Abstract

In this work, Fourier integral microscope (FIMic), an ultimate design of 3D-integral microscopy, is presented. By placing a multiplexing microlens array at the aperture stop of the microscope objective of the host microscope, FIMic shows extended depth of field and enhanced lateral resolution in comparison with regular integral microscopy. As FIMic directly produces a set of orthographic views of the 3D-micrometer-sized sample, it is suitable for real-time imaging. Following regular integral-imaging reconstruction algorithms, a 2.75-fold enhanced depth of field and 2-time better spatial resolution in comparison with conventional integral microscopy is reported. Our claims are supported by theoretical analysis and experimental images of a resolution test target, cotton fibers, and in-vivo 3D-imaging of biological specimens.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems

Manuel Martínez-Corral and Bahram Javidi
Adv. Opt. Photon. 10(3) 512-566 (2018)

Resolution enhancement in integral microscopy by physical interpolation

Anabel Llavador, Emilio Sánchez-Ortiga, Juan Carlos Barreiro, Genaro Saavedra, and Manuel Martínez-Corral
Biomed. Opt. Express 6(8) 2854-2863 (2015)

Resolution improvements in integral microscopy with Fourier plane recording

A. Llavador, J. Sola-Pikabea, G. Saavedra, B. Javidi, and M. Martínez-Corral
Opt. Express 24(18) 20792-20798 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
    [Crossref]
  2. J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6(10), 422–430 (2010).
    [Crossref]
  3. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16(16), 11776–11781 (2008).
    [Crossref] [PubMed]
  4. J. Wang, X. Xiao, H. Hua, and B. Javidi, “Augmented reality 3D displays with micro integral imaging,” J. Disp. Technol. 11(11), 889–893 (2015).
    [Crossref]
  5. A. Dorado, M. Martinez-Corral, G. Saavedra, and S. Hong, “Computation and display of 3D movie from a single integral photography,” J. Disp. Technol. 12(7), 695–700 (2016).
    [Crossref]
  6. N. Davies, M. McCormick, and L. Yang, “Three-dimensional imaging systems: a new development,” Appl. Opt. 27(21), 4520–4528 (1988).
    [Crossref] [PubMed]
  7. E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
    [Crossref]
  8. R. Ng, “Digital Light Field Photography,” Stanford University (2006).
  9. T. Georgiev and A. Lumsdaine, “Focused plenoptic camera and rendering,” J. Electron. Imaging 19(2), 021106 (2010).
    [Crossref]
  10. C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8921, 892108 (2012).
  11. N. Bedard, T. Shope, A. Hoberman, M. A. Haralam, N. Shaikh, J. Kovačević, N. Balram, and I. Tošić, “Light field otoscope design for 3D in vivo imaging of the middle ear,” Biomed. Opt. Express 8(1), 260–272 (2016).
    [Crossref] [PubMed]
  12. H. Chen, V. Sick, M. Woodward, and D. Burke, “Human Iris 3D Imaging using a micro-Plenoptic Camera,” in Bio-Optics: Design and Application (Optical Society of America, 2017), p. BoW3A–6.
  13. J. Liu, D. Claus, T. Xu, T. Keßner, A. Herkommer, and W. Osten, “Light field endoscopy and its parametric description,” Opt. Lett. 42(9), 1804–1807 (2017).
    [Crossref] [PubMed]
  14. H. N. D. Le, R. Decker, A. Krieger, and J. U. Kang, “Experimental assessment of a 3-D plenoptic endoscopic imaging system,” Chin. Opt. Lett. 15, 051701 (2017).
    [Crossref]
  15. R. S. Decker, A. Shademan, J. D. Opfermann, S. Leonard, P. C. W. Kim, and A. Krieger, “Biocompatible Near-Infrared Three-Dimensional Tracking System,” IEEE Trans. Biomed. Eng. 64(3), 549–556 (2017).
    [PubMed]
  16. N. C. Pégard, H.-Y. Liu, N. Antipa, M. Gerlock, H. Adesnik, and L. Waller, “Compressive light-field microscopy for 3D neural activity recording,” Optica 3(5), 517–524 (2016).
    [Crossref]
  17. Y. Lv, H. Ma, Q. Sun, P. Ma, Y. Ning, and X. Xu, “Wavefront Sensing Based on Partially Occluded and Extended Scene Target,” IEEE Photonics J. 9, 1–8 (2017).
  18. S. Komatsu, A. Markman, A. Mahalanobis, K. Chen, and B. Javidi, “Three-dimensional integral imaging and object detection using long-wave infrared imaging,” Appl. Opt. 56(9), D120–D126 (2017).
    [Crossref] [PubMed]
  19. H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
    [Crossref] [PubMed]
  20. J.-S. Jang and B. Javidi, “Three-dimensional integral imaging of micro-objects,” Opt. Lett. 29(11), 1230–1232 (2004).
    [Crossref] [PubMed]
  21. M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
    [Crossref]
  22. M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
    [Crossref] [PubMed]
  23. Y.-T. Lim, J.-H. Park, K.-C. Kwon, and N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express 17(21), 19253–19263 (2009).
    [Crossref] [PubMed]
  24. A. Llavador, E. Sánchez-Ortiga, J. C. Barreiro, G. Saavedra, and M. Martínez-Corral, “Resolution enhancement in integral microscopy by physical interpolation,” Biomed. Opt. Express 6(8), 2854–2863 (2015).
    [Crossref] [PubMed]
  25. A. Llavador, J. Sola-Pikabea, G. Saavedra, B. Javidi, and M. Martínez-Corral, “Resolution improvements in integral microscopy with Fourier plane recording,” Opt. Express 24(18), 20792–20798 (2016).
    [Crossref] [PubMed]
  26. K.-C. Kwon, J.-S. Jeong, M.-U. Erdenebat, Y.-L. Piao, K.-H. Yoo, and N. Kim, “Resolution-enhancement for an orthographic-view image display in an integral imaging microscope system,” Biomed. Opt. Express 6(3), 736–746 (2015).
    [Crossref] [PubMed]
  27. M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, and M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
    [Crossref] [PubMed]
  28. X. Lin, J. Wu, G. Zheng, and Q. Dai, “Camera array based light field microscopy,” Biomed. Opt. Express 6(9), 3179–3189 (2015).
    [Crossref] [PubMed]
  29. L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
    [Crossref] [PubMed]
  30. M. Pluta, Advanced Light Microscopy. Principles and Basic Properties (Elsevier, 1988).
  31. S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12(3), 483–491 (2004).
    [Crossref] [PubMed]
  32. H. Navarro, E. Sánchez-Ortiga, G. Saavedra, A. Llavador, A. Dorado, M. Martínez-Corral, and B. Javidi, “Non-homogeneity of lateral resolution in integral imaging,” J. Disp. Technol. 9(1), 37–43 (2013).
    [Crossref]

2017 (6)

R. S. Decker, A. Shademan, J. D. Opfermann, S. Leonard, P. C. W. Kim, and A. Krieger, “Biocompatible Near-Infrared Three-Dimensional Tracking System,” IEEE Trans. Biomed. Eng. 64(3), 549–556 (2017).
[PubMed]

Y. Lv, H. Ma, Q. Sun, P. Ma, Y. Ning, and X. Xu, “Wavefront Sensing Based on Partially Occluded and Extended Scene Target,” IEEE Photonics J. 9, 1–8 (2017).

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

S. Komatsu, A. Markman, A. Mahalanobis, K. Chen, and B. Javidi, “Three-dimensional integral imaging and object detection using long-wave infrared imaging,” Appl. Opt. 56(9), D120–D126 (2017).
[Crossref] [PubMed]

H. N. D. Le, R. Decker, A. Krieger, and J. U. Kang, “Experimental assessment of a 3-D plenoptic endoscopic imaging system,” Chin. Opt. Lett. 15, 051701 (2017).
[Crossref]

J. Liu, D. Claus, T. Xu, T. Keßner, A. Herkommer, and W. Osten, “Light field endoscopy and its parametric description,” Opt. Lett. 42(9), 1804–1807 (2017).
[Crossref] [PubMed]

2016 (4)

2015 (4)

2014 (1)

2013 (2)

M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, and M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
[Crossref] [PubMed]

H. Navarro, E. Sánchez-Ortiga, G. Saavedra, A. Llavador, A. Dorado, M. Martínez-Corral, and B. Javidi, “Non-homogeneity of lateral resolution in integral imaging,” J. Disp. Technol. 9(1), 37–43 (2013).
[Crossref]

2012 (1)

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8921, 892108 (2012).

2010 (2)

T. Georgiev and A. Lumsdaine, “Focused plenoptic camera and rendering,” J. Electron. Imaging 19(2), 021106 (2010).
[Crossref]

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6(10), 422–430 (2010).
[Crossref]

2009 (2)

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

Y.-T. Lim, J.-H. Park, K.-C. Kwon, and N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express 17(21), 19253–19263 (2009).
[Crossref] [PubMed]

2008 (1)

2006 (1)

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

2004 (2)

1992 (1)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

1988 (1)

1908 (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

Adams, A.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Adelson, E. H.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Adesnik, H.

Andalman, A.

Antipa, N.

Arai, J.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6(10), 422–430 (2010).
[Crossref]

Bai, L.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

Balram, N.

Barreiro, J. C.

Bedard, N.

Broxton, M.

Chai, Y.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

Chen, K.

Claus, D.

Cohen, N.

Cong, L.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

Dai, Q.

Davies, N.

Decker, R.

Decker, R. S.

R. S. Decker, A. Shademan, J. D. Opfermann, S. Leonard, P. C. W. Kim, and A. Krieger, “Biocompatible Near-Infrared Three-Dimensional Tracking System,” IEEE Trans. Biomed. Eng. 64(3), 549–556 (2017).
[PubMed]

Deisseroth, K.

Dorado, A.

A. Dorado, M. Martinez-Corral, G. Saavedra, and S. Hong, “Computation and display of 3D movie from a single integral photography,” J. Disp. Technol. 12(7), 695–700 (2016).
[Crossref]

H. Navarro, E. Sánchez-Ortiga, G. Saavedra, A. Llavador, A. Dorado, M. Martínez-Corral, and B. Javidi, “Non-homogeneity of lateral resolution in integral imaging,” J. Disp. Technol. 9(1), 37–43 (2013).
[Crossref]

Du, J.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

Erdenebat, M.-U.

Footer, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Furuya, M.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6(10), 422–430 (2010).
[Crossref]

Georgiev, T.

T. Georgiev and A. Lumsdaine, “Focused plenoptic camera and rendering,” J. Electron. Imaging 19(2), 021106 (2010).
[Crossref]

Gerlock, M.

Grosenick, L.

Haino, Y.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6(10), 422–430 (2010).
[Crossref]

Hang, W.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

Haralam, M. A.

Herkommer, A.

Hoberman, A.

Hong, S.

A. Dorado, M. Martinez-Corral, G. Saavedra, and S. Hong, “Computation and display of 3D movie from a single integral photography,” J. Disp. Technol. 12(7), 695–700 (2016).
[Crossref]

Hong, S.-H.

Horowitz, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Hua, H.

J. Wang, X. Xiao, H. Hua, and B. Javidi, “Augmented reality 3D displays with micro integral imaging,” J. Disp. Technol. 11(11), 889–893 (2015).
[Crossref]

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
[Crossref] [PubMed]

Ito, T.

Jang, J.-S.

Javidi, B.

Jeong, J.-S.

Kang, J. U.

Kawakita, M.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6(10), 422–430 (2010).
[Crossref]

Keßner, T.

Kim, N.

Kim, P. C. W.

R. S. Decker, A. Shademan, J. D. Opfermann, S. Leonard, P. C. W. Kim, and A. Krieger, “Biocompatible Near-Infrared Three-Dimensional Tracking System,” IEEE Trans. Biomed. Eng. 64(3), 549–556 (2017).
[PubMed]

Komatsu, S.

Kovacevic, J.

Krieger, A.

R. S. Decker, A. Shademan, J. D. Opfermann, S. Leonard, P. C. W. Kim, and A. Krieger, “Biocompatible Near-Infrared Three-Dimensional Tracking System,” IEEE Trans. Biomed. Eng. 64(3), 549–556 (2017).
[PubMed]

H. N. D. Le, R. Decker, A. Krieger, and J. U. Kang, “Experimental assessment of a 3-D plenoptic endoscopic imaging system,” Chin. Opt. Lett. 15, 051701 (2017).
[Crossref]

Kwon, K.-C.

Le, H. N. D.

Leonard, S.

R. S. Decker, A. Shademan, J. D. Opfermann, S. Leonard, P. C. W. Kim, and A. Krieger, “Biocompatible Near-Infrared Three-Dimensional Tracking System,” IEEE Trans. Biomed. Eng. 64(3), 549–556 (2017).
[PubMed]

Levoy, M.

M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, and M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
[Crossref] [PubMed]

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Lim, Y.-T.

Lin, X.

Lippmann, G.

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

Liu, H.-Y.

Liu, J.

Llavador, A.

Lumsdaine, A.

T. Georgiev and A. Lumsdaine, “Focused plenoptic camera and rendering,” J. Electron. Imaging 19(2), 021106 (2010).
[Crossref]

Lv, Y.

Y. Lv, H. Ma, Q. Sun, P. Ma, Y. Ning, and X. Xu, “Wavefront Sensing Based on Partially Occluded and Extended Scene Target,” IEEE Photonics J. 9, 1–8 (2017).

Ma, H.

Y. Lv, H. Ma, Q. Sun, P. Ma, Y. Ning, and X. Xu, “Wavefront Sensing Based on Partially Occluded and Extended Scene Target,” IEEE Photonics J. 9, 1–8 (2017).

Ma, P.

Y. Lv, H. Ma, Q. Sun, P. Ma, Y. Ning, and X. Xu, “Wavefront Sensing Based on Partially Occluded and Extended Scene Target,” IEEE Photonics J. 9, 1–8 (2017).

Mahalanobis, A.

Markman, A.

Martinez-Corral, M.

A. Dorado, M. Martinez-Corral, G. Saavedra, and S. Hong, “Computation and display of 3D movie from a single integral photography,” J. Disp. Technol. 12(7), 695–700 (2016).
[Crossref]

Martínez-Corral, M.

McCormick, M.

McDowall, I.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

Miura, J.

Navarro, H.

H. Navarro, E. Sánchez-Ortiga, G. Saavedra, A. Llavador, A. Dorado, M. Martínez-Corral, and B. Javidi, “Non-homogeneity of lateral resolution in integral imaging,” J. Disp. Technol. 9(1), 37–43 (2013).
[Crossref]

Ng, R.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Ning, Y.

Y. Lv, H. Ma, Q. Sun, P. Ma, Y. Ning, and X. Xu, “Wavefront Sensing Based on Partially Occluded and Extended Scene Target,” IEEE Photonics J. 9, 1–8 (2017).

Okano, F.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6(10), 422–430 (2010).
[Crossref]

Okui, M.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6(10), 422–430 (2010).
[Crossref]

Opfermann, J. D.

R. S. Decker, A. Shademan, J. D. Opfermann, S. Leonard, P. C. W. Kim, and A. Krieger, “Biocompatible Near-Infrared Three-Dimensional Tracking System,” IEEE Trans. Biomed. Eng. 64(3), 549–556 (2017).
[PubMed]

Osten, W.

Park, J.-H.

Pégard, N. C.

Perwass, C.

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8921, 892108 (2012).

Piao, Y.-L.

Saavedra, G.

A. Dorado, M. Martinez-Corral, G. Saavedra, and S. Hong, “Computation and display of 3D movie from a single integral photography,” J. Disp. Technol. 12(7), 695–700 (2016).
[Crossref]

A. Llavador, J. Sola-Pikabea, G. Saavedra, B. Javidi, and M. Martínez-Corral, “Resolution improvements in integral microscopy with Fourier plane recording,” Opt. Express 24(18), 20792–20798 (2016).
[Crossref] [PubMed]

A. Llavador, E. Sánchez-Ortiga, J. C. Barreiro, G. Saavedra, and M. Martínez-Corral, “Resolution enhancement in integral microscopy by physical interpolation,” Biomed. Opt. Express 6(8), 2854–2863 (2015).
[Crossref] [PubMed]

H. Navarro, E. Sánchez-Ortiga, G. Saavedra, A. Llavador, A. Dorado, M. Martínez-Corral, and B. Javidi, “Non-homogeneity of lateral resolution in integral imaging,” J. Disp. Technol. 9(1), 37–43 (2013).
[Crossref]

Sánchez-Ortiga, E.

A. Llavador, E. Sánchez-Ortiga, J. C. Barreiro, G. Saavedra, and M. Martínez-Corral, “Resolution enhancement in integral microscopy by physical interpolation,” Biomed. Opt. Express 6(8), 2854–2863 (2015).
[Crossref] [PubMed]

H. Navarro, E. Sánchez-Ortiga, G. Saavedra, A. Llavador, A. Dorado, M. Martínez-Corral, and B. Javidi, “Non-homogeneity of lateral resolution in integral imaging,” J. Disp. Technol. 9(1), 37–43 (2013).
[Crossref]

Sato, M.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6(10), 422–430 (2010).
[Crossref]

Sato, Y.

Shademan, A.

R. S. Decker, A. Shademan, J. D. Opfermann, S. Leonard, P. C. W. Kim, and A. Krieger, “Biocompatible Near-Infrared Three-Dimensional Tracking System,” IEEE Trans. Biomed. Eng. 64(3), 549–556 (2017).
[PubMed]

Shaikh, N.

Shang, C.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

Shimobaba, T.

Shope, T.

Sola-Pikabea, J.

Sun, Q.

Y. Lv, H. Ma, Q. Sun, P. Ma, Y. Ning, and X. Xu, “Wavefront Sensing Based on Partially Occluded and Extended Scene Target,” IEEE Photonics J. 9, 1–8 (2017).

Takenouchi, M.

Tošic, I.

Waller, L.

Wang, J.

J. Wang, X. Xiao, H. Hua, and B. Javidi, “Augmented reality 3D displays with micro integral imaging,” J. Disp. Technol. 11(11), 889–893 (2015).
[Crossref]

Wang, J. Y. A.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Wang, K.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

Wang, Z.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

Wen, Q.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

Wietzke, L.

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8921, 892108 (2012).

Wu, J.

Xiao, X.

J. Wang, X. Xiao, H. Hua, and B. Javidi, “Augmented reality 3D displays with micro integral imaging,” J. Disp. Technol. 11(11), 889–893 (2015).
[Crossref]

Xu, T.

Xu, X.

Y. Lv, H. Ma, Q. Sun, P. Ma, Y. Ning, and X. Xu, “Wavefront Sensing Based on Partially Occluded and Extended Scene Target,” IEEE Photonics J. 9, 1–8 (2017).

Yang, L.

Yang, S.

Yang, W.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

Yoo, K.-H.

Yoshimura, M.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6(10), 422–430 (2010).
[Crossref]

Zhang, Z.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

Zheng, G.

ACM Trans. Graph. (1)

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (4)

Chin. Opt. Lett. (1)

eLife (1)

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref] [PubMed]

IEEE Photonics J. (1)

Y. Lv, H. Ma, Q. Sun, P. Ma, Y. Ning, and X. Xu, “Wavefront Sensing Based on Partially Occluded and Extended Scene Target,” IEEE Photonics J. 9, 1–8 (2017).

IEEE Trans. Biomed. Eng. (1)

R. S. Decker, A. Shademan, J. D. Opfermann, S. Leonard, P. C. W. Kim, and A. Krieger, “Biocompatible Near-Infrared Three-Dimensional Tracking System,” IEEE Trans. Biomed. Eng. 64(3), 549–556 (2017).
[PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

J. Disp. Technol. (4)

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. Disp. Technol. 6(10), 422–430 (2010).
[Crossref]

J. Wang, X. Xiao, H. Hua, and B. Javidi, “Augmented reality 3D displays with micro integral imaging,” J. Disp. Technol. 11(11), 889–893 (2015).
[Crossref]

A. Dorado, M. Martinez-Corral, G. Saavedra, and S. Hong, “Computation and display of 3D movie from a single integral photography,” J. Disp. Technol. 12(7), 695–700 (2016).
[Crossref]

H. Navarro, E. Sánchez-Ortiga, G. Saavedra, A. Llavador, A. Dorado, M. Martínez-Corral, and B. Javidi, “Non-homogeneity of lateral resolution in integral imaging,” J. Disp. Technol. 9(1), 37–43 (2013).
[Crossref]

J. Electron. Imaging (1)

T. Georgiev and A. Lumsdaine, “Focused plenoptic camera and rendering,” J. Electron. Imaging 19(2), 021106 (2010).
[Crossref]

J. Microsc. (1)

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

J. Phys. Theor. Appl. (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Optica (1)

Proc. SPIE (1)

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8921, 892108 (2012).

Other (3)

H. Chen, V. Sick, M. Woodward, and D. Burke, “Human Iris 3D Imaging using a micro-Plenoptic Camera,” in Bio-Optics: Design and Application (Optical Society of America, 2017), p. BoW3A–6.

R. Ng, “Digital Light Field Photography,” Stanford University (2006).

M. Pluta, Advanced Light Microscopy. Principles and Basic Properties (Elsevier, 1988).

Supplementary Material (3)

NameDescription
» Visualization 1       Multi-view images of a bio sample
» Visualization 2       Multiview images of a bio sample
» Visualization 3       Refocusing of depth images from multi view images

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic layout of Fourier Integral Microscopy (FIMic). A collection of orthographic views (or EIs) is directly obtained. ROP is the reference object plane; RL1 and RL2 are the relay lenses, and CCD is the digital sensor.
Fig. 2
Fig. 2 Central view provided by the two microscopes when operating both at resolution limit of about 6.20 μm. The label Z indicates the distance from the ROP. Providing both microscopes the same resolution at the ROP, the DOF extends up to Z=+110 μm for the FIMic, but only up to Z=+40 μm for the IMic.
Fig. 3
Fig. 3 Central view provided by both microscopes when operating with the same DOF. The FIMic provides better resolution at the edge of its DOF than the IMic at its ROP.
Fig. 4
Fig. 4 Microimages and EIs for IMic. Panel (a) shows the microimages recorded directly by the digital sensor. Panel (b) is the complete set of EIs computed from the microimages. In this experiment each micro image was formed by 17x17 pixels, hence the same number of EIs is computed. Zoomed-in areas are magnified by factor of four.
Fig. 5
Fig. 5 Elemental images directly recorded in FIMic. The available area of the digital sensor is utilized for the recording of the N=δT f 1 /p f 2 elemental images.
Fig. 6
Fig. 6 Refocusing capabilities FIMic v.s. IMic. FIMic provides better resolution along the entire DOF.
Fig. 7
Fig. 7 Frame extracted from Visualization 1, a video of a marine nematode swimming through algae. Panel (a) shows the directly recorded EIs. In panel (b) there is a 3-times zoomed-in of the central EI. The red arrow points the nematode.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

FOV=2 f MO f 2 f 1 N A MLA ,
δ= N T p f 2 f 1
ρ EI max{ N λ 2N A H ,2δ f 2 f MO f L f 1 }.
ρ EI λ 2N A H N.
DO F EI =λ N 2 N A H 2 +δ N N A H f 2 f MO f L f 1 .
DO F EI = 5 4 λ N A H 2 N 2 .
ρ View { λ 2N A H ,2 p M H }=μ λ N A H .
DO F View = λ N A H 2 + μp M H N A H =( 1+ μ 2 2 ) λ N A H 2 .
ρ EI = N 2μ ρ View and DO F EI = 5 N 2 4+2 μ 2 DO F View .
Z R =n f MO 2 f L ( f 2 f 1 ) 2 δ p ,

Metrics