Abstract

One of the factors proposed to regulate the eye growth is the error signal derived from the defocus in the retina and actually, this might arise from defocus not only in the fovea but the whole visual field. Therefore, myopia could be better predicted by spatio-temporally mapping the ‘environmental defocus’ over the visual field. At present, no devices are available that could provide this information. A ‘Kinect sensor v1’ camera (Microsoft Corp.) and a portable eye tracker were used for developing a system for quantifying ‘indoor defocus error signals’ across the central 58° of the visual field. Dioptric differences relative to the fovea (assumed to be in focus) were recorded over the visual field and ‘defocus maps’ were generated for various scenes and tasks.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects

Anne Seidemann, Frank Schaeffel, Antonio Guirao, Noberto Lopez-Gil, and Pablo Artal
J. Opt. Soc. Am. A 19(12) 2363-2373 (2002)

Simulating real-world scenes viewed through ophthalmic lenses

Sergio Barbero and Javier Portilla
J. Opt. Soc. Am. A 34(8) 1301-1308 (2017)

Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation

Juan Tabernero and Frank Schaeffel
J. Opt. Soc. Am. A 26(10) 2206-2210 (2009)

References

  • View by:
  • |
  • |
  • |

  1. B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
    [Crossref] [PubMed]
  2. E. Dolgin, “The myopia boom,” Nature 519(7543), 276–278 (2015).
    [Crossref] [PubMed]
  3. M. Dirani, S. N. Shekar, and P. N. Baird, “Adult-onset myopia: The Genes in Myopia (GEM) twin study,” Invest. Ophthalmol. Vis. Sci. 49(8), 3324–3327 (2008).
    [Crossref] [PubMed]
  4. J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43(4), 447–468 (2004).
    [Crossref] [PubMed]
  5. K. Totonelly and N. J. Coletta, “Eye shape and peripheral refractive error in the development of myopia,” The New England College of Optometry (2010).
  6. E. L. Smith, C.-S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
    [Crossref] [PubMed]
  7. R. Schippert and F. Schaeffel, “Peripheral defocus does not necessarily affect central refractive development,” Vision Res. 46(22), 3935–3940 (2006).
    [Crossref] [PubMed]
  8. J. Hoogerheide, F. Rempt, and W. P. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163(4), 209–215 (1971).
    [Crossref] [PubMed]
  9. A. Seidemann and F. Schaeffel, “Effects of longitudinal chromatic aberration on accommodation and emmetropization,” Vision Res. 42(21), 2409–2417 (2002).
    [Crossref] [PubMed]
  10. R. A. Stone and D. I. Flitcroft, “Ocular shape and myopia,” Ann. Acad. Med. Singapore 33(1), 7–15 (2004).
    [PubMed]
  11. D. A. Atchison and R. Rosén, “The Possible Role of Peripheral Refraction in Development of Myopia,” Optom. Vis. Sci. 93(9), 1042–1044 (2016).
    [Crossref] [PubMed]
  12. E. L. Smith, M. C. W. Campbell, and E. Irving, “Does peripheral retinal input explain the promising myopia control effects of corneal reshaping therapy (CRT or ortho-K) & multifocal soft contact lenses?” Ophthalmic Physiol. Opt. 33(3), 379–384 (2013).
    [Crossref] [PubMed]
  13. D. I. Flitcroft, “The complex interactions of retinal, optical and environmental factors in myopia aetiology,” Prog. Retin. Eye Res. 31(6), 622–660 (2012).
    [Crossref] [PubMed]
  14. W. W. Sprague, E. A. Cooper, S. Reissier, B. Yellapragada, and M. S. Banks, “The natural statistics of blur,” J. Vis. 16(10), 23 (2016).
    [Crossref] [PubMed]
  15. W. N. Charman, “Myopia, posture and the visual environment,” Ophthalmic Physiol. Opt. 31(5), 494–501 (2011).
    [Crossref] [PubMed]
  16. A. Reichinger, “Kinect Pattern Uncovered | azt.tm’s Blog,” https://azttm.wordpress.com/2011/04/03/kinect-pattern-uncovered/ .
  17. Microsoft, “Kinect for Windows Sensor Components and Specifications,” https://msdn.microsoft.com/en-us/library/jj131033.aspx .
  18. H. Gonzalez-Jorge, P. Rodríguez-Gonzálvez, J. Martínez-Sánchez, D. González-Aguilera, P. Arias, M. Gesto, and L. Díaz-Vilariño, “Metrological comparison between Kinect I and Kinect II sensors,” Measurement 70, 21–26 (2015).
    [Crossref]
  19. S. T. L. Pöhlmann, E. F. Harkness, C. J. Taylor, and S. M. Astley, “Evaluation of Kinect 3D Sensor for Healthcare Imaging,” J. Med. Biol. Eng. 36(6), 857–870 (2016).
    [Crossref] [PubMed]
  20. L. Shao, J. Han, D. Xu, and J. Shotton, “Computer vision for RGB-D sensors: Kinect and its applications,” IEEE Trans. Cybern. 43(5), 1314–1317 (2013).
    [Crossref] [PubMed]
  21. A. Leube, K. Rifai, and S. Wahl, “Sampling rate influences saccade detection in mobile eye tracking of a reading task,” J. Eye Mov. Res. 10, 3 (2017).
  22. D. J. Flitcroft, “Dioptric space: Extending the concepts of defocus to three dimensions,” in Investigative Ophthalmology and Visual Science, 47 (ARVO E-Abstract 4778) (2006).
  23. MathWorks, “estimateGeometricTransform,” https://www.mathworks.com/help/vision/ref/estimategeometrictransform.html?s_tid=gn_loc_drop .
  24. P. H. S. Torr and A. Zisserman, “MLESAC: A New Robust Estimator with Application to Estimating Image Geometry,” Comput. Vis. Image Underst. 78(1), 138–156 (2000).
    [Crossref]
  25. Kinect Depth Normalization - File Exchange - MATLAB Central (n.d.).
  26. A. Light and P.J. Bartlein, “The End of the Rainbow? Color Schemes for Improved Data Graphics.,” Eos (Washington. DC). 85, 385&391 (2004).
  27. K. Rohrschneider, “Determination of the Location of the Fovea on the Fundus,” Invest. Ophthalmol. Vis. Sci. 45(9), 3257–3258 (2004).
    [Crossref] [PubMed]
  28. D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative peripheral refractive error and the risk of onset and progression of myopia in children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
    [Crossref] [PubMed]
  29. B. Wang, K. J. Ciuffreda, and T. Irish, “Equiblur zones at the fovea and near retinal periphery,” Vision Res. 46(21), 3690–3698 (2006).
    [Crossref] [PubMed]
  30. J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43(4), 447–468 (2004).
    [Crossref] [PubMed]
  31. C. Wildsoet, “Neural pathways subserving negative lens-induced emmetropization in chicks--insights from selective lesions of the optic nerve and ciliary nerve,” Curr. Eye Res. 27(6), 371–385 (2003).
    [Crossref] [PubMed]
  32. F. Schaeffel and C. Wildsoet, “Can the retina alone detect the sign of defocus?” Ophthalmic Physiol. Opt. 33(3), 362–367 (2013).
    [Crossref] [PubMed]
  33. J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49(17), 2176–2186 (2009).
    [Crossref] [PubMed]
  34. D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative Peripheral Refractive Error and the Risk of Onset and Progression of Myopia in Children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
    [Crossref] [PubMed]
  35. N. E. Klepeis, W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern, and W. H. Engelmann, “The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants,” J. Expo. Anal. Environ. Epidemiol. 11(3), 231–252 (2001).
    [Crossref] [PubMed]

2017 (1)

A. Leube, K. Rifai, and S. Wahl, “Sampling rate influences saccade detection in mobile eye tracking of a reading task,” J. Eye Mov. Res. 10, 3 (2017).

2016 (4)

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
[Crossref] [PubMed]

D. A. Atchison and R. Rosén, “The Possible Role of Peripheral Refraction in Development of Myopia,” Optom. Vis. Sci. 93(9), 1042–1044 (2016).
[Crossref] [PubMed]

W. W. Sprague, E. A. Cooper, S. Reissier, B. Yellapragada, and M. S. Banks, “The natural statistics of blur,” J. Vis. 16(10), 23 (2016).
[Crossref] [PubMed]

S. T. L. Pöhlmann, E. F. Harkness, C. J. Taylor, and S. M. Astley, “Evaluation of Kinect 3D Sensor for Healthcare Imaging,” J. Med. Biol. Eng. 36(6), 857–870 (2016).
[Crossref] [PubMed]

2015 (2)

H. Gonzalez-Jorge, P. Rodríguez-Gonzálvez, J. Martínez-Sánchez, D. González-Aguilera, P. Arias, M. Gesto, and L. Díaz-Vilariño, “Metrological comparison between Kinect I and Kinect II sensors,” Measurement 70, 21–26 (2015).
[Crossref]

E. Dolgin, “The myopia boom,” Nature 519(7543), 276–278 (2015).
[Crossref] [PubMed]

2013 (3)

L. Shao, J. Han, D. Xu, and J. Shotton, “Computer vision for RGB-D sensors: Kinect and its applications,” IEEE Trans. Cybern. 43(5), 1314–1317 (2013).
[Crossref] [PubMed]

E. L. Smith, M. C. W. Campbell, and E. Irving, “Does peripheral retinal input explain the promising myopia control effects of corneal reshaping therapy (CRT or ortho-K) & multifocal soft contact lenses?” Ophthalmic Physiol. Opt. 33(3), 379–384 (2013).
[Crossref] [PubMed]

F. Schaeffel and C. Wildsoet, “Can the retina alone detect the sign of defocus?” Ophthalmic Physiol. Opt. 33(3), 362–367 (2013).
[Crossref] [PubMed]

2012 (1)

D. I. Flitcroft, “The complex interactions of retinal, optical and environmental factors in myopia aetiology,” Prog. Retin. Eye Res. 31(6), 622–660 (2012).
[Crossref] [PubMed]

2011 (3)

W. N. Charman, “Myopia, posture and the visual environment,” Ophthalmic Physiol. Opt. 31(5), 494–501 (2011).
[Crossref] [PubMed]

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative peripheral refractive error and the risk of onset and progression of myopia in children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative Peripheral Refractive Error and the Risk of Onset and Progression of Myopia in Children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

2009 (1)

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49(17), 2176–2186 (2009).
[Crossref] [PubMed]

2008 (1)

M. Dirani, S. N. Shekar, and P. N. Baird, “Adult-onset myopia: The Genes in Myopia (GEM) twin study,” Invest. Ophthalmol. Vis. Sci. 49(8), 3324–3327 (2008).
[Crossref] [PubMed]

2006 (2)

R. Schippert and F. Schaeffel, “Peripheral defocus does not necessarily affect central refractive development,” Vision Res. 46(22), 3935–3940 (2006).
[Crossref] [PubMed]

B. Wang, K. J. Ciuffreda, and T. Irish, “Equiblur zones at the fovea and near retinal periphery,” Vision Res. 46(21), 3690–3698 (2006).
[Crossref] [PubMed]

2005 (1)

E. L. Smith, C.-S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
[Crossref] [PubMed]

2004 (4)

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43(4), 447–468 (2004).
[Crossref] [PubMed]

R. A. Stone and D. I. Flitcroft, “Ocular shape and myopia,” Ann. Acad. Med. Singapore 33(1), 7–15 (2004).
[PubMed]

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43(4), 447–468 (2004).
[Crossref] [PubMed]

K. Rohrschneider, “Determination of the Location of the Fovea on the Fundus,” Invest. Ophthalmol. Vis. Sci. 45(9), 3257–3258 (2004).
[Crossref] [PubMed]

2003 (1)

C. Wildsoet, “Neural pathways subserving negative lens-induced emmetropization in chicks--insights from selective lesions of the optic nerve and ciliary nerve,” Curr. Eye Res. 27(6), 371–385 (2003).
[Crossref] [PubMed]

2002 (1)

A. Seidemann and F. Schaeffel, “Effects of longitudinal chromatic aberration on accommodation and emmetropization,” Vision Res. 42(21), 2409–2417 (2002).
[Crossref] [PubMed]

2001 (1)

N. E. Klepeis, W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern, and W. H. Engelmann, “The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants,” J. Expo. Anal. Environ. Epidemiol. 11(3), 231–252 (2001).
[Crossref] [PubMed]

2000 (1)

P. H. S. Torr and A. Zisserman, “MLESAC: A New Robust Estimator with Application to Estimating Image Geometry,” Comput. Vis. Image Underst. 78(1), 138–156 (2000).
[Crossref]

1971 (1)

J. Hoogerheide, F. Rempt, and W. P. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163(4), 209–215 (1971).
[Crossref] [PubMed]

Arias, P.

H. Gonzalez-Jorge, P. Rodríguez-Gonzálvez, J. Martínez-Sánchez, D. González-Aguilera, P. Arias, M. Gesto, and L. Díaz-Vilariño, “Metrological comparison between Kinect I and Kinect II sensors,” Measurement 70, 21–26 (2015).
[Crossref]

Astley, S. M.

S. T. L. Pöhlmann, E. F. Harkness, C. J. Taylor, and S. M. Astley, “Evaluation of Kinect 3D Sensor for Healthcare Imaging,” J. Med. Biol. Eng. 36(6), 857–870 (2016).
[Crossref] [PubMed]

Atchison, D. A.

D. A. Atchison and R. Rosén, “The Possible Role of Peripheral Refraction in Development of Myopia,” Optom. Vis. Sci. 93(9), 1042–1044 (2016).
[Crossref] [PubMed]

Baird, P. N.

M. Dirani, S. N. Shekar, and P. N. Baird, “Adult-onset myopia: The Genes in Myopia (GEM) twin study,” Invest. Ophthalmol. Vis. Sci. 49(8), 3324–3327 (2008).
[Crossref] [PubMed]

Banks, M. S.

W. W. Sprague, E. A. Cooper, S. Reissier, B. Yellapragada, and M. S. Banks, “The natural statistics of blur,” J. Vis. 16(10), 23 (2016).
[Crossref] [PubMed]

Behar, J. V.

N. E. Klepeis, W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern, and W. H. Engelmann, “The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants,” J. Expo. Anal. Environ. Epidemiol. 11(3), 231–252 (2001).
[Crossref] [PubMed]

Campbell, M. C. W.

E. L. Smith, M. C. W. Campbell, and E. Irving, “Does peripheral retinal input explain the promising myopia control effects of corneal reshaping therapy (CRT or ortho-K) & multifocal soft contact lenses?” Ophthalmic Physiol. Opt. 33(3), 379–384 (2013).
[Crossref] [PubMed]

Charman, W. N.

W. N. Charman, “Myopia, posture and the visual environment,” Ophthalmic Physiol. Opt. 31(5), 494–501 (2011).
[Crossref] [PubMed]

Ciuffreda, K. J.

B. Wang, K. J. Ciuffreda, and T. Irish, “Equiblur zones at the fovea and near retinal periphery,” Vision Res. 46(21), 3690–3698 (2006).
[Crossref] [PubMed]

Cooper, E. A.

W. W. Sprague, E. A. Cooper, S. Reissier, B. Yellapragada, and M. S. Banks, “The natural statistics of blur,” J. Vis. 16(10), 23 (2016).
[Crossref] [PubMed]

Cotter, S. A.

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative peripheral refractive error and the risk of onset and progression of myopia in children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative Peripheral Refractive Error and the Risk of Onset and Progression of Myopia in Children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

Díaz-Vilariño, L.

H. Gonzalez-Jorge, P. Rodríguez-Gonzálvez, J. Martínez-Sánchez, D. González-Aguilera, P. Arias, M. Gesto, and L. Díaz-Vilariño, “Metrological comparison between Kinect I and Kinect II sensors,” Measurement 70, 21–26 (2015).
[Crossref]

Dirani, M.

M. Dirani, S. N. Shekar, and P. N. Baird, “Adult-onset myopia: The Genes in Myopia (GEM) twin study,” Invest. Ophthalmol. Vis. Sci. 49(8), 3324–3327 (2008).
[Crossref] [PubMed]

Dolgin, E.

E. Dolgin, “The myopia boom,” Nature 519(7543), 276–278 (2015).
[Crossref] [PubMed]

Engelmann, W. H.

N. E. Klepeis, W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern, and W. H. Engelmann, “The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants,” J. Expo. Anal. Environ. Epidemiol. 11(3), 231–252 (2001).
[Crossref] [PubMed]

Flitcroft, D. I.

D. I. Flitcroft, “The complex interactions of retinal, optical and environmental factors in myopia aetiology,” Prog. Retin. Eye Res. 31(6), 622–660 (2012).
[Crossref] [PubMed]

R. A. Stone and D. I. Flitcroft, “Ocular shape and myopia,” Ann. Acad. Med. Singapore 33(1), 7–15 (2004).
[PubMed]

Fricke, T. R.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
[Crossref] [PubMed]

Gesto, M.

H. Gonzalez-Jorge, P. Rodríguez-Gonzálvez, J. Martínez-Sánchez, D. González-Aguilera, P. Arias, M. Gesto, and L. Díaz-Vilariño, “Metrological comparison between Kinect I and Kinect II sensors,” Measurement 70, 21–26 (2015).
[Crossref]

González-Aguilera, D.

H. Gonzalez-Jorge, P. Rodríguez-Gonzálvez, J. Martínez-Sánchez, D. González-Aguilera, P. Arias, M. Gesto, and L. Díaz-Vilariño, “Metrological comparison between Kinect I and Kinect II sensors,” Measurement 70, 21–26 (2015).
[Crossref]

Gonzalez-Jorge, H.

H. Gonzalez-Jorge, P. Rodríguez-Gonzálvez, J. Martínez-Sánchez, D. González-Aguilera, P. Arias, M. Gesto, and L. Díaz-Vilariño, “Metrological comparison between Kinect I and Kinect II sensors,” Measurement 70, 21–26 (2015).
[Crossref]

Han, J.

L. Shao, J. Han, D. Xu, and J. Shotton, “Computer vision for RGB-D sensors: Kinect and its applications,” IEEE Trans. Cybern. 43(5), 1314–1317 (2013).
[Crossref] [PubMed]

Harkness, E. F.

S. T. L. Pöhlmann, E. F. Harkness, C. J. Taylor, and S. M. Astley, “Evaluation of Kinect 3D Sensor for Healthcare Imaging,” J. Med. Biol. Eng. 36(6), 857–870 (2016).
[Crossref] [PubMed]

Hern, S. C.

N. E. Klepeis, W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern, and W. H. Engelmann, “The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants,” J. Expo. Anal. Environ. Epidemiol. 11(3), 231–252 (2001).
[Crossref] [PubMed]

Holden, B. A.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
[Crossref] [PubMed]

Hoogenboom, W. P.

J. Hoogerheide, F. Rempt, and W. P. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163(4), 209–215 (1971).
[Crossref] [PubMed]

Hoogerheide, J.

J. Hoogerheide, F. Rempt, and W. P. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163(4), 209–215 (1971).
[Crossref] [PubMed]

Hung, L.-F.

E. L. Smith, C.-S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
[Crossref] [PubMed]

Irish, T.

B. Wang, K. J. Ciuffreda, and T. Irish, “Equiblur zones at the fovea and near retinal periphery,” Vision Res. 46(21), 3690–3698 (2006).
[Crossref] [PubMed]

Irving, E.

E. L. Smith, M. C. W. Campbell, and E. Irving, “Does peripheral retinal input explain the promising myopia control effects of corneal reshaping therapy (CRT or ortho-K) & multifocal soft contact lenses?” Ophthalmic Physiol. Opt. 33(3), 379–384 (2013).
[Crossref] [PubMed]

Jones-Jordan, L. A.

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative peripheral refractive error and the risk of onset and progression of myopia in children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative Peripheral Refractive Error and the Risk of Onset and Progression of Myopia in Children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

Jong, M.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
[Crossref] [PubMed]

Kee, C.-S.

E. L. Smith, C.-S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
[Crossref] [PubMed]

Kleinstein, R. N.

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative peripheral refractive error and the risk of onset and progression of myopia in children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative Peripheral Refractive Error and the Risk of Onset and Progression of Myopia in Children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

Klepeis, N. E.

N. E. Klepeis, W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern, and W. H. Engelmann, “The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants,” J. Expo. Anal. Environ. Epidemiol. 11(3), 231–252 (2001).
[Crossref] [PubMed]

Leube, A.

A. Leube, K. Rifai, and S. Wahl, “Sampling rate influences saccade detection in mobile eye tracking of a reading task,” J. Eye Mov. Res. 10, 3 (2017).

Manny, R. E.

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative peripheral refractive error and the risk of onset and progression of myopia in children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative Peripheral Refractive Error and the Risk of Onset and Progression of Myopia in Children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

Martínez-Sánchez, J.

H. Gonzalez-Jorge, P. Rodríguez-Gonzálvez, J. Martínez-Sánchez, D. González-Aguilera, P. Arias, M. Gesto, and L. Díaz-Vilariño, “Metrological comparison between Kinect I and Kinect II sensors,” Measurement 70, 21–26 (2015).
[Crossref]

Mitchell, G. L.

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative Peripheral Refractive Error and the Risk of Onset and Progression of Myopia in Children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative peripheral refractive error and the risk of onset and progression of myopia in children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

Moeschberger, M. L.

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative peripheral refractive error and the risk of onset and progression of myopia in children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative Peripheral Refractive Error and the Risk of Onset and Progression of Myopia in Children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

Mutti, D. O.

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative Peripheral Refractive Error and the Risk of Onset and Progression of Myopia in Children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative peripheral refractive error and the risk of onset and progression of myopia in children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

Naduvilath, T. J.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
[Crossref] [PubMed]

Naidoo, K. S.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
[Crossref] [PubMed]

Nelson, W. C.

N. E. Klepeis, W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern, and W. H. Engelmann, “The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants,” J. Expo. Anal. Environ. Epidemiol. 11(3), 231–252 (2001).
[Crossref] [PubMed]

Ott, W. R.

N. E. Klepeis, W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern, and W. H. Engelmann, “The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants,” J. Expo. Anal. Environ. Epidemiol. 11(3), 231–252 (2001).
[Crossref] [PubMed]

Pöhlmann, S. T. L.

S. T. L. Pöhlmann, E. F. Harkness, C. J. Taylor, and S. M. Astley, “Evaluation of Kinect 3D Sensor for Healthcare Imaging,” J. Med. Biol. Eng. 36(6), 857–870 (2016).
[Crossref] [PubMed]

Qiao-Grider, Y.

E. L. Smith, C.-S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
[Crossref] [PubMed]

Ramamirtham, R.

E. L. Smith, C.-S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
[Crossref] [PubMed]

Reissier, S.

W. W. Sprague, E. A. Cooper, S. Reissier, B. Yellapragada, and M. S. Banks, “The natural statistics of blur,” J. Vis. 16(10), 23 (2016).
[Crossref] [PubMed]

Rempt, F.

J. Hoogerheide, F. Rempt, and W. P. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163(4), 209–215 (1971).
[Crossref] [PubMed]

Resnikoff, S.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
[Crossref] [PubMed]

Rifai, K.

A. Leube, K. Rifai, and S. Wahl, “Sampling rate influences saccade detection in mobile eye tracking of a reading task,” J. Eye Mov. Res. 10, 3 (2017).

Robinson, J. P.

N. E. Klepeis, W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern, and W. H. Engelmann, “The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants,” J. Expo. Anal. Environ. Epidemiol. 11(3), 231–252 (2001).
[Crossref] [PubMed]

Rodríguez-Gonzálvez, P.

H. Gonzalez-Jorge, P. Rodríguez-Gonzálvez, J. Martínez-Sánchez, D. González-Aguilera, P. Arias, M. Gesto, and L. Díaz-Vilariño, “Metrological comparison between Kinect I and Kinect II sensors,” Measurement 70, 21–26 (2015).
[Crossref]

Rohrschneider, K.

K. Rohrschneider, “Determination of the Location of the Fovea on the Fundus,” Invest. Ophthalmol. Vis. Sci. 45(9), 3257–3258 (2004).
[Crossref] [PubMed]

Rosén, R.

D. A. Atchison and R. Rosén, “The Possible Role of Peripheral Refraction in Development of Myopia,” Optom. Vis. Sci. 93(9), 1042–1044 (2016).
[Crossref] [PubMed]

Sankaridurg, P.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
[Crossref] [PubMed]

Schaeffel, F.

F. Schaeffel and C. Wildsoet, “Can the retina alone detect the sign of defocus?” Ophthalmic Physiol. Opt. 33(3), 362–367 (2013).
[Crossref] [PubMed]

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49(17), 2176–2186 (2009).
[Crossref] [PubMed]

R. Schippert and F. Schaeffel, “Peripheral defocus does not necessarily affect central refractive development,” Vision Res. 46(22), 3935–3940 (2006).
[Crossref] [PubMed]

A. Seidemann and F. Schaeffel, “Effects of longitudinal chromatic aberration on accommodation and emmetropization,” Vision Res. 42(21), 2409–2417 (2002).
[Crossref] [PubMed]

Schippert, R.

R. Schippert and F. Schaeffel, “Peripheral defocus does not necessarily affect central refractive development,” Vision Res. 46(22), 3935–3940 (2006).
[Crossref] [PubMed]

Seidemann, A.

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49(17), 2176–2186 (2009).
[Crossref] [PubMed]

A. Seidemann and F. Schaeffel, “Effects of longitudinal chromatic aberration on accommodation and emmetropization,” Vision Res. 42(21), 2409–2417 (2002).
[Crossref] [PubMed]

Shao, L.

L. Shao, J. Han, D. Xu, and J. Shotton, “Computer vision for RGB-D sensors: Kinect and its applications,” IEEE Trans. Cybern. 43(5), 1314–1317 (2013).
[Crossref] [PubMed]

Shekar, S. N.

M. Dirani, S. N. Shekar, and P. N. Baird, “Adult-onset myopia: The Genes in Myopia (GEM) twin study,” Invest. Ophthalmol. Vis. Sci. 49(8), 3324–3327 (2008).
[Crossref] [PubMed]

Shotton, J.

L. Shao, J. Han, D. Xu, and J. Shotton, “Computer vision for RGB-D sensors: Kinect and its applications,” IEEE Trans. Cybern. 43(5), 1314–1317 (2013).
[Crossref] [PubMed]

Sinnott, L. T.

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative peripheral refractive error and the risk of onset and progression of myopia in children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative Peripheral Refractive Error and the Risk of Onset and Progression of Myopia in Children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

Smith, E. L.

E. L. Smith, M. C. W. Campbell, and E. Irving, “Does peripheral retinal input explain the promising myopia control effects of corneal reshaping therapy (CRT or ortho-K) & multifocal soft contact lenses?” Ophthalmic Physiol. Opt. 33(3), 379–384 (2013).
[Crossref] [PubMed]

E. L. Smith, C.-S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
[Crossref] [PubMed]

Sprague, W. W.

W. W. Sprague, E. A. Cooper, S. Reissier, B. Yellapragada, and M. S. Banks, “The natural statistics of blur,” J. Vis. 16(10), 23 (2016).
[Crossref] [PubMed]

Stone, R. A.

R. A. Stone and D. I. Flitcroft, “Ocular shape and myopia,” Ann. Acad. Med. Singapore 33(1), 7–15 (2004).
[PubMed]

Switzer, P.

N. E. Klepeis, W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern, and W. H. Engelmann, “The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants,” J. Expo. Anal. Environ. Epidemiol. 11(3), 231–252 (2001).
[Crossref] [PubMed]

Tabernero, J.

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49(17), 2176–2186 (2009).
[Crossref] [PubMed]

Taylor, C. J.

S. T. L. Pöhlmann, E. F. Harkness, C. J. Taylor, and S. M. Astley, “Evaluation of Kinect 3D Sensor for Healthcare Imaging,” J. Med. Biol. Eng. 36(6), 857–870 (2016).
[Crossref] [PubMed]

Torr, P. H. S.

P. H. S. Torr and A. Zisserman, “MLESAC: A New Robust Estimator with Application to Estimating Image Geometry,” Comput. Vis. Image Underst. 78(1), 138–156 (2000).
[Crossref]

Tsang, A. M.

N. E. Klepeis, W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern, and W. H. Engelmann, “The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants,” J. Expo. Anal. Environ. Epidemiol. 11(3), 231–252 (2001).
[Crossref] [PubMed]

Twelker, J. D.

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative Peripheral Refractive Error and the Risk of Onset and Progression of Myopia in Children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative peripheral refractive error and the risk of onset and progression of myopia in children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

Uttenweiler, D.

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49(17), 2176–2186 (2009).
[Crossref] [PubMed]

Vazquez, D.

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49(17), 2176–2186 (2009).
[Crossref] [PubMed]

Wahl, S.

A. Leube, K. Rifai, and S. Wahl, “Sampling rate influences saccade detection in mobile eye tracking of a reading task,” J. Eye Mov. Res. 10, 3 (2017).

Wallman, J.

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43(4), 447–468 (2004).
[Crossref] [PubMed]

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43(4), 447–468 (2004).
[Crossref] [PubMed]

Wang, B.

B. Wang, K. J. Ciuffreda, and T. Irish, “Equiblur zones at the fovea and near retinal periphery,” Vision Res. 46(21), 3690–3698 (2006).
[Crossref] [PubMed]

Wildsoet, C.

F. Schaeffel and C. Wildsoet, “Can the retina alone detect the sign of defocus?” Ophthalmic Physiol. Opt. 33(3), 362–367 (2013).
[Crossref] [PubMed]

C. Wildsoet, “Neural pathways subserving negative lens-induced emmetropization in chicks--insights from selective lesions of the optic nerve and ciliary nerve,” Curr. Eye Res. 27(6), 371–385 (2003).
[Crossref] [PubMed]

Wilson, D. A.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
[Crossref] [PubMed]

Winawer, J.

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43(4), 447–468 (2004).
[Crossref] [PubMed]

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43(4), 447–468 (2004).
[Crossref] [PubMed]

Wong, T. Y.

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
[Crossref] [PubMed]

Xu, D.

L. Shao, J. Han, D. Xu, and J. Shotton, “Computer vision for RGB-D sensors: Kinect and its applications,” IEEE Trans. Cybern. 43(5), 1314–1317 (2013).
[Crossref] [PubMed]

Yellapragada, B.

W. W. Sprague, E. A. Cooper, S. Reissier, B. Yellapragada, and M. S. Banks, “The natural statistics of blur,” J. Vis. 16(10), 23 (2016).
[Crossref] [PubMed]

Zadnik, K.

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative peripheral refractive error and the risk of onset and progression of myopia in children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative Peripheral Refractive Error and the Risk of Onset and Progression of Myopia in Children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

Zisserman, A.

P. H. S. Torr and A. Zisserman, “MLESAC: A New Robust Estimator with Application to Estimating Image Geometry,” Comput. Vis. Image Underst. 78(1), 138–156 (2000).
[Crossref]

Ann. Acad. Med. Singapore (1)

R. A. Stone and D. I. Flitcroft, “Ocular shape and myopia,” Ann. Acad. Med. Singapore 33(1), 7–15 (2004).
[PubMed]

Comput. Vis. Image Underst. (1)

P. H. S. Torr and A. Zisserman, “MLESAC: A New Robust Estimator with Application to Estimating Image Geometry,” Comput. Vis. Image Underst. 78(1), 138–156 (2000).
[Crossref]

Curr. Eye Res. (1)

C. Wildsoet, “Neural pathways subserving negative lens-induced emmetropization in chicks--insights from selective lesions of the optic nerve and ciliary nerve,” Curr. Eye Res. 27(6), 371–385 (2003).
[Crossref] [PubMed]

IEEE Trans. Cybern. (1)

L. Shao, J. Han, D. Xu, and J. Shotton, “Computer vision for RGB-D sensors: Kinect and its applications,” IEEE Trans. Cybern. 43(5), 1314–1317 (2013).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (5)

K. Rohrschneider, “Determination of the Location of the Fovea on the Fundus,” Invest. Ophthalmol. Vis. Sci. 45(9), 3257–3258 (2004).
[Crossref] [PubMed]

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative peripheral refractive error and the risk of onset and progression of myopia in children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

D. O. Mutti, L. T. Sinnott, G. L. Mitchell, L. A. Jones-Jordan, M. L. Moeschberger, S. A. Cotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, K. Zadnik, and CLEERE Study Group, “Relative Peripheral Refractive Error and the Risk of Onset and Progression of Myopia in Children,” Invest. Ophthalmol. Vis. Sci. 52(1), 199–205 (2011).
[Crossref] [PubMed]

M. Dirani, S. N. Shekar, and P. N. Baird, “Adult-onset myopia: The Genes in Myopia (GEM) twin study,” Invest. Ophthalmol. Vis. Sci. 49(8), 3324–3327 (2008).
[Crossref] [PubMed]

E. L. Smith, C.-S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L.-F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
[Crossref] [PubMed]

J. Expo. Anal. Environ. Epidemiol. (1)

N. E. Klepeis, W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern, and W. H. Engelmann, “The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants,” J. Expo. Anal. Environ. Epidemiol. 11(3), 231–252 (2001).
[Crossref] [PubMed]

J. Eye Mov. Res. (1)

A. Leube, K. Rifai, and S. Wahl, “Sampling rate influences saccade detection in mobile eye tracking of a reading task,” J. Eye Mov. Res. 10, 3 (2017).

J. Med. Biol. Eng. (1)

S. T. L. Pöhlmann, E. F. Harkness, C. J. Taylor, and S. M. Astley, “Evaluation of Kinect 3D Sensor for Healthcare Imaging,” J. Med. Biol. Eng. 36(6), 857–870 (2016).
[Crossref] [PubMed]

J. Vis. (1)

W. W. Sprague, E. A. Cooper, S. Reissier, B. Yellapragada, and M. S. Banks, “The natural statistics of blur,” J. Vis. 16(10), 23 (2016).
[Crossref] [PubMed]

Measurement (1)

H. Gonzalez-Jorge, P. Rodríguez-Gonzálvez, J. Martínez-Sánchez, D. González-Aguilera, P. Arias, M. Gesto, and L. Díaz-Vilariño, “Metrological comparison between Kinect I and Kinect II sensors,” Measurement 70, 21–26 (2015).
[Crossref]

Nature (1)

E. Dolgin, “The myopia boom,” Nature 519(7543), 276–278 (2015).
[Crossref] [PubMed]

Neuron (2)

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43(4), 447–468 (2004).
[Crossref] [PubMed]

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43(4), 447–468 (2004).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (3)

F. Schaeffel and C. Wildsoet, “Can the retina alone detect the sign of defocus?” Ophthalmic Physiol. Opt. 33(3), 362–367 (2013).
[Crossref] [PubMed]

W. N. Charman, “Myopia, posture and the visual environment,” Ophthalmic Physiol. Opt. 31(5), 494–501 (2011).
[Crossref] [PubMed]

E. L. Smith, M. C. W. Campbell, and E. Irving, “Does peripheral retinal input explain the promising myopia control effects of corneal reshaping therapy (CRT or ortho-K) & multifocal soft contact lenses?” Ophthalmic Physiol. Opt. 33(3), 379–384 (2013).
[Crossref] [PubMed]

Ophthalmologica (1)

J. Hoogerheide, F. Rempt, and W. P. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163(4), 209–215 (1971).
[Crossref] [PubMed]

Ophthalmology (1)

B. A. Holden, T. R. Fricke, D. A. Wilson, M. Jong, K. S. Naidoo, P. Sankaridurg, T. Y. Wong, T. J. Naduvilath, and S. Resnikoff, “Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050,” Ophthalmology 123(5), 1036–1042 (2016).
[Crossref] [PubMed]

Optom. Vis. Sci. (1)

D. A. Atchison and R. Rosén, “The Possible Role of Peripheral Refraction in Development of Myopia,” Optom. Vis. Sci. 93(9), 1042–1044 (2016).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (1)

D. I. Flitcroft, “The complex interactions of retinal, optical and environmental factors in myopia aetiology,” Prog. Retin. Eye Res. 31(6), 622–660 (2012).
[Crossref] [PubMed]

Vision Res. (4)

A. Seidemann and F. Schaeffel, “Effects of longitudinal chromatic aberration on accommodation and emmetropization,” Vision Res. 42(21), 2409–2417 (2002).
[Crossref] [PubMed]

R. Schippert and F. Schaeffel, “Peripheral defocus does not necessarily affect central refractive development,” Vision Res. 46(22), 3935–3940 (2006).
[Crossref] [PubMed]

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49(17), 2176–2186 (2009).
[Crossref] [PubMed]

B. Wang, K. J. Ciuffreda, and T. Irish, “Equiblur zones at the fovea and near retinal periphery,” Vision Res. 46(21), 3690–3698 (2006).
[Crossref] [PubMed]

Other (7)

Kinect Depth Normalization - File Exchange - MATLAB Central (n.d.).

A. Light and P.J. Bartlein, “The End of the Rainbow? Color Schemes for Improved Data Graphics.,” Eos (Washington. DC). 85, 385&391 (2004).

D. J. Flitcroft, “Dioptric space: Extending the concepts of defocus to three dimensions,” in Investigative Ophthalmology and Visual Science, 47 (ARVO E-Abstract 4778) (2006).

MathWorks, “estimateGeometricTransform,” https://www.mathworks.com/help/vision/ref/estimategeometrictransform.html?s_tid=gn_loc_drop .

K. Totonelly and N. J. Coletta, “Eye shape and peripheral refractive error in the development of myopia,” The New England College of Optometry (2010).

A. Reichinger, “Kinect Pattern Uncovered | azt.tm’s Blog,” https://azttm.wordpress.com/2011/04/03/kinect-pattern-uncovered/ .

Microsoft, “Kinect for Windows Sensor Components and Specifications,” https://msdn.microsoft.com/en-us/library/jj131033.aspx .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Subject wearing the eye tracker and the helmet with the Kinect sensor fixed at the top. The purple rays refer to Kinect while the green ones refer to the Eye Tracker. The Kinect sensor can modify the subtending angle so that it can be adapted to the subject’s physiognomy.
Fig. 2
Fig. 2 Illustration of the procedure to obtain the geometrical transformation function to shift the fixation coordinates from the eye-tracker plane to the Kinect plane, using the MATLAB Computer Vision Toolbox (c). The picture on the upper left illustrates the difference between the scenes recorded using the eye tracker and the Kinect device. The upper right and bottom left pictures show both inputs superimposed, including putative points that were identified by the SURF algorithm. Pictures on the bottom left and centre show how the eye tracker image is superimposed on, and then matched to the Kinect image after applying a geometrical transformation.
Fig. 3
Fig. 3 Illustration of the process in which the fixation map provided by the eye tracker (and centered to the measured eye) is remapped to the output provided by the Kinect camera.
Fig. 4
Fig. 4 Schematic distance between the eyes and the Kinect camera.
Fig. 5
Fig. 5 Diagram of the procedure for obtaining the defocus map.
Fig. 6
Fig. 6 Representative frames of the scenes acquired using the Kinect camera. (A) RGB channel. (B) Depth channel. Dark blue areas represent lost pixels owing to poor reflectivity before filling them with the Karl Sanford algorithm [25].
Fig. 7
Fig. 7 Dioptric defocus maps of the subject’s right eye along with scale bars (diopters) and grids with degrees for better understanding of the spatial distribution over the eye. The colour maps are based on the ones proposed by Light and Bartlein [26]. In addition, the position of the optic nerve (O.N.) is sketched according to literature-based approximations [27]. Concentric circles are marked as a reference around the fovea in steps of 5°.
Fig. 8
Fig. 8 Histograms showing the distributions of the defocus values versus the number of pixels. (x = defocus in diopters, y = number of pixels containing that value of defocus). Panels A and B refer to the same scene recorded at different times and susceptible to small variations across the tasks.

Tables (3)

Tables Icon

Table 1 Summary of the different specifications of the sensors used.

Tables Icon

Table 2 Correlation and slope values comparing the Kinect device with a metric tape.

Tables Icon

Table 3 Summary of different aspects of the environments recorded.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

x=( cosα×dKinect )dEyes .
α=arcsin h dKinect .

Metrics