Abstract

A method for performing noninvasive blood glucose measurements was developed. The method is based on mid-infrared absorption spectroscopy and uses only a few wavenumbers to measure blood glucose levels in vivo unconditionally. We found that the regression of blood glucose levels using only three wavenumbers, which were selected using a series cross-validation technique, realized accuracies comparable to those of cases in which a greater number of wavenumbers are used. In addition, we demonstrated the performance of this model through correlations among different types of data.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Identification of informative bands in the short-wavelength NIR region for non-invasive blood glucose measurement

Yasuhiro Uwadaira, Akifumi Ikehata, Akiko Momose, and Masayo Miura
Biomed. Opt. Express 7(7) 2729-2737 (2016)

In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor

Songlin Yu, Dachao Li, Hao Chong, Changyue Sun, Haixia Yu, and Kexin Xu
Biomed. Opt. Express 5(1) 275-286 (2014)

Determination of glucose concentration in a scattering medium based on selected wavelengths by use of an overtone absorption band

Gilwon Yoon, Airat K. Amerov, Kye Jin Jeon, and Yoen-Joo Kim
Appl. Opt. 41(7) 1469-1475 (2002)

References

  • View by:
  • |
  • |
  • |

  1. N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
    [Crossref] [PubMed]
  2. J. Yadav, A. Rani, V. Singh, and B. M. Murari, “Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy,” Biomed. Signal Process. Control 18, 214–227 (2015).
    [Crossref]
  3. S. Liakat, K. A. Bors, L. Xu, C. M. Woods, J. Doyle, and C. F. Gmachl, “Noninvasive in vivo glucose sensing on human subjects using mid-infrared light,” Biomed. Opt. Express 5(7), 2397–2404 (2014).
    [Crossref] [PubMed]
  4. A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
    [Crossref] [PubMed]
  5. H. von Lilienfeld-Toal, M. Weidenmüller, A. Xhelaj, and W. Mäntele, “A novel approach to non-invasive glucose measurement by mid-infrared spectroscopy: the combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc. 38(1–2), 209–215 (2005).
    [Crossref]
  6. M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy,” Anal. Chem. 85(2), 1013–1020 (2013).
    [Crossref] [PubMed]
  7. S. K. Vashist, “Non-invasive glucose monitoring technology in diabetes management: a review,” Anal. Chim. Acta 750, 16–27 (2012).
    [Crossref] [PubMed]
  8. M. J. McShane, B. D. Cameron, G. L. Coté, and C. H. Spiegelman, “Improving complex near-IR calibrations using a new wavelength selection algorithm,” Appl. Spectrosc. 53(12), 1575–1581 (1999).
    [Crossref]
  9. M. Goodarzi and W. Saeys, “Selection of the most informative near infrared spectroscopy wavebands for continuous glucose monitoring in human serum,” Talanta 146, 155–165 (2016).
    [Crossref] [PubMed]
  10. H. M. Heise and R. Marbach, “Human oral mucosa studies with varying blood glucose concentration by non-invasive ATR-FT-IR-spectroscopy,” Cell. Mol. Biol. 44(6), 899–912 (1998).
    [PubMed]
  11. Y. Abe, Y. Matsuura, Y. W. Shi, Y. Wang, H. Uyama, and M. Miyagi, “Polymer-coated hollow fiber for CO2 laser delivery,” Opt. Lett. 23(2), 89–90 (1998).
    [Crossref] [PubMed]
  12. Y. Matsuura, S. Kino, and T. Katagiri, “Hollow-fiber-based flexible probe for remote measurement of infrared attenuated total reflection,” Appl. Opt. 48(28), 5396–5400 (2009).
    [Crossref] [PubMed]
  13. S. Kino, Y. Tanaka, and Y. Matsuura, “Blood glucose measurement by using hollow optical fiber-based attenuated total reflection probe,” J. Biomed. Opt. 19(5), 057010 (2014).
    [Crossref] [PubMed]
  14. S. Kino, S. Omori, T. Katagiri, and Y. Matsuura, “Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism,” Biomed. Opt. Express 7(2), 701–708 (2016).
    [Crossref] [PubMed]
  15. S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther. 3(3), 357–365 (2001).
    [Crossref] [PubMed]
  16. M. S. Boyne, D. M. Silver, J. Kaplan, and C. D. Saudek, “Timing of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor,” Diabetes 52(11), 2790–2794 (2003).
    [Crossref] [PubMed]
  17. M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38(9), 1618–1622 (1992).
    [PubMed]
  18. I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
    [Crossref] [PubMed]
  19. C. Fischbacher, K.-U. Jagemann, K. Danzer, U. A. Müller, L. Papenkordt, and J. Schüler, “Enhancing calibration models for non-invasive near-infrared spectroscopical blood glucose determination,” Fresenius J. Anal. Chem. 359(1), 78–82 (1997).
    [Crossref]
  20. M. J. Hackett, N. J. Sylvain, H. Hou, S. Caine, M. Alaverdashvili, M. J. Pushie, and M. E. Kelly, “Concurrent glycogen and lactate imaging with FTIR spectroscopy to spatially localize metabolic parameters of the glial response following brain ischemia,” Anal. Chem. 88(22), 10949–10956 (2016).
    [Crossref] [PubMed]
  21. B. R. Wood, “The importance of hydration and DNA conformation in interpreting infrared spectra of cells and tissues,” Chem. Soc. Rev. 45(7), 1980–1998 (2016).
    [Crossref] [PubMed]
  22. K. Nakanishi, A. Hashimoto, T. Pan, M. Kanou, and T. Kameoka, “Mid-infrared spectroscopic measurement of ionic dissociative materials in the metabolic pathway,” Appl. Spectrosc. 57(12), 1510–1516 (2003).
    [Crossref] [PubMed]
  23. A. Hashimoto, K. Nakanishi, Y. Motonaga, and T. Kameoka, “Sugar metabolic analysis of suspensions of plant cells using an FT-IR/ATR method,” Biotechnol. Prog. 17(3), 560–564 (2001).
    [Crossref] [PubMed]
  24. A. Basu, S. Dube, M. Slama, I. Errazuriz, J. C. Amezcua, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in humans,” Diabetes 62(12), 4083–4087 (2013).
    [Crossref] [PubMed]
  25. A. Basu, S. Dube, S. Veettil, M. Slama, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in type 1 diabetes,” J. Diabetes Sci. Technol. 9(1), 63–68 (2015).
    [Crossref] [PubMed]
  26. G. Romo-Cárdenas, J. D. Sánchez-López, P. A. Luque, M. Cosío-León, J. I. Nieto-Hipólito, and M. Vázquez-Briseño, “Insulin overlapping in whole blood FTIR spectroscopy in blood glucose measurements,” Results Phys. 7, 1221–1222 (2017).
    [Crossref]
  27. W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care 10(5), 622–628 (1987).
    [Crossref] [PubMed]

2017 (1)

G. Romo-Cárdenas, J. D. Sánchez-López, P. A. Luque, M. Cosío-León, J. I. Nieto-Hipólito, and M. Vázquez-Briseño, “Insulin overlapping in whole blood FTIR spectroscopy in blood glucose measurements,” Results Phys. 7, 1221–1222 (2017).
[Crossref]

2016 (4)

M. J. Hackett, N. J. Sylvain, H. Hou, S. Caine, M. Alaverdashvili, M. J. Pushie, and M. E. Kelly, “Concurrent glycogen and lactate imaging with FTIR spectroscopy to spatially localize metabolic parameters of the glial response following brain ischemia,” Anal. Chem. 88(22), 10949–10956 (2016).
[Crossref] [PubMed]

B. R. Wood, “The importance of hydration and DNA conformation in interpreting infrared spectra of cells and tissues,” Chem. Soc. Rev. 45(7), 1980–1998 (2016).
[Crossref] [PubMed]

M. Goodarzi and W. Saeys, “Selection of the most informative near infrared spectroscopy wavebands for continuous glucose monitoring in human serum,” Talanta 146, 155–165 (2016).
[Crossref] [PubMed]

S. Kino, S. Omori, T. Katagiri, and Y. Matsuura, “Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism,” Biomed. Opt. Express 7(2), 701–708 (2016).
[Crossref] [PubMed]

2015 (2)

J. Yadav, A. Rani, V. Singh, and B. M. Murari, “Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy,” Biomed. Signal Process. Control 18, 214–227 (2015).
[Crossref]

A. Basu, S. Dube, S. Veettil, M. Slama, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in type 1 diabetes,” J. Diabetes Sci. Technol. 9(1), 63–68 (2015).
[Crossref] [PubMed]

2014 (2)

S. Kino, Y. Tanaka, and Y. Matsuura, “Blood glucose measurement by using hollow optical fiber-based attenuated total reflection probe,” J. Biomed. Opt. 19(5), 057010 (2014).
[Crossref] [PubMed]

S. Liakat, K. A. Bors, L. Xu, C. M. Woods, J. Doyle, and C. F. Gmachl, “Noninvasive in vivo glucose sensing on human subjects using mid-infrared light,” Biomed. Opt. Express 5(7), 2397–2404 (2014).
[Crossref] [PubMed]

2013 (2)

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy,” Anal. Chem. 85(2), 1013–1020 (2013).
[Crossref] [PubMed]

A. Basu, S. Dube, M. Slama, I. Errazuriz, J. C. Amezcua, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in humans,” Diabetes 62(12), 4083–4087 (2013).
[Crossref] [PubMed]

2012 (1)

S. K. Vashist, “Non-invasive glucose monitoring technology in diabetes management: a review,” Anal. Chim. Acta 750, 16–27 (2012).
[Crossref] [PubMed]

2010 (1)

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[Crossref] [PubMed]

2009 (2)

N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[Crossref] [PubMed]

Y. Matsuura, S. Kino, and T. Katagiri, “Hollow-fiber-based flexible probe for remote measurement of infrared attenuated total reflection,” Appl. Opt. 48(28), 5396–5400 (2009).
[Crossref] [PubMed]

2005 (2)

A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

H. von Lilienfeld-Toal, M. Weidenmüller, A. Xhelaj, and W. Mäntele, “A novel approach to non-invasive glucose measurement by mid-infrared spectroscopy: the combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc. 38(1–2), 209–215 (2005).
[Crossref]

2003 (2)

M. S. Boyne, D. M. Silver, J. Kaplan, and C. D. Saudek, “Timing of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor,” Diabetes 52(11), 2790–2794 (2003).
[Crossref] [PubMed]

K. Nakanishi, A. Hashimoto, T. Pan, M. Kanou, and T. Kameoka, “Mid-infrared spectroscopic measurement of ionic dissociative materials in the metabolic pathway,” Appl. Spectrosc. 57(12), 1510–1516 (2003).
[Crossref] [PubMed]

2001 (2)

A. Hashimoto, K. Nakanishi, Y. Motonaga, and T. Kameoka, “Sugar metabolic analysis of suspensions of plant cells using an FT-IR/ATR method,” Biotechnol. Prog. 17(3), 560–564 (2001).
[Crossref] [PubMed]

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther. 3(3), 357–365 (2001).
[Crossref] [PubMed]

1999 (1)

1998 (2)

H. M. Heise and R. Marbach, “Human oral mucosa studies with varying blood glucose concentration by non-invasive ATR-FT-IR-spectroscopy,” Cell. Mol. Biol. 44(6), 899–912 (1998).
[PubMed]

Y. Abe, Y. Matsuura, Y. W. Shi, Y. Wang, H. Uyama, and M. Miyagi, “Polymer-coated hollow fiber for CO2 laser delivery,” Opt. Lett. 23(2), 89–90 (1998).
[Crossref] [PubMed]

1997 (1)

C. Fischbacher, K.-U. Jagemann, K. Danzer, U. A. Müller, L. Papenkordt, and J. Schüler, “Enhancing calibration models for non-invasive near-infrared spectroscopical blood glucose determination,” Fresenius J. Anal. Chem. 359(1), 78–82 (1997).
[Crossref]

1992 (1)

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38(9), 1618–1622 (1992).
[PubMed]

1987 (1)

W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care 10(5), 622–628 (1987).
[Crossref] [PubMed]

Abe, Y.

Alaverdashvili, M.

M. J. Hackett, N. J. Sylvain, H. Hou, S. Caine, M. Alaverdashvili, M. J. Pushie, and M. E. Kelly, “Concurrent glycogen and lactate imaging with FTIR spectroscopy to spatially localize metabolic parameters of the glial response following brain ischemia,” Anal. Chem. 88(22), 10949–10956 (2016).
[Crossref] [PubMed]

Amezcua, J. C.

A. Basu, S. Dube, M. Slama, I. Errazuriz, J. C. Amezcua, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in humans,” Diabetes 62(12), 4083–4087 (2013).
[Crossref] [PubMed]

Barman, I.

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[Crossref] [PubMed]

Basu, A.

A. Basu, S. Dube, S. Veettil, M. Slama, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in type 1 diabetes,” J. Diabetes Sci. Technol. 9(1), 63–68 (2015).
[Crossref] [PubMed]

A. Basu, S. Dube, M. Slama, I. Errazuriz, J. C. Amezcua, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in humans,” Diabetes 62(12), 4083–4087 (2013).
[Crossref] [PubMed]

Basu, R.

A. Basu, S. Dube, S. Veettil, M. Slama, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in type 1 diabetes,” J. Diabetes Sci. Technol. 9(1), 63–68 (2015).
[Crossref] [PubMed]

A. Basu, S. Dube, M. Slama, I. Errazuriz, J. C. Amezcua, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in humans,” Diabetes 62(12), 4083–4087 (2013).
[Crossref] [PubMed]

Bauer, A.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy,” Anal. Chem. 85(2), 1013–1020 (2013).
[Crossref] [PubMed]

Block, M. B.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther. 3(3), 357–365 (2001).
[Crossref] [PubMed]

Bors, K. A.

Boyne, M. S.

M. S. Boyne, D. M. Silver, J. Kaplan, and C. D. Saudek, “Timing of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor,” Diabetes 52(11), 2790–2794 (2003).
[Crossref] [PubMed]

Caine, S.

M. J. Hackett, N. J. Sylvain, H. Hou, S. Caine, M. Alaverdashvili, M. J. Pushie, and M. E. Kelly, “Concurrent glycogen and lactate imaging with FTIR spectroscopy to spatially localize metabolic parameters of the glial response following brain ischemia,” Anal. Chem. 88(22), 10949–10956 (2016).
[Crossref] [PubMed]

Cameron, B. D.

Carter, R. E.

A. Basu, S. Dube, S. Veettil, M. Slama, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in type 1 diabetes,” J. Diabetes Sci. Technol. 9(1), 63–68 (2015).
[Crossref] [PubMed]

A. Basu, S. Dube, M. Slama, I. Errazuriz, J. C. Amezcua, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in humans,” Diabetes 62(12), 4083–4087 (2013).
[Crossref] [PubMed]

Carter, W.

W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care 10(5), 622–628 (1987).
[Crossref] [PubMed]

Cass, A. E. G.

N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[Crossref] [PubMed]

Clarke, W. L.

W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care 10(5), 622–628 (1987).
[Crossref] [PubMed]

Cobelli, C.

A. Basu, S. Dube, S. Veettil, M. Slama, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in type 1 diabetes,” J. Diabetes Sci. Technol. 9(1), 63–68 (2015).
[Crossref] [PubMed]

A. Basu, S. Dube, M. Slama, I. Errazuriz, J. C. Amezcua, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in humans,” Diabetes 62(12), 4083–4087 (2013).
[Crossref] [PubMed]

Cosío-León, M.

G. Romo-Cárdenas, J. D. Sánchez-López, P. A. Luque, M. Cosío-León, J. I. Nieto-Hipólito, and M. Vázquez-Briseño, “Insulin overlapping in whole blood FTIR spectroscopy in blood glucose measurements,” Results Phys. 7, 1221–1222 (2017).
[Crossref]

Coté, G. L.

Cox, D.

W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care 10(5), 622–628 (1987).
[Crossref] [PubMed]

Danzer, K.

C. Fischbacher, K.-U. Jagemann, K. Danzer, U. A. Müller, L. Papenkordt, and J. Schüler, “Enhancing calibration models for non-invasive near-infrared spectroscopical blood glucose determination,” Fresenius J. Anal. Chem. 359(1), 78–82 (1997).
[Crossref]

Dasari, R. R.

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[Crossref] [PubMed]

Dingari, N. C.

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[Crossref] [PubMed]

Doyle, J.

Dube, S.

A. Basu, S. Dube, S. Veettil, M. Slama, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in type 1 diabetes,” J. Diabetes Sci. Technol. 9(1), 63–68 (2015).
[Crossref] [PubMed]

A. Basu, S. Dube, M. Slama, I. Errazuriz, J. C. Amezcua, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in humans,” Diabetes 62(12), 4083–4087 (2013).
[Crossref] [PubMed]

Eaton, R. P.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38(9), 1618–1622 (1992).
[PubMed]

Enejder, A. M. K.

A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Errazuriz, I.

A. Basu, S. Dube, M. Slama, I. Errazuriz, J. C. Amezcua, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in humans,” Diabetes 62(12), 4083–4087 (2013).
[Crossref] [PubMed]

Feld, M. S.

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[Crossref] [PubMed]

A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Fischbacher, C.

C. Fischbacher, K.-U. Jagemann, K. Danzer, U. A. Müller, L. Papenkordt, and J. Schüler, “Enhancing calibration models for non-invasive near-infrared spectroscopical blood glucose determination,” Fresenius J. Anal. Chem. 359(1), 78–82 (1997).
[Crossref]

Gmachl, C. F.

Gonder-Frederick, L. A.

W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care 10(5), 622–628 (1987).
[Crossref] [PubMed]

Goodarzi, M.

M. Goodarzi and W. Saeys, “Selection of the most informative near infrared spectroscopy wavebands for continuous glucose monitoring in human serum,” Talanta 146, 155–165 (2016).
[Crossref] [PubMed]

Haaland, D. M.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38(9), 1618–1622 (1992).
[PubMed]

Hackett, M. J.

M. J. Hackett, N. J. Sylvain, H. Hou, S. Caine, M. Alaverdashvili, M. J. Pushie, and M. E. Kelly, “Concurrent glycogen and lactate imaging with FTIR spectroscopy to spatially localize metabolic parameters of the glial response following brain ischemia,” Anal. Chem. 88(22), 10949–10956 (2016).
[Crossref] [PubMed]

Hashimoto, A.

K. Nakanishi, A. Hashimoto, T. Pan, M. Kanou, and T. Kameoka, “Mid-infrared spectroscopic measurement of ionic dissociative materials in the metabolic pathway,” Appl. Spectrosc. 57(12), 1510–1516 (2003).
[Crossref] [PubMed]

A. Hashimoto, K. Nakanishi, Y. Motonaga, and T. Kameoka, “Sugar metabolic analysis of suspensions of plant cells using an FT-IR/ATR method,” Biotechnol. Prog. 17(3), 560–564 (2001).
[Crossref] [PubMed]

Hazen, K. H.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther. 3(3), 357–365 (2001).
[Crossref] [PubMed]

Heise, H. M.

H. M. Heise and R. Marbach, “Human oral mucosa studies with varying blood glucose concentration by non-invasive ATR-FT-IR-spectroscopy,” Cell. Mol. Biol. 44(6), 899–912 (1998).
[PubMed]

Hertzberg, O.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy,” Anal. Chem. 85(2), 1013–1020 (2013).
[Crossref] [PubMed]

Horowitz, G. L.

A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Hou, H.

M. J. Hackett, N. J. Sylvain, H. Hou, S. Caine, M. Alaverdashvili, M. J. Pushie, and M. E. Kelly, “Concurrent glycogen and lactate imaging with FTIR spectroscopy to spatially localize metabolic parameters of the glial response following brain ischemia,” Anal. Chem. 88(22), 10949–10956 (2016).
[Crossref] [PubMed]

Hunter, M.

A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Jagemann, K.-U.

C. Fischbacher, K.-U. Jagemann, K. Danzer, U. A. Müller, L. Papenkordt, and J. Schüler, “Enhancing calibration models for non-invasive near-infrared spectroscopical blood glucose determination,” Fresenius J. Anal. Chem. 359(1), 78–82 (1997).
[Crossref]

Johnston, D. G.

N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[Crossref] [PubMed]

Kameoka, T.

K. Nakanishi, A. Hashimoto, T. Pan, M. Kanou, and T. Kameoka, “Mid-infrared spectroscopic measurement of ionic dissociative materials in the metabolic pathway,” Appl. Spectrosc. 57(12), 1510–1516 (2003).
[Crossref] [PubMed]

A. Hashimoto, K. Nakanishi, Y. Motonaga, and T. Kameoka, “Sugar metabolic analysis of suspensions of plant cells using an FT-IR/ATR method,” Biotechnol. Prog. 17(3), 560–564 (2001).
[Crossref] [PubMed]

Kanou, M.

Kaplan, J.

M. S. Boyne, D. M. Silver, J. Kaplan, and C. D. Saudek, “Timing of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor,” Diabetes 52(11), 2790–2794 (2003).
[Crossref] [PubMed]

Katagiri, T.

Kelly, M. E.

M. J. Hackett, N. J. Sylvain, H. Hou, S. Caine, M. Alaverdashvili, M. J. Pushie, and M. E. Kelly, “Concurrent glycogen and lactate imaging with FTIR spectroscopy to spatially localize metabolic parameters of the glial response following brain ischemia,” Anal. Chem. 88(22), 10949–10956 (2016).
[Crossref] [PubMed]

Kino, S.

Koepp, G. W.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38(9), 1618–1622 (1992).
[PubMed]

Kong, C. R.

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[Crossref] [PubMed]

Kudva, Y. C.

A. Basu, S. Dube, S. Veettil, M. Slama, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in type 1 diabetes,” J. Diabetes Sci. Technol. 9(1), 63–68 (2015).
[Crossref] [PubMed]

A. Basu, S. Dube, M. Slama, I. Errazuriz, J. C. Amezcua, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in humans,” Diabetes 62(12), 4083–4087 (2013).
[Crossref] [PubMed]

Liakat, S.

Lieblein, T.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy,” Anal. Chem. 85(2), 1013–1020 (2013).
[Crossref] [PubMed]

Luque, P. A.

G. Romo-Cárdenas, J. D. Sánchez-López, P. A. Luque, M. Cosío-León, J. I. Nieto-Hipólito, and M. Vázquez-Briseño, “Insulin overlapping in whole blood FTIR spectroscopy in blood glucose measurements,” Results Phys. 7, 1221–1222 (2017).
[Crossref]

Mäntele, W.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy,” Anal. Chem. 85(2), 1013–1020 (2013).
[Crossref] [PubMed]

H. von Lilienfeld-Toal, M. Weidenmüller, A. Xhelaj, and W. Mäntele, “A novel approach to non-invasive glucose measurement by mid-infrared spectroscopy: the combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc. 38(1–2), 209–215 (2005).
[Crossref]

Marbach, R.

H. M. Heise and R. Marbach, “Human oral mucosa studies with varying blood glucose concentration by non-invasive ATR-FT-IR-spectroscopy,” Cell. Mol. Biol. 44(6), 899–912 (1998).
[PubMed]

Matsuura, Y.

McShane, M. J.

Miyagi, M.

Motonaga, Y.

A. Hashimoto, K. Nakanishi, Y. Motonaga, and T. Kameoka, “Sugar metabolic analysis of suspensions of plant cells using an FT-IR/ATR method,” Biotechnol. Prog. 17(3), 560–564 (2001).
[Crossref] [PubMed]

Müller, U. A.

C. Fischbacher, K.-U. Jagemann, K. Danzer, U. A. Müller, L. Papenkordt, and J. Schüler, “Enhancing calibration models for non-invasive near-infrared spectroscopical blood glucose determination,” Fresenius J. Anal. Chem. 359(1), 78–82 (1997).
[Crossref]

Murari, B. M.

J. Yadav, A. Rani, V. Singh, and B. M. Murari, “Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy,” Biomed. Signal Process. Control 18, 214–227 (2015).
[Crossref]

Nakanishi, K.

K. Nakanishi, A. Hashimoto, T. Pan, M. Kanou, and T. Kameoka, “Mid-infrared spectroscopic measurement of ionic dissociative materials in the metabolic pathway,” Appl. Spectrosc. 57(12), 1510–1516 (2003).
[Crossref] [PubMed]

A. Hashimoto, K. Nakanishi, Y. Motonaga, and T. Kameoka, “Sugar metabolic analysis of suspensions of plant cells using an FT-IR/ATR method,” Biotechnol. Prog. 17(3), 560–564 (2001).
[Crossref] [PubMed]

Nieto-Hipólito, J. I.

G. Romo-Cárdenas, J. D. Sánchez-López, P. A. Luque, M. Cosío-León, J. I. Nieto-Hipólito, and M. Vázquez-Briseño, “Insulin overlapping in whole blood FTIR spectroscopy in blood glucose measurements,” Results Phys. 7, 1221–1222 (2017).
[Crossref]

Oh, J.

A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Oliver, N. S.

N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[Crossref] [PubMed]

Omori, S.

Pan, T.

Papenkordt, L.

C. Fischbacher, K.-U. Jagemann, K. Danzer, U. A. Müller, L. Papenkordt, and J. Schüler, “Enhancing calibration models for non-invasive near-infrared spectroscopical blood glucose determination,” Fresenius J. Anal. Chem. 359(1), 78–82 (1997).
[Crossref]

Peyser, T.

A. Basu, S. Dube, S. Veettil, M. Slama, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in type 1 diabetes,” J. Diabetes Sci. Technol. 9(1), 63–68 (2015).
[Crossref] [PubMed]

A. Basu, S. Dube, M. Slama, I. Errazuriz, J. C. Amezcua, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in humans,” Diabetes 62(12), 4083–4087 (2013).
[Crossref] [PubMed]

Pleitez, M. A.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy,” Anal. Chem. 85(2), 1013–1020 (2013).
[Crossref] [PubMed]

Pohl, S. L.

W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care 10(5), 622–628 (1987).
[Crossref] [PubMed]

Pushie, M. J.

M. J. Hackett, N. J. Sylvain, H. Hou, S. Caine, M. Alaverdashvili, M. J. Pushie, and M. E. Kelly, “Concurrent glycogen and lactate imaging with FTIR spectroscopy to spatially localize metabolic parameters of the glial response following brain ischemia,” Anal. Chem. 88(22), 10949–10956 (2016).
[Crossref] [PubMed]

Rani, A.

J. Yadav, A. Rani, V. Singh, and B. M. Murari, “Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy,” Biomed. Signal Process. Control 18, 214–227 (2015).
[Crossref]

Rennert, J. L.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther. 3(3), 357–365 (2001).
[Crossref] [PubMed]

Robinson, M. R.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38(9), 1618–1622 (1992).
[PubMed]

Robinson, P. L.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38(9), 1618–1622 (1992).
[PubMed]

Romo-Cárdenas, G.

G. Romo-Cárdenas, J. D. Sánchez-López, P. A. Luque, M. Cosío-León, J. I. Nieto-Hipólito, and M. Vázquez-Briseño, “Insulin overlapping in whole blood FTIR spectroscopy in blood glucose measurements,” Results Phys. 7, 1221–1222 (2017).
[Crossref]

Ruchti, T. L.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther. 3(3), 357–365 (2001).
[Crossref] [PubMed]

Saeys, W.

M. Goodarzi and W. Saeys, “Selection of the most informative near infrared spectroscopy wavebands for continuous glucose monitoring in human serum,” Talanta 146, 155–165 (2016).
[Crossref] [PubMed]

Sánchez-López, J. D.

G. Romo-Cárdenas, J. D. Sánchez-López, P. A. Luque, M. Cosío-León, J. I. Nieto-Hipólito, and M. Vázquez-Briseño, “Insulin overlapping in whole blood FTIR spectroscopy in blood glucose measurements,” Results Phys. 7, 1221–1222 (2017).
[Crossref]

Sasic, S.

A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Saudek, C. D.

M. S. Boyne, D. M. Silver, J. Kaplan, and C. D. Saudek, “Timing of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor,” Diabetes 52(11), 2790–2794 (2003).
[Crossref] [PubMed]

Scecina, T. G.

A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Schüler, J.

C. Fischbacher, K.-U. Jagemann, K. Danzer, U. A. Müller, L. Papenkordt, and J. Schüler, “Enhancing calibration models for non-invasive near-infrared spectroscopical blood glucose determination,” Fresenius J. Anal. Chem. 359(1), 78–82 (1997).
[Crossref]

Shi, Y. W.

Shih, W. C.

A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

Silver, D. M.

M. S. Boyne, D. M. Silver, J. Kaplan, and C. D. Saudek, “Timing of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor,” Diabetes 52(11), 2790–2794 (2003).
[Crossref] [PubMed]

Singh, V.

J. Yadav, A. Rani, V. Singh, and B. M. Murari, “Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy,” Biomed. Signal Process. Control 18, 214–227 (2015).
[Crossref]

Slama, M.

A. Basu, S. Dube, S. Veettil, M. Slama, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in type 1 diabetes,” J. Diabetes Sci. Technol. 9(1), 63–68 (2015).
[Crossref] [PubMed]

A. Basu, S. Dube, M. Slama, I. Errazuriz, J. C. Amezcua, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in humans,” Diabetes 62(12), 4083–4087 (2013).
[Crossref] [PubMed]

Spiegelman, C. H.

Stallard, B. R.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38(9), 1618–1622 (1992).
[PubMed]

Sylvain, N. J.

M. J. Hackett, N. J. Sylvain, H. Hou, S. Caine, M. Alaverdashvili, M. J. Pushie, and M. E. Kelly, “Concurrent glycogen and lactate imaging with FTIR spectroscopy to spatially localize metabolic parameters of the glial response following brain ischemia,” Anal. Chem. 88(22), 10949–10956 (2016).
[Crossref] [PubMed]

Tanaka, Y.

S. Kino, Y. Tanaka, and Y. Matsuura, “Blood glucose measurement by using hollow optical fiber-based attenuated total reflection probe,” J. Biomed. Opt. 19(5), 057010 (2014).
[Crossref] [PubMed]

Thennadil, S. N.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther. 3(3), 357–365 (2001).
[Crossref] [PubMed]

Thomas, E. V.

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38(9), 1618–1622 (1992).
[PubMed]

Toumazou, C.

N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[Crossref] [PubMed]

Uyama, H.

Vashist, S. K.

S. K. Vashist, “Non-invasive glucose monitoring technology in diabetes management: a review,” Anal. Chim. Acta 750, 16–27 (2012).
[Crossref] [PubMed]

Vázquez-Briseño, M.

G. Romo-Cárdenas, J. D. Sánchez-López, P. A. Luque, M. Cosío-León, J. I. Nieto-Hipólito, and M. Vázquez-Briseño, “Insulin overlapping in whole blood FTIR spectroscopy in blood glucose measurements,” Results Phys. 7, 1221–1222 (2017).
[Crossref]

Veettil, S.

A. Basu, S. Dube, S. Veettil, M. Slama, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in type 1 diabetes,” J. Diabetes Sci. Technol. 9(1), 63–68 (2015).
[Crossref] [PubMed]

von Lilienfeld-Toal, H.

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy,” Anal. Chem. 85(2), 1013–1020 (2013).
[Crossref] [PubMed]

H. von Lilienfeld-Toal, M. Weidenmüller, A. Xhelaj, and W. Mäntele, “A novel approach to non-invasive glucose measurement by mid-infrared spectroscopy: the combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc. 38(1–2), 209–215 (2005).
[Crossref]

Wang, Y.

Weidenmüller, M.

H. von Lilienfeld-Toal, M. Weidenmüller, A. Xhelaj, and W. Mäntele, “A novel approach to non-invasive glucose measurement by mid-infrared spectroscopy: the combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc. 38(1–2), 209–215 (2005).
[Crossref]

Wenzel, B. J.

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther. 3(3), 357–365 (2001).
[Crossref] [PubMed]

Wood, B. R.

B. R. Wood, “The importance of hydration and DNA conformation in interpreting infrared spectra of cells and tissues,” Chem. Soc. Rev. 45(7), 1980–1998 (2016).
[Crossref] [PubMed]

Woods, C. M.

Xhelaj, A.

H. von Lilienfeld-Toal, M. Weidenmüller, A. Xhelaj, and W. Mäntele, “A novel approach to non-invasive glucose measurement by mid-infrared spectroscopy: the combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc. 38(1–2), 209–215 (2005).
[Crossref]

Xu, L.

Yadav, J.

J. Yadav, A. Rani, V. Singh, and B. M. Murari, “Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy,” Biomed. Signal Process. Control 18, 214–227 (2015).
[Crossref]

Anal. Chem. (3)

M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, and W. Mäntele, “In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy,” Anal. Chem. 85(2), 1013–1020 (2013).
[Crossref] [PubMed]

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82(23), 9719–9726 (2010).
[Crossref] [PubMed]

M. J. Hackett, N. J. Sylvain, H. Hou, S. Caine, M. Alaverdashvili, M. J. Pushie, and M. E. Kelly, “Concurrent glycogen and lactate imaging with FTIR spectroscopy to spatially localize metabolic parameters of the glial response following brain ischemia,” Anal. Chem. 88(22), 10949–10956 (2016).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

S. K. Vashist, “Non-invasive glucose monitoring technology in diabetes management: a review,” Anal. Chim. Acta 750, 16–27 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (2)

Biomed. Opt. Express (2)

Biomed. Signal Process. Control (1)

J. Yadav, A. Rani, V. Singh, and B. M. Murari, “Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy,” Biomed. Signal Process. Control 18, 214–227 (2015).
[Crossref]

Biotechnol. Prog. (1)

A. Hashimoto, K. Nakanishi, Y. Motonaga, and T. Kameoka, “Sugar metabolic analysis of suspensions of plant cells using an FT-IR/ATR method,” Biotechnol. Prog. 17(3), 560–564 (2001).
[Crossref] [PubMed]

Cell. Mol. Biol. (1)

H. M. Heise and R. Marbach, “Human oral mucosa studies with varying blood glucose concentration by non-invasive ATR-FT-IR-spectroscopy,” Cell. Mol. Biol. 44(6), 899–912 (1998).
[PubMed]

Chem. Soc. Rev. (1)

B. R. Wood, “The importance of hydration and DNA conformation in interpreting infrared spectra of cells and tissues,” Chem. Soc. Rev. 45(7), 1980–1998 (2016).
[Crossref] [PubMed]

Clin. Chem. (1)

M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, and P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: a preliminary evaluation,” Clin. Chem. 38(9), 1618–1622 (1992).
[PubMed]

Diabet. Med. (1)

N. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, “Glucose sensors: a review of current and emerging technology,” Diabet. Med. 26(3), 197–210 (2009).
[Crossref] [PubMed]

Diabetes (2)

M. S. Boyne, D. M. Silver, J. Kaplan, and C. D. Saudek, “Timing of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor,” Diabetes 52(11), 2790–2794 (2003).
[Crossref] [PubMed]

A. Basu, S. Dube, M. Slama, I. Errazuriz, J. C. Amezcua, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in humans,” Diabetes 62(12), 4083–4087 (2013).
[Crossref] [PubMed]

Diabetes Care (1)

W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care 10(5), 622–628 (1987).
[Crossref] [PubMed]

Diabetes Technol. Ther. (1)

S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technol. Ther. 3(3), 357–365 (2001).
[Crossref] [PubMed]

Fresenius J. Anal. Chem. (1)

C. Fischbacher, K.-U. Jagemann, K. Danzer, U. A. Müller, L. Papenkordt, and J. Schüler, “Enhancing calibration models for non-invasive near-infrared spectroscopical blood glucose determination,” Fresenius J. Anal. Chem. 359(1), 78–82 (1997).
[Crossref]

J. Biomed. Opt. (2)

S. Kino, Y. Tanaka, and Y. Matsuura, “Blood glucose measurement by using hollow optical fiber-based attenuated total reflection probe,” J. Biomed. Opt. 19(5), 057010 (2014).
[Crossref] [PubMed]

A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10(3), 031114 (2005).
[Crossref] [PubMed]

J. Diabetes Sci. Technol. (1)

A. Basu, S. Dube, S. Veettil, M. Slama, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, and R. Basu, “Time lag of glucose from intravascular to interstitial compartment in type 1 diabetes,” J. Diabetes Sci. Technol. 9(1), 63–68 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Results Phys. (1)

G. Romo-Cárdenas, J. D. Sánchez-López, P. A. Luque, M. Cosío-León, J. I. Nieto-Hipólito, and M. Vázquez-Briseño, “Insulin overlapping in whole blood FTIR spectroscopy in blood glucose measurements,” Results Phys. 7, 1221–1222 (2017).
[Crossref]

Talanta (1)

M. Goodarzi and W. Saeys, “Selection of the most informative near infrared spectroscopy wavebands for continuous glucose monitoring in human serum,” Talanta 146, 155–165 (2016).
[Crossref] [PubMed]

Vib. Spectrosc. (1)

H. von Lilienfeld-Toal, M. Weidenmüller, A. Xhelaj, and W. Mäntele, “A novel approach to non-invasive glucose measurement by mid-infrared spectroscopy: the combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc. 38(1–2), 209–215 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Experimental setup and dimensions of ATR prism.
Fig. 2
Fig. 2 Process flowchart of accuracy evaluation for wavenumber selection.
Fig. 3
Fig. 3 Example of interpolation of blood glucose levels for no delay and 5 min delay.
Fig. 4
Fig. 4 Difference between (a) leave-one-out cross validation and (b) series cross validation. The different colors and shapes show different series of data.
Fig. 5
Fig. 5 Measured absorption spectra of (a) data set 1 and (b) data set 2.
Fig. 6
Fig. 6 (a) Mean correlation coefficient and number of wavenumbers for MLR as a function of delay and (b) mean correlation coefficient and number of components for PLS as a function of delay.
Fig. 7
Fig. 7 Histogram of the number of wavenumbers selected as a function of the wavenumber and delay.
Fig. 8
Fig. 8 Correlation coefficient as a function of delay for the MLR model using selected wavenumbers (1050 cm−1, 1070 cm−1, and 1100 cm−1) and glucose absorption peaks (1036 cm−1, 1080 cm−1, and 1110 cm−1).
Fig. 9
Fig. 9 Measured absorption spectra of a 1% glucose solution. The dashed lines indicate the selected wavenumbers (1050 cm−1, 1070 cm−1, and 1100 cm−1).
Fig. 10
Fig. 10 Clark error grid of data set 1 for (a) MLR estimation model using 1050 cm−1, 1070 cm−1, and 1100 cm−1 and (b) PLS model.
Fig. 11
Fig. 11 Clark error grid of data set 2 for (a) MLR model using 1050 cm−1, 1070 cm−1, and 1100 cm−1 and (b) PLS model.

Tables (1)

Tables Icon

Table 1 Data set properties

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

y=Ax .
min x yAx 2 subjectto A 0 =L .
y=1175x(1050c m 1 )+1849x(1070c m 1 )859x(1100c m 1 )+276 .

Metrics