Abstract

We present broadband measurements of the optical properties of tissue-mimicking solid phantoms using a single integrating sphere to measure the hemispherical reflectance and transmittance under a direct illumination at the normal incident angle. These measurements are traceable to reflectance and transmittance scales. An inversion routine using the output of the adding-doubling algorithm restricted to the reflectance and transmittance under a direct illumination was developed to produce the optical parameters of the sample along with an uncertainty budget at each wavelength. The results for two types of phantoms are compared to measurements by time-resolved approaches. The results between our method and these independent measurements agree within the estimated measurement uncertainties.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Application of single integrating sphere system to obtain the optical properties of turbid media

E. Terán, E. R. Méndez, R. Quispe-Siccha, A. Peréz-Pacheco, and F. L. S. Cuppo
OSA Continuum 2(5) 1791-1806 (2019)

Determining the optical properties of turbid media by using the adding–doubling method

Scott A. Prahl, Martin J. C. van Gemert, and Ashley J. Welch
Appl. Opt. 32(4) 559-568 (1993)

References

  • View by:
  • |
  • |
  • |

  1. L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. time-resolved method,” Opt. Express 15, 6589–6604 (2007).
    [Crossref] [PubMed]
  2. A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42, 5785–5792 (2003).
    [Crossref] [PubMed]
  3. J.-P. Bouchard, I. Veilleux, R. Jedidi, I. Noiseux, M. Fortin, and O. Mermut, “Reference optical phantoms for diffuse optical spectroscopy. part 1–error analysis of a time resolved transmittance characterization method,” Opt. Express 18, 11495–11507 (2010).
    [Crossref] [PubMed]
  4. T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Inst. 71, 2500–2513 (2000).
    [Crossref]
  5. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498–6507 (2000).
    [Crossref]
  6. B. Cletus, R. Künnemeyer, P. Martinsen, A. McGlone, and R. Jordan, “Characterizing liquid turbid media by frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 14, 024041 (2009).
    [Crossref] [PubMed]
  7. F. Martelli and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. cw method,” Opt. Express 15, 486–500 (2007).
    [Crossref] [PubMed]
  8. P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol. 56, N21 (2010).
    [Crossref]
  9. F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Inst. 82, 103104 (2011).
    [Crossref]
  10. S. Andree, C. Reble, J. Helfmann, I. Gersonde, and G. Illing, “Evaluation of a novel noncontact spectrally and spatially resolved reflectance setup with continuously variable source-detector separation using silicone phantoms,” J. Biomed. Opt. 15, 067009 (2010).
    [Crossref]
  11. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
    [Crossref] [PubMed]
  12. S. A. Prahl, M. J. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding–doubling method,” Appl. Opt. 32, 559–568 (1993).
    [Crossref] [PubMed]
  13. T. Moffitt, Y.-C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11, 041103 (2006).
    [Crossref] [PubMed]
  14. B. Aernouts, E. Zamora-Rojas, R. Van Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, and W. Saeys, “Supercontinuum laser based optical characterization of intralipid phantoms in the 500–2250 nm range,” Opt. Express 21, 32450–32467 (2013).
    [Crossref]
  15. M. Azimipour, R. Baumgartner, Y. Liu, S. L. Jacques, K. Eliceiri, and R. Pashaie, “Extraction of optical properties and prediction of light distribution in rat brain tissue,” J. Biomed. Opt. 19, 075001 (2014).
    [Crossref]
  16. P. Lemaillet, J.-P. Bouchard, and D. W. Allen, “Development of traceable measurement of the diffuse optical properties of solid reference standards for biomedical optics at National Institute of Standards and Technology,” Appl. Opt. 54, 6118–6127 (2015).
    [Crossref] [PubMed]
  17. P. Lemaillet, J.-P. Bouchard, J. Hwang, and D. W. Allen, “Double-integrating-sphere system at the National Institute of Standards and Technology in support of measurement standards for the determination of optical properties of tissue-mimicking phantoms,” J. Biomed. Opt. 20, 121310 (2015).
    [Crossref] [PubMed]
  18. T. P. Moffitt, “Light transport in polymers for optical sensing and photopolymerization,” Ph.D. thesis, Oregon Health & Science University (2005).
  19. S. A. Prahl, “Inverse adding-doubling,” http://omlc.org/software/iad/ .
  20. D. Goebel, “Generalized Integrating-Sphere Theory,” Appl. Opt. 6, 125–128 (1967).
    [Crossref] [PubMed]
  21. Y. Zhang, Y. Chen, Y. Yu, X Xue, V. V. Tuchin, and D. Zhu, “Visible and near-infrared spectroscopy for distinguishing malignant tumor tissue from benign tumor and normal breast tissues in vitro,” J. Biomed. Opt. 18, 077003 (2013).
    [Crossref] [PubMed]
  22. E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).
    [Crossref]
  23. M. Friebel, A. Roggan, G. J. Müller, and M. C. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11, 034021 (2006).
    [Crossref]
  24. “Colorymetry,” Commission Internationale de l’Eclairage Technical Report, 15:2004 (2004).
  25. J. Hwang, H.-J. Kim, P. Lemaillet, H. Wabnitz, D. Grosenick, L. Yang, T. Gladytz, D. McClatchy, D. Allen, K. Briggman, and B. Pogue, “Polydimethylsiloxane tissue-mimicking phantoms for quantitative optical medical imaging standards,” Proc. SPIE 10056, Design and Quality for Biomedical Technologies X, 1005603 (2017).
  26. Z. H. Levine, R. H. Streater, A.-M. R. Lieberson, A. L. Pintar, C. C. Cooksey, and P. Lemaillet, “Algorithm for rapid determination of Optical Scattering parameters,” Opt. Express 25, 26728–26746 (2017).
    [Crossref] [PubMed]
  27. A. H. Taylor, “Measurement of Diffuse Reflection Factors: And a New Absolute Reflectometer” (US Government Printing Office, 1920).
  28. T. A. Germer, J. C. Zwinkels, and B. K. Tsai, “Spectrophotometry: Accurate measurement of optical properties of materials”, vol. 46 (Elsevier, 2014).
  29. P. Barnes, E. A. Early, and A. Parr, “NIST Special Publication 250-48,” US Dept. of Commerce (1998).
  30. D. W. Allen, E. A. Early, B. K. Tsai, and C. C. Cooksey, “NIST Special Publication 250-69,” US Dept. of Commerce (2011).
  31. J. W. Pickering, S. A. Prahl, N. Van Wieringen, J. F. Beek, H. J. Sterenborg, and M. J. Van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
    [Crossref] [PubMed]
  32. “Jcgm 100: Evaluation of measurement data - guide to the expression of uncertainty in measurement,” Tech. Rep., Joint Committee for Guides in Metrology (2008).
  33. L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Meth. and Prog. Biomed. 47, 131–146 (1995).
    [Crossref]
  34. L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, and F. Foschum,“Determination of reference values for optical properties of liquid phantoms based on intralipid and india ink,” Biomed. Opt. Express 5, 2037–2053 (2014).
    [Crossref] [PubMed]
  35. R. Rothfischer, D. Grosenick, and R. Macdonald, “Time-resolved transmittance: a comparison of the diffusion model approach with Monte Carlo simulations,” Proc. SPIE 9538, 95381H (2015).
    [Crossref]

2017 (1)

2015 (3)

P. Lemaillet, J.-P. Bouchard, and D. W. Allen, “Development of traceable measurement of the diffuse optical properties of solid reference standards for biomedical optics at National Institute of Standards and Technology,” Appl. Opt. 54, 6118–6127 (2015).
[Crossref] [PubMed]

P. Lemaillet, J.-P. Bouchard, J. Hwang, and D. W. Allen, “Double-integrating-sphere system at the National Institute of Standards and Technology in support of measurement standards for the determination of optical properties of tissue-mimicking phantoms,” J. Biomed. Opt. 20, 121310 (2015).
[Crossref] [PubMed]

R. Rothfischer, D. Grosenick, and R. Macdonald, “Time-resolved transmittance: a comparison of the diffusion model approach with Monte Carlo simulations,” Proc. SPIE 9538, 95381H (2015).
[Crossref]

2014 (2)

M. Azimipour, R. Baumgartner, Y. Liu, S. L. Jacques, K. Eliceiri, and R. Pashaie, “Extraction of optical properties and prediction of light distribution in rat brain tissue,” J. Biomed. Opt. 19, 075001 (2014).
[Crossref]

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, and F. Foschum,“Determination of reference values for optical properties of liquid phantoms based on intralipid and india ink,” Biomed. Opt. Express 5, 2037–2053 (2014).
[Crossref] [PubMed]

2013 (2)

B. Aernouts, E. Zamora-Rojas, R. Van Beers, R. Watté, L. Wang, M. Tsuta, J. Lammertyn, and W. Saeys, “Supercontinuum laser based optical characterization of intralipid phantoms in the 500–2250 nm range,” Opt. Express 21, 32450–32467 (2013).
[Crossref]

Y. Zhang, Y. Chen, Y. Yu, X Xue, V. V. Tuchin, and D. Zhu, “Visible and near-infrared spectroscopy for distinguishing malignant tumor tissue from benign tumor and normal breast tissues in vitro,” J. Biomed. Opt. 18, 077003 (2013).
[Crossref] [PubMed]

2011 (1)

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Inst. 82, 103104 (2011).
[Crossref]

2010 (3)

S. Andree, C. Reble, J. Helfmann, I. Gersonde, and G. Illing, “Evaluation of a novel noncontact spectrally and spatially resolved reflectance setup with continuously variable source-detector separation using silicone phantoms,” J. Biomed. Opt. 15, 067009 (2010).
[Crossref]

P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol. 56, N21 (2010).
[Crossref]

J.-P. Bouchard, I. Veilleux, R. Jedidi, I. Noiseux, M. Fortin, and O. Mermut, “Reference optical phantoms for diffuse optical spectroscopy. part 1–error analysis of a time resolved transmittance characterization method,” Opt. Express 18, 11495–11507 (2010).
[Crossref] [PubMed]

2009 (2)

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref] [PubMed]

B. Cletus, R. Künnemeyer, P. Martinsen, A. McGlone, and R. Jordan, “Characterizing liquid turbid media by frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 14, 024041 (2009).
[Crossref] [PubMed]

2007 (2)

2006 (3)

T. Moffitt, Y.-C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11, 041103 (2006).
[Crossref] [PubMed]

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).
[Crossref]

M. Friebel, A. Roggan, G. J. Müller, and M. C. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11, 034021 (2006).
[Crossref]

2003 (1)

2000 (2)

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Inst. 71, 2500–2513 (2000).
[Crossref]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498–6507 (2000).
[Crossref]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Meth. and Prog. Biomed. 47, 131–146 (1995).
[Crossref]

1993 (2)

1967 (1)

Aernouts, B.

Allen, D.

J. Hwang, H.-J. Kim, P. Lemaillet, H. Wabnitz, D. Grosenick, L. Yang, T. Gladytz, D. McClatchy, D. Allen, K. Briggman, and B. Pogue, “Polydimethylsiloxane tissue-mimicking phantoms for quantitative optical medical imaging standards,” Proc. SPIE 10056, Design and Quality for Biomedical Technologies X, 1005603 (2017).

Allen, D. W.

P. Lemaillet, J.-P. Bouchard, and D. W. Allen, “Development of traceable measurement of the diffuse optical properties of solid reference standards for biomedical optics at National Institute of Standards and Technology,” Appl. Opt. 54, 6118–6127 (2015).
[Crossref] [PubMed]

P. Lemaillet, J.-P. Bouchard, J. Hwang, and D. W. Allen, “Double-integrating-sphere system at the National Institute of Standards and Technology in support of measurement standards for the determination of optical properties of tissue-mimicking phantoms,” J. Biomed. Opt. 20, 121310 (2015).
[Crossref] [PubMed]

D. W. Allen, E. A. Early, B. K. Tsai, and C. C. Cooksey, “NIST Special Publication 250-69,” US Dept. of Commerce (2011).

Anderson, E.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Inst. 71, 2500–2513 (2000).
[Crossref]

Andree, S.

S. Andree, C. Reble, J. Helfmann, I. Gersonde, and G. Illing, “Evaluation of a novel noncontact spectrally and spatially resolved reflectance setup with continuously variable source-detector separation using silicone phantoms,” J. Biomed. Opt. 15, 067009 (2010).
[Crossref]

Ayers, F. R.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref] [PubMed]

Azimipour, M.

M. Azimipour, R. Baumgartner, Y. Liu, S. L. Jacques, K. Eliceiri, and R. Pashaie, “Extraction of optical properties and prediction of light distribution in rat brain tissue,” J. Biomed. Opt. 19, 075001 (2014).
[Crossref]

Barnes, P.

P. Barnes, E. A. Early, and A. Parr, “NIST Special Publication 250-48,” US Dept. of Commerce (1998).

Baumgartner, R.

M. Azimipour, R. Baumgartner, Y. Liu, S. L. Jacques, K. Eliceiri, and R. Pashaie, “Extraction of optical properties and prediction of light distribution in rat brain tissue,” J. Biomed. Opt. 19, 075001 (2014).
[Crossref]

Beek, J. F.

Berger, A. J.

Bevilacqua, F.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref] [PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498–6507 (2000).
[Crossref]

Botwicz, M.

Bouchard, J.-P.

Briggman, K.

J. Hwang, H.-J. Kim, P. Lemaillet, H. Wabnitz, D. Grosenick, L. Yang, T. Gladytz, D. McClatchy, D. Allen, K. Briggman, and B. Pogue, “Polydimethylsiloxane tissue-mimicking phantoms for quantitative optical medical imaging standards,” Proc. SPIE 10056, Design and Quality for Biomedical Technologies X, 1005603 (2017).

Cerussi, A. E.

Chen, Y.

Y. Zhang, Y. Chen, Y. Yu, X Xue, V. V. Tuchin, and D. Zhu, “Visible and near-infrared spectroscopy for distinguishing malignant tumor tissue from benign tumor and normal breast tissues in vitro,” J. Biomed. Opt. 18, 077003 (2013).
[Crossref] [PubMed]

Chen, Y.-C.

T. Moffitt, Y.-C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11, 041103 (2006).
[Crossref] [PubMed]

Cletus, B.

B. Cletus, R. Künnemeyer, P. Martinsen, A. McGlone, and R. Jordan, “Characterizing liquid turbid media by frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 14, 024041 (2009).
[Crossref] [PubMed]

Cooksey, C. C.

Coquoz, O.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Inst. 71, 2500–2513 (2000).
[Crossref]

Cubeddu, R.

Cuccia, D. J.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref] [PubMed]

Di Ninni, P.

P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol. 56, N21 (2010).
[Crossref]

Durduran, T.

Durkin, A. J.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref] [PubMed]

Early, E. A.

D. W. Allen, E. A. Early, B. K. Tsai, and C. C. Cooksey, “NIST Special Publication 250-69,” US Dept. of Commerce (2011).

P. Barnes, E. A. Early, and A. Parr, “NIST Special Publication 250-48,” US Dept. of Commerce (1998).

Eliceiri, K.

M. Azimipour, R. Baumgartner, Y. Liu, S. L. Jacques, K. Eliceiri, and R. Pashaie, “Extraction of optical properties and prediction of light distribution in rat brain tissue,” J. Biomed. Opt. 19, 075001 (2014).
[Crossref]

Farina, A.

Fishkin, J. B.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Inst. 71, 2500–2513 (2000).
[Crossref]

Fortin, M.

Foschum, F.

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, and F. Foschum,“Determination of reference values for optical properties of liquid phantoms based on intralipid and india ink,” Biomed. Opt. Express 5, 2037–2053 (2014).
[Crossref] [PubMed]

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Inst. 82, 103104 (2011).
[Crossref]

Friebel, M.

M. Friebel, A. Roggan, G. J. Müller, and M. C. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11, 034021 (2006).
[Crossref]

Germer, T. A.

T. A. Germer, J. C. Zwinkels, and B. K. Tsai, “Spectrophotometry: Accurate measurement of optical properties of materials”, vol. 46 (Elsevier, 2014).

Gersonde, I.

S. Andree, C. Reble, J. Helfmann, I. Gersonde, and G. Illing, “Evaluation of a novel noncontact spectrally and spatially resolved reflectance setup with continuously variable source-detector separation using silicone phantoms,” J. Biomed. Opt. 15, 067009 (2010).
[Crossref]

Gladytz, T.

J. Hwang, H.-J. Kim, P. Lemaillet, H. Wabnitz, D. Grosenick, L. Yang, T. Gladytz, D. McClatchy, D. Allen, K. Briggman, and B. Pogue, “Polydimethylsiloxane tissue-mimicking phantoms for quantitative optical medical imaging standards,” Proc. SPIE 10056, Design and Quality for Biomedical Technologies X, 1005603 (2017).

Goebel, D.

Grosenick, D.

R. Rothfischer, D. Grosenick, and R. Macdonald, “Time-resolved transmittance: a comparison of the diffusion model approach with Monte Carlo simulations,” Proc. SPIE 9538, 95381H (2015).
[Crossref]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42, 5785–5792 (2003).
[Crossref] [PubMed]

J. Hwang, H.-J. Kim, P. Lemaillet, H. Wabnitz, D. Grosenick, L. Yang, T. Gladytz, D. McClatchy, D. Allen, K. Briggman, and B. Pogue, “Polydimethylsiloxane tissue-mimicking phantoms for quantitative optical medical imaging standards,” Proc. SPIE 10056, Design and Quality for Biomedical Technologies X, 1005603 (2017).

Helfmann, J.

S. Andree, C. Reble, J. Helfmann, I. Gersonde, and G. Illing, “Evaluation of a novel noncontact spectrally and spatially resolved reflectance setup with continuously variable source-detector separation using silicone phantoms,” J. Biomed. Opt. 15, 067009 (2010).
[Crossref]

Hwang, J.

P. Lemaillet, J.-P. Bouchard, J. Hwang, and D. W. Allen, “Double-integrating-sphere system at the National Institute of Standards and Technology in support of measurement standards for the determination of optical properties of tissue-mimicking phantoms,” J. Biomed. Opt. 20, 121310 (2015).
[Crossref] [PubMed]

J. Hwang, H.-J. Kim, P. Lemaillet, H. Wabnitz, D. Grosenick, L. Yang, T. Gladytz, D. McClatchy, D. Allen, K. Briggman, and B. Pogue, “Polydimethylsiloxane tissue-mimicking phantoms for quantitative optical medical imaging standards,” Proc. SPIE 10056, Design and Quality for Biomedical Technologies X, 1005603 (2017).

Illing, G.

S. Andree, C. Reble, J. Helfmann, I. Gersonde, and G. Illing, “Evaluation of a novel noncontact spectrally and spatially resolved reflectance setup with continuously variable source-detector separation using silicone phantoms,” J. Biomed. Opt. 15, 067009 (2010).
[Crossref]

Jacques, S. L.

M. Azimipour, R. Baumgartner, Y. Liu, S. L. Jacques, K. Eliceiri, and R. Pashaie, “Extraction of optical properties and prediction of light distribution in rat brain tissue,” J. Biomed. Opt. 19, 075001 (2014).
[Crossref]

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Meth. and Prog. Biomed. 47, 131–146 (1995).
[Crossref]

Jäger, M.

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Inst. 82, 103104 (2011).
[Crossref]

Jakubowski, D.

Jedidi, R.

Jiang, B.

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).
[Crossref]

Jordan, R.

B. Cletus, R. Künnemeyer, P. Martinsen, A. McGlone, and R. Jordan, “Characterizing liquid turbid media by frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 14, 024041 (2009).
[Crossref] [PubMed]

Kacprzak, M.

Kienle, A.

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Inst. 82, 103104 (2011).
[Crossref]

Kim, H.-J.

J. Hwang, H.-J. Kim, P. Lemaillet, H. Wabnitz, D. Grosenick, L. Yang, T. Gladytz, D. McClatchy, D. Allen, K. Briggman, and B. Pogue, “Polydimethylsiloxane tissue-mimicking phantoms for quantitative optical medical imaging standards,” Proc. SPIE 10056, Design and Quality for Biomedical Technologies X, 1005603 (2017).

Künnemeyer, R.

B. Cletus, R. Künnemeyer, P. Martinsen, A. McGlone, and R. Jordan, “Characterizing liquid turbid media by frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 14, 024041 (2009).
[Crossref] [PubMed]

Lammertyn, J.

Lemaillet, P.

Z. H. Levine, R. H. Streater, A.-M. R. Lieberson, A. L. Pintar, C. C. Cooksey, and P. Lemaillet, “Algorithm for rapid determination of Optical Scattering parameters,” Opt. Express 25, 26728–26746 (2017).
[Crossref] [PubMed]

P. Lemaillet, J.-P. Bouchard, and D. W. Allen, “Development of traceable measurement of the diffuse optical properties of solid reference standards for biomedical optics at National Institute of Standards and Technology,” Appl. Opt. 54, 6118–6127 (2015).
[Crossref] [PubMed]

P. Lemaillet, J.-P. Bouchard, J. Hwang, and D. W. Allen, “Double-integrating-sphere system at the National Institute of Standards and Technology in support of measurement standards for the determination of optical properties of tissue-mimicking phantoms,” J. Biomed. Opt. 20, 121310 (2015).
[Crossref] [PubMed]

J. Hwang, H.-J. Kim, P. Lemaillet, H. Wabnitz, D. Grosenick, L. Yang, T. Gladytz, D. McClatchy, D. Allen, K. Briggman, and B. Pogue, “Polydimethylsiloxane tissue-mimicking phantoms for quantitative optical medical imaging standards,” Proc. SPIE 10056, Design and Quality for Biomedical Technologies X, 1005603 (2017).

Levine, Z. H.

Lieberson, A.-M. R.

Liebert, A.

Liu, Y.

M. Azimipour, R. Baumgartner, Y. Liu, S. L. Jacques, K. Eliceiri, and R. Pashaie, “Extraction of optical properties and prediction of light distribution in rat brain tissue,” J. Biomed. Opt. 19, 075001 (2014).
[Crossref]

Macdonald, R.

R. Rothfischer, D. Grosenick, and R. Macdonald, “Time-resolved transmittance: a comparison of the diffusion model approach with Monte Carlo simulations,” Proc. SPIE 9538, 95381H (2015).
[Crossref]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42, 5785–5792 (2003).
[Crossref] [PubMed]

Martelli, F.

Martinsen, P.

B. Cletus, R. Künnemeyer, P. Martinsen, A. McGlone, and R. Jordan, “Characterizing liquid turbid media by frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 14, 024041 (2009).
[Crossref] [PubMed]

McClatchy, D.

J. Hwang, H.-J. Kim, P. Lemaillet, H. Wabnitz, D. Grosenick, L. Yang, T. Gladytz, D. McClatchy, D. Allen, K. Briggman, and B. Pogue, “Polydimethylsiloxane tissue-mimicking phantoms for quantitative optical medical imaging standards,” Proc. SPIE 10056, Design and Quality for Biomedical Technologies X, 1005603 (2017).

McGlone, A.

B. Cletus, R. Künnemeyer, P. Martinsen, A. McGlone, and R. Jordan, “Characterizing liquid turbid media by frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 14, 024041 (2009).
[Crossref] [PubMed]

Meinke, M. C.

M. Friebel, A. Roggan, G. J. Müller, and M. C. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11, 034021 (2006).
[Crossref]

Mermut, O.

Milej, D.

Moffitt, T.

T. Moffitt, Y.-C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11, 041103 (2006).
[Crossref] [PubMed]

Moffitt, T. P.

T. P. Moffitt, “Light transport in polymers for optical sensing and photopolymerization,” Ph.D. thesis, Oregon Health & Science University (2005).

Möller, M.

Müller, G. J.

M. Friebel, A. Roggan, G. J. Müller, and M. C. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11, 034021 (2006).
[Crossref]

Noiseux, I.

Novak, J.

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).
[Crossref]

Parr, A.

P. Barnes, E. A. Early, and A. Parr, “NIST Special Publication 250-48,” US Dept. of Commerce (1998).

Pashaie, R.

M. Azimipour, R. Baumgartner, Y. Liu, S. L. Jacques, K. Eliceiri, and R. Pashaie, “Extraction of optical properties and prediction of light distribution in rat brain tissue,” J. Biomed. Opt. 19, 075001 (2014).
[Crossref]

Pham, T. H.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Inst. 71, 2500–2513 (2000).
[Crossref]

Pickering, J. W.

Pifferi, A.

Pintar, A. L.

Pogue, B.

J. Hwang, H.-J. Kim, P. Lemaillet, H. Wabnitz, D. Grosenick, L. Yang, T. Gladytz, D. McClatchy, D. Allen, K. Briggman, and B. Pogue, “Polydimethylsiloxane tissue-mimicking phantoms for quantitative optical medical imaging standards,” Proc. SPIE 10056, Design and Quality for Biomedical Technologies X, 1005603 (2017).

Prahl, S. A.

Reble, C.

S. Andree, C. Reble, J. Helfmann, I. Gersonde, and G. Illing, “Evaluation of a novel noncontact spectrally and spatially resolved reflectance setup with continuously variable source-detector separation using silicone phantoms,” J. Biomed. Opt. 15, 067009 (2010).
[Crossref]

Rinneberg, H.

Roggan, A.

M. Friebel, A. Roggan, G. J. Müller, and M. C. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11, 034021 (2006).
[Crossref]

Rothfischer, R.

R. Rothfischer, D. Grosenick, and R. Macdonald, “Time-resolved transmittance: a comparison of the diffusion model approach with Monte Carlo simulations,” Proc. SPIE 9538, 95381H (2015).
[Crossref]

Saeys, W.

Salomatina, E. V.

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).
[Crossref]

Sawosz, P.

Spinelli, L.

Sterenborg, H. J.

Streater, R. H.

Taylor, A. H.

A. H. Taylor, “Measurement of Diffuse Reflection Factors: And a New Absolute Reflectometer” (US Government Printing Office, 1920).

Torricelli, A.

Tromberg, B. J.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref] [PubMed]

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Inst. 71, 2500–2513 (2000).
[Crossref]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498–6507 (2000).
[Crossref]

Tsai, B. K.

D. W. Allen, E. A. Early, B. K. Tsai, and C. C. Cooksey, “NIST Special Publication 250-69,” US Dept. of Commerce (2011).

T. A. Germer, J. C. Zwinkels, and B. K. Tsai, “Spectrophotometry: Accurate measurement of optical properties of materials”, vol. 46 (Elsevier, 2014).

Tsuta, M.

Tuchin, V. V.

Y. Zhang, Y. Chen, Y. Yu, X Xue, V. V. Tuchin, and D. Zhu, “Visible and near-infrared spectroscopy for distinguishing malignant tumor tissue from benign tumor and normal breast tissues in vitro,” J. Biomed. Opt. 18, 077003 (2013).
[Crossref] [PubMed]

Van Beers, R.

Van Gemert, M. J.

Van Wieringen, N.

Veilleux, I.

Wabnitz, H.

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42, 5785–5792 (2003).
[Crossref] [PubMed]

J. Hwang, H.-J. Kim, P. Lemaillet, H. Wabnitz, D. Grosenick, L. Yang, T. Gladytz, D. McClatchy, D. Allen, K. Briggman, and B. Pogue, “Polydimethylsiloxane tissue-mimicking phantoms for quantitative optical medical imaging standards,” Proc. SPIE 10056, Design and Quality for Biomedical Technologies X, 1005603 (2017).

Wang, L.

Watté, R.

Weigel, U.

Welch, A. J.

Xue, X

Y. Zhang, Y. Chen, Y. Yu, X Xue, V. V. Tuchin, and D. Zhu, “Visible and near-infrared spectroscopy for distinguishing malignant tumor tissue from benign tumor and normal breast tissues in vitro,” J. Biomed. Opt. 18, 077003 (2013).
[Crossref] [PubMed]

Yang, L.

J. Hwang, H.-J. Kim, P. Lemaillet, H. Wabnitz, D. Grosenick, L. Yang, T. Gladytz, D. McClatchy, D. Allen, K. Briggman, and B. Pogue, “Polydimethylsiloxane tissue-mimicking phantoms for quantitative optical medical imaging standards,” Proc. SPIE 10056, Design and Quality for Biomedical Technologies X, 1005603 (2017).

Yaroslavsky, A. N.

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).
[Crossref]

Yu, Y.

Y. Zhang, Y. Chen, Y. Yu, X Xue, V. V. Tuchin, and D. Zhu, “Visible and near-infrared spectroscopy for distinguishing malignant tumor tissue from benign tumor and normal breast tissues in vitro,” J. Biomed. Opt. 18, 077003 (2013).
[Crossref] [PubMed]

Zaccanti, G.

Zamora-Rojas, E.

Zhang, Y.

Y. Zhang, Y. Chen, Y. Yu, X Xue, V. V. Tuchin, and D. Zhu, “Visible and near-infrared spectroscopy for distinguishing malignant tumor tissue from benign tumor and normal breast tissues in vitro,” J. Biomed. Opt. 18, 077003 (2013).
[Crossref] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Meth. and Prog. Biomed. 47, 131–146 (1995).
[Crossref]

Zhu, D.

Y. Zhang, Y. Chen, Y. Yu, X Xue, V. V. Tuchin, and D. Zhu, “Visible and near-infrared spectroscopy for distinguishing malignant tumor tissue from benign tumor and normal breast tissues in vitro,” J. Biomed. Opt. 18, 077003 (2013).
[Crossref] [PubMed]

Zolek, N.

Zwinkels, J. C.

T. A. Germer, J. C. Zwinkels, and B. K. Tsai, “Spectrophotometry: Accurate measurement of optical properties of materials”, vol. 46 (Elsevier, 2014).

Appl. Opt. (6)

Biomed. Opt. Express (1)

Comp. Meth. and Prog. Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Meth. and Prog. Biomed. 47, 131–146 (1995).
[Crossref]

J. Biomed. Opt. (9)

Y. Zhang, Y. Chen, Y. Yu, X Xue, V. V. Tuchin, and D. Zhu, “Visible and near-infrared spectroscopy for distinguishing malignant tumor tissue from benign tumor and normal breast tissues in vitro,” J. Biomed. Opt. 18, 077003 (2013).
[Crossref] [PubMed]

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).
[Crossref]

M. Friebel, A. Roggan, G. J. Müller, and M. C. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11, 034021 (2006).
[Crossref]

S. Andree, C. Reble, J. Helfmann, I. Gersonde, and G. Illing, “Evaluation of a novel noncontact spectrally and spatially resolved reflectance setup with continuously variable source-detector separation using silicone phantoms,” J. Biomed. Opt. 15, 067009 (2010).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref] [PubMed]

B. Cletus, R. Künnemeyer, P. Martinsen, A. McGlone, and R. Jordan, “Characterizing liquid turbid media by frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 14, 024041 (2009).
[Crossref] [PubMed]

T. Moffitt, Y.-C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11, 041103 (2006).
[Crossref] [PubMed]

P. Lemaillet, J.-P. Bouchard, J. Hwang, and D. W. Allen, “Double-integrating-sphere system at the National Institute of Standards and Technology in support of measurement standards for the determination of optical properties of tissue-mimicking phantoms,” J. Biomed. Opt. 20, 121310 (2015).
[Crossref] [PubMed]

M. Azimipour, R. Baumgartner, Y. Liu, S. L. Jacques, K. Eliceiri, and R. Pashaie, “Extraction of optical properties and prediction of light distribution in rat brain tissue,” J. Biomed. Opt. 19, 075001 (2014).
[Crossref]

Opt. Express (5)

Phys. Med. Biol. (1)

P. Di Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol. 56, N21 (2010).
[Crossref]

Proc. SPIE (1)

R. Rothfischer, D. Grosenick, and R. Macdonald, “Time-resolved transmittance: a comparison of the diffusion model approach with Monte Carlo simulations,” Proc. SPIE 9538, 95381H (2015).
[Crossref]

Rev. Sci. Inst. (2)

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Inst. 71, 2500–2513 (2000).
[Crossref]

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Inst. 82, 103104 (2011).
[Crossref]

Other (9)

“Jcgm 100: Evaluation of measurement data - guide to the expression of uncertainty in measurement,” Tech. Rep., Joint Committee for Guides in Metrology (2008).

T. P. Moffitt, “Light transport in polymers for optical sensing and photopolymerization,” Ph.D. thesis, Oregon Health & Science University (2005).

S. A. Prahl, “Inverse adding-doubling,” http://omlc.org/software/iad/ .

“Colorymetry,” Commission Internationale de l’Eclairage Technical Report, 15:2004 (2004).

J. Hwang, H.-J. Kim, P. Lemaillet, H. Wabnitz, D. Grosenick, L. Yang, T. Gladytz, D. McClatchy, D. Allen, K. Briggman, and B. Pogue, “Polydimethylsiloxane tissue-mimicking phantoms for quantitative optical medical imaging standards,” Proc. SPIE 10056, Design and Quality for Biomedical Technologies X, 1005603 (2017).

A. H. Taylor, “Measurement of Diffuse Reflection Factors: And a New Absolute Reflectometer” (US Government Printing Office, 1920).

T. A. Germer, J. C. Zwinkels, and B. K. Tsai, “Spectrophotometry: Accurate measurement of optical properties of materials”, vol. 46 (Elsevier, 2014).

P. Barnes, E. A. Early, and A. Parr, “NIST Special Publication 250-48,” US Dept. of Commerce (1998).

D. W. Allen, E. A. Early, B. K. Tsai, and C. C. Cooksey, “NIST Special Publication 250-69,” US Dept. of Commerce (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic layout of the integrating sphere instrument; LDLS: laser-driven light source; LS1, LS2, LS3, LS4 and LS5: light shutters; M1, M2 and M3: mirrors; DM1 and DM2: dichroic mirrors; PM, parabolic mirror; P, Glan-Taylor linear polarizer; BS1 and BS2: beam splitters; FM: folding mirror; C1 and C2: collimators; BPF: band bass filters; I: iris; D1 and D2: photodiodes; CV1 and CV2: current-voltage amplifiers; DAQ: data acquisition board; OF1, OF2 and OF3: optical fibers; SM1 and SM2: spectrometers.
Fig. 2
Fig. 2 Steps of the measurement procedure for estimating the hemispherical reflectance and transmittance at a 0° incident angle (detection by an optical fiber): (a) diffuse illumination, (b) sample reflectance under direct illumination at a 0° illumination angle and (c) sample transmittance under direct illumination at a 0° illumination angle.
Fig. 3
Fig. 3 (a): Comparison of the measurements with a single integrating sphere of the hemispherical reflectance under a diffuse illumination, R(d : d) to the measurements of the hemispherical reflectance with a 6° illumination angle, R(6 : di), made using the integrating sphere instrument of NIST STARR for a set of calibrated reflectance standards in the range [2 %, 5 %, 10 %, 20 %, 40 %, 60 %, 80 %, 99 %]. The error bars (coverage factor k = 2) on R(6 : di) are smaller than the symbols used; (b): Measured voltage ratios VR Sample Diffuse VR StdRef Diffuse as a function of R(6 : di) reflectance of the samples fitted using the IAD model for the integrating sphere (smallest rmse value 2.62 × 10−4 at λ = 794 nm).
Fig. 4
Fig. 4 (a) Comparison of the measurements with a single integrating sphere of the hemispherical reflectance at a 0° incident angle, R(0 : de), to the measurements of the hemispherical reflectance with a 6° illumination angle, R(6 : di), made using the integrating sphere instrument of NIST STARR for a set of calibrated reflectance standards in the range [2 %, 5 %, 10 %, 20 %, 40 %, 60 %, 80 %, 99 %]. The error bars (coverage factor k = 2) on R(6 : di) are smaller than the symbols used; (b) R(0 : de) as a function of R(6 : di) fitted with a linear model (largest rmse value = 3.87 × 10−4 at λ = 456 nm).
Fig. 5
Fig. 5 (a) Comparison of the measurements with a single integrating sphere of the hemispherical transmittance at a 0° incident angle, T(0 : de), to the measurements of the collimated transmittance at a 0° incident angle, T(0 : 0), made with NIST RTS for a set of BK7-based neutral density filters with OD = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1.0]. The error bars (coverage factor k = 2) are smaller than the symbols used for T(0 : 0) (uncertainty 0.5 %) and for most of T(0 : de); (b) T(0 : de) as a function of T(0 : 0) fitted with a linear model (largest rmse value = 5.90 × 10−4 at λ = 452 nm).
Fig. 6
Fig. 6 Measurements from λ = 450 nm to 850 nm of (a) the absorption coefficient μa and (b) the reduced scattering coefficient μ′s of the three the B0430 samples (nominal thicknesses t = 5 mm, 7 mm and 10 mm). Continuous lines are used to represent the upper and lower bounds of the uncertainties on the results by the single integrating sphere measurements. The results are compared to measurements by INO at λ = (475, 540, 543, 630, 632, 780, 805 and 850) nm (uncertainty at k = 2).
Fig. 7
Fig. 7 Measurements from λ = 450 nm to 850 nm of (a) the absorption coefficient μa and (b) the reduced scattering coefficient μ′s of a B0430 sample (nominal thickness t = 5 mm) using a single integrating sphere setup and a double integrating sphere setup [16]. Continuous lines are used to represent the upper and lower bounds of the uncertainties on the results. The results are compared to measurements by INO at λ = (475, 540, 543, 630, 632, 780, 805 and 850) nm (uncertainty at k = 2).
Fig. 8
Fig. 8 Measurements and uncertainties (k = 2) from λ = 450 nm to 850 nm of the reduced scattering coefficient μ′s of three PDMS samples (TiO2 concentrations 0.2 %, 0.1 % and 0.05 %). The results are compared to measurements by PTB at λ = (500, 600, 700 and 800) nm.

Tables (3)

Tables Icon

Table 1 Uncertainty budget of the optical properties μa and μ′s of the B0430 sample (t = 6.95 mm) at λ = 632 nm. The standard deviation of the input experimental parameters is σ.

Tables Icon

Table 2 Results and uncertainties (k = 2) of B0430, t = 6.95 mm: μa, the absorption coefficient of the sample; μ′s the reduced scattering coefficient of the sample. The uncertainties on the INO results were estimated from measurements made on different samples at λ = 600 nm as presented in Ref. [3].

Tables Icon

Table 3 Results and uncertainties (k = 2) of the reduced scattering coefficient μ′s of the PDMS samples. The integrating sphere results are compared to time domain measurements by PTB.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

R Sample Diffuse = R StdRef VR StdRef Diffuse ( VR Sample Diffuse VR Empty Diffuse ) VR Sample Diffuse ( VR StdRef Diffuse VR Empty Diffuse ) ,
VR Sample Diffuse VR StdRef Diffuse = A 1 + B 1 R StdRef A 1 + B 1 R Sample Diffuse ,
R Sample Direct = R StdRef VR Sample Direct VR StdRef Direct VR StdRef Diffuse VR Sample Diffuse ,
T Sample Direct = VT Sample Direct VT Empty Diffuse VR Empty Diffuse VR Sample Diffuse ,
( R Sample Direct , T Sample Direct , d , n , g , θ ) = Inverse problem ( μ a , μ s ) .
R Sample Total , Direct = R Sample Direct + R Fresnel ( n , θ = 0 ° ) .
P ( R Sample Direct , R Sample Diffuse ) = a d ( 1 a e ) r w [ ( 1 f ) R Sample Direct + f r w ] PG ( R Sample Diffuse ) ,
G ( R Sample Diffuse ) = 1 A 1 + B 1 R Sample Diffuse ,
P ( 0 , R Sample Diffuse ) P ( 0 , R StdRef ) = G ( R Sample Diffuse ) G ( R StdRef ) = A 1 + B 1 R StdRef A 1 + B 1 R Sample Diffuse .
VR Empty Diffuse VR StdRef Diffuse = A 1 + B 1 R StdRef A 1 .
R Sample Diffuse = R StdRef VR StdRef Diffuse ( VR Sample Diffuse VR Empty Diffuse ) VR Sample Diffuse ( VR StdRef Diffuse VR Empty Diffuse ) ,
P ( R Sample Direct , R Sample Diffuse ) P ( R StdRef , R StdRef ) = VR Sample Direct VR StdRef Direct = R Sample direct R StdRef G ( R Sample Diffuse ) G ( R StdRef ) ,
R Sample Direct = R StdRef VR Sample Direct VR StdRef Direct VR StdRef Diffuse VR Sample Diffuse ,
P ( T Sample Direct , R Sample Diffuse ) = a d ( 1 a e ) r w T Sample Direct PG ( R Sample Diffuse ) .
P ( T Sample Direct , R Sample Diffuse ) P ( 1 , 0 ) = VT Sample Direct VT Empty Direct = T Sample direct G ( R Sample Diffuse ) G ( 0 ) ,
T Sample Direct = VT Sample Direct VT Empty Direct VR Empty Diffuse VR Sample Diffuse .
T Sample Direct = VT Sample Direct VT Empty Diffuse VR Empty Diffuse VR Sample Diffuse .

Metrics