (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Other (2)

G. Agrawal, Nonlinear Fiber Optics, 4th ed., Academic Press, 2006.

Datasheet for LMA-PM-10, NKT Photonics, Inc.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of pulsed supercontinuum laser and OR-PAM setup. The half-wave plate (HWP) adjusts the pump laser polarization to be parallel with the fast axis of the photonic crystal fiber (PCF). The desired wavelength band for OR-PAM is selected with a dielectric bandpass filter (BPF). (b) Optical absorption coefficient of water (blue) and lipid (green) from 1000 – 1800 nm [30, 31]. Rectangular bars show the passbands of the six bandpass filters at 1050 nm (1), 1100 nm (2), 1225 nm (3), 1325 nm (4), 1600 nm (5), and 1714 nm (6).
Fig. 2
Fig. 2 Fiber output spectrum at full input power. The three distinct peaks are the pump (P), first Stokes (S1), and second Stokes (S2) lines. The dashed vertical line at 1200 nm marks the PCF zero-dispersion wavelength (ZDW). The broad continuum extends from 1200 to 1800 nm.
Fig. 3
Fig. 3 (a) Multispectral en face PAM images of a lipid phantom consisting of butter inside clear gelatin. All images integrate C-mode planes over the entire butter thickness and are shown over the same 20 dB scale. (b) Multispectral B-mode slices along the central row of each image in Fig. 3(a). All slices are shown over the same 20 dB scale. The scale bars in both (a) and (b) represent 100 μm. (c) Signal-to-noise ratio (SNR) of a 25 x 60 μm region (see inset) within the bottom (red squares) and top (green circles) lipid layer in each B-mode image. (d) Measured (red squares and green circles) and theoretical (black asterisks) photoacoustic spectra of the same regions in the lipid phantom.
Fig. 4
Fig. 4 (a) Multispectral en face PAM images of a thin slice of beef embedded in clear gelatin. The scale bar represents 500 μm. (b) Photograph of the beef sample. The solid rectangle outlines the C-mode region imaged by OR-PAM. (c) B-mode image slices along the dashed black line in Fig. 4(b). The scale bar represents 500 μm. (d) Photoacoustic spectra measured at three locations (see inset) within the fatty portion of the beef sample. Locations 1, 2, and 3 correspond to red squares, green circles, and blue triangles, respectively. Black asterisks are the spectrum from the simple theoretical model.
Fig. 5
Fig. 5 (a) Multispectral OR-PAM C-mode images of a fixed third instar Drosophila larva. All images are a 60 μm thick slice and are shown over the same 20 dB scale. The scale bar represents 500 μm. The fat bodies (FB) are clearly visualized at 1714 nm. The mouth parts (MP) saturate the dynamic range of the 1050 and 1100 nm images. (b) Photograph of the larva. The scale bar represents 500 μm. (c) Photoacoustic spectra measured at three locations in the larva. Locations 1, 2, and 3 correspond to red squares, green circles, and blue triangles, respectively. Black asterisks are the spectrum from the simple theoretical model.
Fig. 6
Fig. 6 Fiber output spectrum as a function of input laser energy. The pump (P) is clearly visible at 1047 nm, as well as two Stokes lines S1 (1098 nm) and S2 (1153 nm). The wide peak near 1350 nm (S3′) evolves into a broad continuum from 1200 – 1800 nm. The broad peak near 900 nm (AS3′) evolves into a continuum from 600 – 1000 nm.
Fig. 7
Fig. 7 Histogram of laser pulse energy measured over 10,000 pulses at each output wavelength. The pulse energy is normalized with respect to the mean energy at each wavelength.

Tables (1)

Tables Icon

Table 1 Pulse Energy and Spatial Resolution vs Band-Pass Filter

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ=2.65MFD 0.5ln2
S(λ)=| βF(λ)( μ Lipid (λ) Γ Lipid μ Water (λ) Γ Water ) |
S( λ m )βF( λ m )| λ m Δλ/2 λ m +Δλ/2 ( μ Lipid (λ) Γ Lipid μ Water (λ) Γ Water )dλ |=βF( λ m )K( λ m )
A( λ m )= F( λ m ) F(1714) K( λ m ) K(1714) E( λ m ) E(1714) K( λ m ) K(1714)

Metrics