Abstract

Cytoskeletons such as F-actin have different distributions in different cell parts and they are the cause of different degrees of cell collapse when the F-actin is disrupted. It is challenging to use conventional methods such as fluorescence microscopy and atomic force microscopy to conduct real-time and three-dimensional observations on the dynamic processes at different cell parts due to the slow measuring speed and the need for live-cell staining. In this study, the morphological variations of different bone cell parts caused by F-actin disruption are dynamically measured by using digital holographic microscopy (DHM). We separately analyze local parameters (cell height and cell width) and global parameters (cell projected area and cell volume) of cells to address variations of specific cell areas and quantify the changing process of the whole cell. We found significant differences in temporal variations of both local and global cell parameters between the cell body and cell process, which is consistent with the qualitative observation by fluorescence staining. Our study not only validates the unique ability of DHM to simultaneously investigate the dynamic process at different cell parts, but also provides sufficient experimental bases for exploring the mechanism for F-actin disruption.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Changes in optical properties of electroporated cells as revealed by digital holographic microscopy

Violeta L. Calin, Mona Mihailescu, Nicolae Mihale, Alexandra V. Baluta, Eugenia Kovacs, Tudor Savopol, and Mihaela G. Moisescu
Biomed. Opt. Express 8(4) 2222-2234 (2017)

In vivo imaging and quantitative analysis of zebrafish embryos by digital holographic microscopy

Jian Gao, Joseph A. Lyon, Daniel P. Szeto, and Jun Chen
Biomed. Opt. Express 3(10) 2623-2635 (2012)

Dynamics of cell membranes and the underlying cytoskeletons observed by noninterferometric widefield optical profilometry and fluorescence microscopy

Chun-Chieh Wang, Jiunn-Yuan Lin, Hsiao-Chao Chen, and Chau-Hwang Lee
Opt. Lett. 31(19) 2873-2875 (2006)

References

  • View by:
  • |
  • |
  • |

  1. L. A. Fitzpatrick, “Secondary Causes of Osteoporosis,” Mayo Clin. Proc. 77(5), 453–468 (2002).
    [PubMed]
  2. E. Zerath, X. Holy, S. G. Roberts, C. Andre, S. Renault, M. Hott, and P. J. Marie, “Spaceflight inhibits bone formation independent of corticosteroid status in growing rats,” J. Bone Miner. Res. 15(7), 1310–1320 (2000).
    [PubMed]
  3. A. LeBlanc, V. Schneider, L. Shackelford, S. West, V. Oganov, A. Bakulin, and L. Voronin, “Bone mineral and lean tissue loss after long duration space flight,” J. Musculoskelet. Neuronal Interact. 1(2), 157–160 (2000).
    [PubMed]
  4. D. Grimm, J. Grosse, M. Wehland, V. Mann, J. E. Reseland, A. Sundaresan, and T. J. Corydon, “The impact of microgravity on bone in humans,” Bone 87, 44–56 (2016).
    [PubMed]
  5. J. Klein-Nulend, R. G. Bacabac, and A. D. Bakker, “Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton,” Eur. Cell. Mater. 24, 278–291 (2012).
    [PubMed]
  6. M. Y. Kapitonova, N. Salim, S. Othman, T. M. H. T. Muhd Kamauzaman, A. M. Ali, H. M. Nawawi, and G. R. A. Froemming, “Alteration of cell cytoskeleton and functions of cell recovery of normal human osteoblast cells caused by factors associated with real space flight,” Malays. J. Pathol. 35(2), 153–163 (2013).
    [PubMed]
  7. J. G. McGarry, J. Klein-Nulend, and P. J. Prendergast, “The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E2 release in osteocytes and osteoblasts,” Biochem. Biophys. Res. Commun. 330(1), 341–348 (2005).
    [PubMed]
  8. D. Vorselen, W. H. Roos, F. C. MacKintosh, G. J. L. Wuite, and J. J. W. A. van Loon, “The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells,” FASEB J. 28(2), 536–547 (2014).
    [PubMed]
  9. H. Kamioka, Y. Sugawara, T. Honjo, T. Yamashiro, and T. Takano-Yamamoto, “Terminal Differentiation of Osteoblasts to Osteocytes Is Accompanied by Dramatic Changes in the Distribution of Actin-Binding Proteins,” J. Bone Miner. Res. 19(3), 471–478 (2004).
    [PubMed]
  10. K. Tanaka-Kamioka, H. Kamioka, H. Ris, and S. S. Lim, “Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections,” J. Bone Miner. Res. 13(10), 1555–1568 (1998).
    [PubMed]
  11. S. A. Murshid, H. Kamioka, Y. Ishihara, R. Ando, Y. Sugawara, and T. Takano-Yamamoto, “Actin and microtubule cytoskeletons of the processes of 3D-cultured MC3T3-E1 cells and osteocytes,” J. Bone Miner. Metab. 25(3), 151–158 (2007).
    [PubMed]
  12. Y. Han, S. C. Cowin, M. B. Schaffler, and S. Weinbaum, “Mechanotransduction and strain amplification in osteocyte cell processes,” Proc. Natl. Acad. Sci. U.S.A. 101(47), 16689–16694 (2004).
    [PubMed]
  13. C. Rotsch and M. Radmacher, “Drug-Induced Changes of Cytoskeletal Structure and Mechanics in Fibroblasts: An Atomic Force Microscopy Study,” Biophys. J. 78(1), 520–535 (2000).
    [PubMed]
  14. G. T. Charras and M. A. Horton, “Single Cell Mechanotransduction and Its Modulation Analyzed by Atomic Force Microscope Indentation,” Biophys. J. 82(6), 2970–2981 (2002).
    [PubMed]
  15. G. M. Kelly, J. I. Kilpatrick, M. H. van Es, P. P. Weafer, P. J. Prendergast, and S. P. Jarvis, “Bone cell elasticity and morphology changes during the cell cycle,” J. Biomech. 44(8), 1484–1490 (2011).
    [PubMed]
  16. C. Kronlage, M. Schäfer-Herte, D. Böning, H. Oberleithner, and J. Fels, “Feeling for Filaments: Quantification of the Cortical Actin Web in Live Vascular Endothelium,” Biophys. J. 109(4), 687–698 (2015).
    [PubMed]
  17. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
    [PubMed]
  18. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
    [PubMed]
  19. C. Mann, L. Yu, C.-M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
    [PubMed]
  20. B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
    [PubMed]
  21. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004).
    [PubMed]
  22. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
    [PubMed]
  23. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
    [PubMed]
  24. J. Gao, J. A. Lyon, D. P. Szeto, and J. Chen, “In vivo imaging and quantitative analysis of zebrafish embryos by digital holographic microscopy,” Biomed. Opt. Express 3(10), 2623–2635 (2012).
    [PubMed]
  25. A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
    [PubMed]
  26. P. Marquet, C. Depeursinge, and P. J. Magistretti, “Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders,” Neurophotonics 1(2), 020901 (2014).
    [PubMed]
  27. K. Z. Boudejltia, D. Ribeiro de Sousa, P. Uzureau, C. Yourassowsky, D. Perez-Morga, G. Courbebaisse, B. Chopard, and F. Dubois, “Quantitative analysis of platelets aggregates in 3D by digital holographic microscopy,” Biomed. Opt. Express 6(9), 3556–3563 (2015).
    [PubMed]
  28. B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy,” Opt. Express 23(10), 13333–13347 (2015).
    [PubMed]
  29. J. Schnekenburger, I. Bredebusch, W. Domschke, B. Kemper, P. Langehanenberg, and G. von Bally, “Digital holographic imaging of dynamic cytoskeleton changes,” Med. Laser Appl. 22, 165–172 (2007).
  30. B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
    [PubMed]
  31. C. Minetti, T. Podgorski, G. Coupier, and F. Dubois, “Fully automated digital holographic processing for monitoring the dynamics of a vesicle suspension under shear flow,” Biomed. Opt. Express 5(5), 1554–1568 (2014).
    [PubMed]
  32. E. Sánchez-Ortiga, P. Ferraro, M. Martínez-Corral, G. Saavedra, and A. Doblas, “Digital holographic microscopy with pure-optical spherical phase compensation,” J. Opt. Soc. Am. A 28(7), 1410–1417 (2011).
    [PubMed]
  33. A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, P. Andrés, and J. Garcia-Sucerquia, “Shift-variant digital holographic microscopy: inaccuracies in quantitative phase imaging,” Opt. Lett. 38(8), 1352–1354 (2013).
    [PubMed]
  34. E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53(10), 2058–2066 (2014).
    [PubMed]
  35. F. Pan, S. Liu, Z. Wang, P. Shang, and W. Xiao, “Digital holographic microscopy long-term and real-time monitoring of cell division and changes under simulated zero gravity,” Opt. Express 20(10), 11496–11505 (2012).
    [PubMed]
  36. C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt. 15(2), 026021 (2010).
    [PubMed]
  37. J. K. Wallace, S. Rider, E. Serabyn, J. Kühn, K. Liewer, J. Deming, G. Showalter, C. Lindensmith, and J. Nadeau, “Robust, compact implementation of an off-axis digital holographic microscope,” Opt. Express 23(13), 17367–17378 (2015).
    [PubMed]
  38. V. L. Calin, M. Mihailescu, N. Mihale, A. V. Baluta, E. Kovacs, T. Savopol, and M. G. Moisescu, “Changes in optical properties of electroporated cells as revealed by digital holographic microscopy,” Biomed. Opt. Express 8(4), 2222–2234 (2017).
    [PubMed]
  39. A. V. Belashov, A. A. Zhikhoreva, T. N. Belyaeva, E. S. Kornilova, N. V. Petrov, A. V. Salova, I. V. Semenova, and O. S. Vasyutinskii, “Digital holographic microscopy in label-free analysis of cultured cells’ response to photodynamic treatment,” Opt. Lett. 41(21), 5035–5038 (2016).
    [PubMed]
  40. E. Cuche, P. Marquet, and C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182, 59–69 (2000).
  41. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
    [PubMed]
  42. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
    [PubMed]
  43. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
    [PubMed]
  44. L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).
  45. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
    [PubMed]
  46. S.-A. Yang, J. Yoon, K. Kim, and Y. Park, “Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease,” Cytometry A 91(5), 510–518 (2017).
    [PubMed]
  47. M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophotonics 9(10), 1068–1076 (2016).
    [PubMed]
  48. G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
    [PubMed]
  49. A. Calabuig, M. Mugnano, L. Miccio, S. Grilli, and P. Ferraro, “Investigating fibroblast cells under “safe” and “injurious” blue-light exposure by holographic microscopy,” J. Biophotonics 10(6-7), 919–927 (2017).
    [PubMed]
  50. T. Adachi, Y. Aonuma, M. Tanaka, M. Hojo, T. Takano-Yamamoto, and H. Kamioka, “Calcium response in single osteocytes to locally applied mechanical stimulus: Differences in cell process and cell body,” J. Biomech. 42(12), 1989–1995 (2009).
    [PubMed]
  51. L. M. McNamara, R. J. Majeska, S. Weinbaum, V. Friedrich, and M. B. Schaffler, “Attachment of Osteocyte Cell Processes to the Bone Matrix,” Anat. Rec. (Hoboken) 292(3), 355–363 (2009).
    [PubMed]
  52. F. M. Pavalko, N. X. Chen, C. H. Turner, D. B. Burr, S. Atkinson, Y.-F. Hsieh, J. Qiu, and R. L. Duncan, “Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions,” Am. J. Physiol. 275(6 Pt 1), C1591–C1601 (1998).
    [PubMed]

2017 (3)

A. Calabuig, M. Mugnano, L. Miccio, S. Grilli, and P. Ferraro, “Investigating fibroblast cells under “safe” and “injurious” blue-light exposure by holographic microscopy,” J. Biophotonics 10(6-7), 919–927 (2017).
[PubMed]

S.-A. Yang, J. Yoon, K. Kim, and Y. Park, “Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease,” Cytometry A 91(5), 510–518 (2017).
[PubMed]

V. L. Calin, M. Mihailescu, N. Mihale, A. V. Baluta, E. Kovacs, T. Savopol, and M. G. Moisescu, “Changes in optical properties of electroporated cells as revealed by digital holographic microscopy,” Biomed. Opt. Express 8(4), 2222–2234 (2017).
[PubMed]

2016 (3)

A. V. Belashov, A. A. Zhikhoreva, T. N. Belyaeva, E. S. Kornilova, N. V. Petrov, A. V. Salova, I. V. Semenova, and O. S. Vasyutinskii, “Digital holographic microscopy in label-free analysis of cultured cells’ response to photodynamic treatment,” Opt. Lett. 41(21), 5035–5038 (2016).
[PubMed]

M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophotonics 9(10), 1068–1076 (2016).
[PubMed]

D. Grimm, J. Grosse, M. Wehland, V. Mann, J. E. Reseland, A. Sundaresan, and T. J. Corydon, “The impact of microgravity on bone in humans,” Bone 87, 44–56 (2016).
[PubMed]

2015 (4)

2014 (5)

E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53(10), 2058–2066 (2014).
[PubMed]

C. Minetti, T. Podgorski, G. Coupier, and F. Dubois, “Fully automated digital holographic processing for monitoring the dynamics of a vesicle suspension under shear flow,” Biomed. Opt. Express 5(5), 1554–1568 (2014).
[PubMed]

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[PubMed]

P. Marquet, C. Depeursinge, and P. J. Magistretti, “Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders,” Neurophotonics 1(2), 020901 (2014).
[PubMed]

D. Vorselen, W. H. Roos, F. C. MacKintosh, G. J. L. Wuite, and J. J. W. A. van Loon, “The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells,” FASEB J. 28(2), 536–547 (2014).
[PubMed]

2013 (2)

M. Y. Kapitonova, N. Salim, S. Othman, T. M. H. T. Muhd Kamauzaman, A. M. Ali, H. M. Nawawi, and G. R. A. Froemming, “Alteration of cell cytoskeleton and functions of cell recovery of normal human osteoblast cells caused by factors associated with real space flight,” Malays. J. Pathol. 35(2), 153–163 (2013).
[PubMed]

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, P. Andrés, and J. Garcia-Sucerquia, “Shift-variant digital holographic microscopy: inaccuracies in quantitative phase imaging,” Opt. Lett. 38(8), 1352–1354 (2013).
[PubMed]

2012 (3)

2011 (2)

G. M. Kelly, J. I. Kilpatrick, M. H. van Es, P. P. Weafer, P. J. Prendergast, and S. P. Jarvis, “Bone cell elasticity and morphology changes during the cell cycle,” J. Biomech. 44(8), 1484–1490 (2011).
[PubMed]

E. Sánchez-Ortiga, P. Ferraro, M. Martínez-Corral, G. Saavedra, and A. Doblas, “Digital holographic microscopy with pure-optical spherical phase compensation,” J. Opt. Soc. Am. A 28(7), 1410–1417 (2011).
[PubMed]

2010 (1)

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt. 15(2), 026021 (2010).
[PubMed]

2009 (3)

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[PubMed]

T. Adachi, Y. Aonuma, M. Tanaka, M. Hojo, T. Takano-Yamamoto, and H. Kamioka, “Calcium response in single osteocytes to locally applied mechanical stimulus: Differences in cell process and cell body,” J. Biomech. 42(12), 1989–1995 (2009).
[PubMed]

L. M. McNamara, R. J. Majeska, S. Weinbaum, V. Friedrich, and M. B. Schaffler, “Attachment of Osteocyte Cell Processes to the Bone Matrix,” Anat. Rec. (Hoboken) 292(3), 355–363 (2009).
[PubMed]

2008 (3)

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[PubMed]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[PubMed]

2007 (3)

J. Schnekenburger, I. Bredebusch, W. Domschke, B. Kemper, P. Langehanenberg, and G. von Bally, “Digital holographic imaging of dynamic cytoskeleton changes,” Med. Laser Appl. 22, 165–172 (2007).

S. A. Murshid, H. Kamioka, Y. Ishihara, R. Ando, Y. Sugawara, and T. Takano-Yamamoto, “Actin and microtubule cytoskeletons of the processes of 3D-cultured MC3T3-E1 cells and osteocytes,” J. Bone Miner. Metab. 25(3), 151–158 (2007).
[PubMed]

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).

2006 (2)

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
[PubMed]

2005 (4)

2004 (3)

D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004).
[PubMed]

H. Kamioka, Y. Sugawara, T. Honjo, T. Yamashiro, and T. Takano-Yamamoto, “Terminal Differentiation of Osteoblasts to Osteocytes Is Accompanied by Dramatic Changes in the Distribution of Actin-Binding Proteins,” J. Bone Miner. Res. 19(3), 471–478 (2004).
[PubMed]

Y. Han, S. C. Cowin, M. B. Schaffler, and S. Weinbaum, “Mechanotransduction and strain amplification in osteocyte cell processes,” Proc. Natl. Acad. Sci. U.S.A. 101(47), 16689–16694 (2004).
[PubMed]

2003 (1)

2002 (2)

G. T. Charras and M. A. Horton, “Single Cell Mechanotransduction and Its Modulation Analyzed by Atomic Force Microscope Indentation,” Biophys. J. 82(6), 2970–2981 (2002).
[PubMed]

L. A. Fitzpatrick, “Secondary Causes of Osteoporosis,” Mayo Clin. Proc. 77(5), 453–468 (2002).
[PubMed]

2000 (5)

E. Zerath, X. Holy, S. G. Roberts, C. Andre, S. Renault, M. Hott, and P. J. Marie, “Spaceflight inhibits bone formation independent of corticosteroid status in growing rats,” J. Bone Miner. Res. 15(7), 1310–1320 (2000).
[PubMed]

A. LeBlanc, V. Schneider, L. Shackelford, S. West, V. Oganov, A. Bakulin, and L. Voronin, “Bone mineral and lean tissue loss after long duration space flight,” J. Musculoskelet. Neuronal Interact. 1(2), 157–160 (2000).
[PubMed]

C. Rotsch and M. Radmacher, “Drug-Induced Changes of Cytoskeletal Structure and Mechanics in Fibroblasts: An Atomic Force Microscopy Study,” Biophys. J. 78(1), 520–535 (2000).
[PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
[PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182, 59–69 (2000).

1999 (1)

1998 (2)

F. M. Pavalko, N. X. Chen, C. H. Turner, D. B. Burr, S. Atkinson, Y.-F. Hsieh, J. Qiu, and R. L. Duncan, “Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions,” Am. J. Physiol. 275(6 Pt 1), C1591–C1601 (1998).
[PubMed]

K. Tanaka-Kamioka, H. Kamioka, H. Ris, and S. S. Lim, “Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections,” J. Bone Miner. Res. 13(10), 1555–1568 (1998).
[PubMed]

Adachi, T.

T. Adachi, Y. Aonuma, M. Tanaka, M. Hojo, T. Takano-Yamamoto, and H. Kamioka, “Calcium response in single osteocytes to locally applied mechanical stimulus: Differences in cell process and cell body,” J. Biomech. 42(12), 1989–1995 (2009).
[PubMed]

Alfieri, D.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).

Ali, A. M.

M. Y. Kapitonova, N. Salim, S. Othman, T. M. H. T. Muhd Kamauzaman, A. M. Ali, H. M. Nawawi, and G. R. A. Froemming, “Alteration of cell cytoskeleton and functions of cell recovery of normal human osteoblast cells caused by factors associated with real space flight,” Malays. J. Pathol. 35(2), 153–163 (2013).
[PubMed]

Ando, R.

S. A. Murshid, H. Kamioka, Y. Ishihara, R. Ando, Y. Sugawara, and T. Takano-Yamamoto, “Actin and microtubule cytoskeletons of the processes of 3D-cultured MC3T3-E1 cells and osteocytes,” J. Bone Miner. Metab. 25(3), 151–158 (2007).
[PubMed]

Andre, C.

E. Zerath, X. Holy, S. G. Roberts, C. Andre, S. Renault, M. Hott, and P. J. Marie, “Spaceflight inhibits bone formation independent of corticosteroid status in growing rats,” J. Bone Miner. Res. 15(7), 1310–1320 (2000).
[PubMed]

Andrés, P.

Aonuma, Y.

T. Adachi, Y. Aonuma, M. Tanaka, M. Hojo, T. Takano-Yamamoto, and H. Kamioka, “Calcium response in single osteocytes to locally applied mechanical stimulus: Differences in cell process and cell body,” J. Biomech. 42(12), 1989–1995 (2009).
[PubMed]

Aspert, N.

Atkinson, S.

F. M. Pavalko, N. X. Chen, C. H. Turner, D. B. Burr, S. Atkinson, Y.-F. Hsieh, J. Qiu, and R. L. Duncan, “Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions,” Am. J. Physiol. 275(6 Pt 1), C1591–C1601 (1998).
[PubMed]

Bacabac, R. G.

J. Klein-Nulend, R. G. Bacabac, and A. D. Bakker, “Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton,” Eur. Cell. Mater. 24, 278–291 (2012).
[PubMed]

Badizadegan, K.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[PubMed]

Bakker, A. D.

J. Klein-Nulend, R. G. Bacabac, and A. D. Bakker, “Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton,” Eur. Cell. Mater. 24, 278–291 (2012).
[PubMed]

Bakulin, A.

A. LeBlanc, V. Schneider, L. Shackelford, S. West, V. Oganov, A. Bakulin, and L. Voronin, “Bone mineral and lean tissue loss after long duration space flight,” J. Musculoskelet. Neuronal Interact. 1(2), 157–160 (2000).
[PubMed]

Baluta, A. V.

Barbul, A.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[PubMed]

Belashov, A. V.

Belyaeva, T. N.

Best-Popescu, C.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[PubMed]

Bevilacqua, F.

Böning, D.

C. Kronlage, M. Schäfer-Herte, D. Böning, H. Oberleithner, and J. Fels, “Feeling for Filaments: Quantification of the Cortical Actin Web in Live Vascular Endothelium,” Biophys. J. 109(4), 687–698 (2015).
[PubMed]

Boss, D.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[PubMed]

Boudejltia, K. Z.

Bredebusch, I.

J. Schnekenburger, I. Bredebusch, W. Domschke, B. Kemper, P. Langehanenberg, and G. von Bally, “Digital holographic imaging of dynamic cytoskeleton changes,” Med. Laser Appl. 22, 165–172 (2007).

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[PubMed]

Büchi, O.

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt. 15(2), 026021 (2010).
[PubMed]

Burr, D. B.

F. M. Pavalko, N. X. Chen, C. H. Turner, D. B. Burr, S. Atkinson, Y.-F. Hsieh, J. Qiu, and R. L. Duncan, “Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions,” Am. J. Physiol. 275(6 Pt 1), C1591–C1601 (1998).
[PubMed]

Calabuig, A.

A. Calabuig, M. Mugnano, L. Miccio, S. Grilli, and P. Ferraro, “Investigating fibroblast cells under “safe” and “injurious” blue-light exposure by holographic microscopy,” J. Biophotonics 10(6-7), 919–927 (2017).
[PubMed]

Calin, V. L.

Carl, D.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[PubMed]

D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004).
[PubMed]

Chan, C. J.

M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophotonics 9(10), 1068–1076 (2016).
[PubMed]

Charras, G. T.

G. T. Charras and M. A. Horton, “Single Cell Mechanotransduction and Its Modulation Analyzed by Atomic Force Microscope Indentation,” Biophys. J. 82(6), 2970–2981 (2002).
[PubMed]

Charrière, F.

Chen, J.

Chen, N. X.

F. M. Pavalko, N. X. Chen, C. H. Turner, D. B. Burr, S. Atkinson, Y.-F. Hsieh, J. Qiu, and R. L. Duncan, “Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions,” Am. J. Physiol. 275(6 Pt 1), C1591–C1601 (1998).
[PubMed]

Chopard, B.

Colomb, T.

Coppola, G.

Corydon, T. J.

D. Grimm, J. Grosse, M. Wehland, V. Mann, J. E. Reseland, A. Sundaresan, and T. J. Corydon, “The impact of microgravity on bone in humans,” Bone 87, 44–56 (2016).
[PubMed]

Coupier, G.

Courbebaisse, G.

Cowin, S. C.

Y. Han, S. C. Cowin, M. B. Schaffler, and S. Weinbaum, “Mechanotransduction and strain amplification in osteocyte cell processes,” Proc. Natl. Acad. Sci. U.S.A. 101(47), 16689–16694 (2004).
[PubMed]

Cuche, E.

Dasari, R. R.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[PubMed]

De Nicola, S.

De Petrocellis, L.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).

Deflores, L.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[PubMed]

Deming, J.

Depeursinge, C.

P. Marquet, C. Depeursinge, and P. J. Magistretti, “Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders,” Neurophotonics 1(2), 020901 (2014).
[PubMed]

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt. 15(2), 026021 (2010).
[PubMed]

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
[PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
[PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
[PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182, 59–69 (2000).

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
[PubMed]

Doblas, A.

Domschke, W.

J. Schnekenburger, I. Bredebusch, W. Domschke, B. Kemper, P. Langehanenberg, and G. von Bally, “Digital holographic imaging of dynamic cytoskeleton changes,” Med. Laser Appl. 22, 165–172 (2007).

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[PubMed]

Dubois, F.

Duncan, R. L.

F. M. Pavalko, N. X. Chen, C. H. Turner, D. B. Burr, S. Atkinson, Y.-F. Hsieh, J. Qiu, and R. L. Duncan, “Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions,” Am. J. Physiol. 275(6 Pt 1), C1591–C1601 (1998).
[PubMed]

Egli, M.

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt. 15(2), 026021 (2010).
[PubMed]

Emery, Y.

Feld, M. S.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[PubMed]

Fels, J.

C. Kronlage, M. Schäfer-Herte, D. Böning, H. Oberleithner, and J. Fels, “Feeling for Filaments: Quantification of the Cortical Actin Web in Live Vascular Endothelium,” Biophys. J. 109(4), 687–698 (2015).
[PubMed]

Ferraro, P.

A. Calabuig, M. Mugnano, L. Miccio, S. Grilli, and P. Ferraro, “Investigating fibroblast cells under “safe” and “injurious” blue-light exposure by holographic microscopy,” J. Biophotonics 10(6-7), 919–927 (2017).
[PubMed]

E. Sánchez-Ortiga, P. Ferraro, M. Martínez-Corral, G. Saavedra, and A. Doblas, “Digital holographic microscopy with pure-optical spherical phase compensation,” J. Opt. Soc. Am. A 28(7), 1410–1417 (2011).
[PubMed]

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
[PubMed]

Finizio, A.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
[PubMed]

Fitzpatrick, L. A.

L. A. Fitzpatrick, “Secondary Causes of Osteoporosis,” Mayo Clin. Proc. 77(5), 453–468 (2002).
[PubMed]

Franco-Obregón, A.

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt. 15(2), 026021 (2010).
[PubMed]

Friedrich, V.

L. M. McNamara, R. J. Majeska, S. Weinbaum, V. Friedrich, and M. B. Schaffler, “Attachment of Osteocyte Cell Processes to the Bone Matrix,” Anat. Rec. (Hoboken) 292(3), 355–363 (2009).
[PubMed]

Froemming, G. R. A.

M. Y. Kapitonova, N. Salim, S. Othman, T. M. H. T. Muhd Kamauzaman, A. M. Ali, H. M. Nawawi, and G. R. A. Froemming, “Alteration of cell cytoskeleton and functions of cell recovery of normal human osteoblast cells caused by factors associated with real space flight,” Malays. J. Pathol. 35(2), 153–163 (2013).
[PubMed]

Gao, J.

Garcia-Sucerquia, J.

Grilli, S.

A. Calabuig, M. Mugnano, L. Miccio, S. Grilli, and P. Ferraro, “Investigating fibroblast cells under “safe” and “injurious” blue-light exposure by holographic microscopy,” J. Biophotonics 10(6-7), 919–927 (2017).
[PubMed]

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42(11), 1938–1946 (2003).
[PubMed]

Grimm, D.

D. Grimm, J. Grosse, M. Wehland, V. Mann, J. E. Reseland, A. Sundaresan, and T. J. Corydon, “The impact of microgravity on bone in humans,” Bone 87, 44–56 (2016).
[PubMed]

Grosse, J.

D. Grimm, J. Grosse, M. Wehland, V. Mann, J. E. Reseland, A. Sundaresan, and T. J. Corydon, “The impact of microgravity on bone in humans,” Bone 87, 44–56 (2016).
[PubMed]

Guck, J.

M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophotonics 9(10), 1068–1076 (2016).
[PubMed]

Han, Y.

Y. Han, S. C. Cowin, M. B. Schaffler, and S. Weinbaum, “Mechanotransduction and strain amplification in osteocyte cell processes,” Proc. Natl. Acad. Sci. U.S.A. 101(47), 16689–16694 (2004).
[PubMed]

Hoffmann, A.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[PubMed]

Hojo, M.

T. Adachi, Y. Aonuma, M. Tanaka, M. Hojo, T. Takano-Yamamoto, and H. Kamioka, “Calcium response in single osteocytes to locally applied mechanical stimulus: Differences in cell process and cell body,” J. Biomech. 42(12), 1989–1995 (2009).
[PubMed]

Holy, X.

E. Zerath, X. Holy, S. G. Roberts, C. Andre, S. Renault, M. Hott, and P. J. Marie, “Spaceflight inhibits bone formation independent of corticosteroid status in growing rats,” J. Bone Miner. Res. 15(7), 1310–1320 (2000).
[PubMed]

Honjo, T.

H. Kamioka, Y. Sugawara, T. Honjo, T. Yamashiro, and T. Takano-Yamamoto, “Terminal Differentiation of Osteoblasts to Osteocytes Is Accompanied by Dramatic Changes in the Distribution of Actin-Binding Proteins,” J. Bone Miner. Res. 19(3), 471–478 (2004).
[PubMed]

Horton, M. A.

G. T. Charras and M. A. Horton, “Single Cell Mechanotransduction and Its Modulation Analyzed by Atomic Force Microscope Indentation,” Biophys. J. 82(6), 2970–2981 (2002).
[PubMed]

Hott, M.

E. Zerath, X. Holy, S. G. Roberts, C. Andre, S. Renault, M. Hott, and P. J. Marie, “Spaceflight inhibits bone formation independent of corticosteroid status in growing rats,” J. Bone Miner. Res. 15(7), 1310–1320 (2000).
[PubMed]

Hsieh, Y.-F.

F. M. Pavalko, N. X. Chen, C. H. Turner, D. B. Burr, S. Atkinson, Y.-F. Hsieh, J. Qiu, and R. L. Duncan, “Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions,” Am. J. Physiol. 275(6 Pt 1), C1591–C1601 (1998).
[PubMed]

Ishihara, Y.

S. A. Murshid, H. Kamioka, Y. Ishihara, R. Ando, Y. Sugawara, and T. Takano-Yamamoto, “Actin and microtubule cytoskeletons of the processes of 3D-cultured MC3T3-E1 cells and osteocytes,” J. Bone Miner. Metab. 25(3), 151–158 (2007).
[PubMed]

Jarvis, S. P.

G. M. Kelly, J. I. Kilpatrick, M. H. van Es, P. P. Weafer, P. J. Prendergast, and S. P. Jarvis, “Bone cell elasticity and morphology changes during the cell cycle,” J. Biomech. 44(8), 1484–1490 (2011).
[PubMed]

Javidi, B.

Kamioka, H.

T. Adachi, Y. Aonuma, M. Tanaka, M. Hojo, T. Takano-Yamamoto, and H. Kamioka, “Calcium response in single osteocytes to locally applied mechanical stimulus: Differences in cell process and cell body,” J. Biomech. 42(12), 1989–1995 (2009).
[PubMed]

S. A. Murshid, H. Kamioka, Y. Ishihara, R. Ando, Y. Sugawara, and T. Takano-Yamamoto, “Actin and microtubule cytoskeletons of the processes of 3D-cultured MC3T3-E1 cells and osteocytes,” J. Bone Miner. Metab. 25(3), 151–158 (2007).
[PubMed]

H. Kamioka, Y. Sugawara, T. Honjo, T. Yamashiro, and T. Takano-Yamamoto, “Terminal Differentiation of Osteoblasts to Osteocytes Is Accompanied by Dramatic Changes in the Distribution of Actin-Binding Proteins,” J. Bone Miner. Res. 19(3), 471–478 (2004).
[PubMed]

K. Tanaka-Kamioka, H. Kamioka, H. Ris, and S. S. Lim, “Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections,” J. Bone Miner. Res. 13(10), 1555–1568 (1998).
[PubMed]

Kapitonova, M. Y.

M. Y. Kapitonova, N. Salim, S. Othman, T. M. H. T. Muhd Kamauzaman, A. M. Ali, H. M. Nawawi, and G. R. A. Froemming, “Alteration of cell cytoskeleton and functions of cell recovery of normal human osteoblast cells caused by factors associated with real space flight,” Malays. J. Pathol. 35(2), 153–163 (2013).
[PubMed]

Kelly, G. M.

G. M. Kelly, J. I. Kilpatrick, M. H. van Es, P. P. Weafer, P. J. Prendergast, and S. P. Jarvis, “Bone cell elasticity and morphology changes during the cell cycle,” J. Biomech. 44(8), 1484–1490 (2011).
[PubMed]

Kemper, B.

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[PubMed]

J. Schnekenburger, I. Bredebusch, W. Domschke, B. Kemper, P. Langehanenberg, and G. von Bally, “Digital holographic imaging of dynamic cytoskeleton changes,” Med. Laser Appl. 22, 165–172 (2007).

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[PubMed]

D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004).
[PubMed]

Kilpatrick, J. I.

G. M. Kelly, J. I. Kilpatrick, M. H. van Es, P. P. Weafer, P. J. Prendergast, and S. P. Jarvis, “Bone cell elasticity and morphology changes during the cell cycle,” J. Biomech. 44(8), 1484–1490 (2011).
[PubMed]

Kim, K.

S.-A. Yang, J. Yoon, K. Kim, and Y. Park, “Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease,” Cytometry A 91(5), 510–518 (2017).
[PubMed]

Kim, M.

Klein-Nulend, J.

J. Klein-Nulend, R. G. Bacabac, and A. D. Bakker, “Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton,” Eur. Cell. Mater. 24, 278–291 (2012).
[PubMed]

J. G. McGarry, J. Klein-Nulend, and P. J. Prendergast, “The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E2 release in osteocytes and osteoblasts,” Biochem. Biophys. Res. Commun. 330(1), 341–348 (2005).
[PubMed]

Korenstein, R.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[PubMed]

Kornilova, E. S.

Kovacs, E.

Kronlage, C.

C. Kronlage, M. Schäfer-Herte, D. Böning, H. Oberleithner, and J. Fels, “Feeling for Filaments: Quantification of the Cortical Actin Web in Live Vascular Endothelium,” Biophys. J. 109(4), 687–698 (2015).
[PubMed]

Kühn, J.

Langehanenberg, P.

J. Schnekenburger, I. Bredebusch, W. Domschke, B. Kemper, P. Langehanenberg, and G. von Bally, “Digital holographic imaging of dynamic cytoskeleton changes,” Med. Laser Appl. 22, 165–172 (2007).

LeBlanc, A.

A. LeBlanc, V. Schneider, L. Shackelford, S. West, V. Oganov, A. Bakulin, and L. Voronin, “Bone mineral and lean tissue loss after long duration space flight,” J. Musculoskelet. Neuronal Interact. 1(2), 157–160 (2000).
[PubMed]

Liewer, K.

Lim, S. S.

K. Tanaka-Kamioka, H. Kamioka, H. Ris, and S. S. Lim, “Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections,” J. Bone Miner. Res. 13(10), 1555–1568 (1998).
[PubMed]

Lindensmith, C.

Liu, S.

Lo, C.-M.

Lue, N.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[PubMed]

Lyon, J. A.

MacKintosh, F. C.

D. Vorselen, W. H. Roos, F. C. MacKintosh, G. J. L. Wuite, and J. J. W. A. van Loon, “The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells,” FASEB J. 28(2), 536–547 (2014).
[PubMed]

Magistretti, P.

Magistretti, P. J.

P. Marquet, C. Depeursinge, and P. J. Magistretti, “Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders,” Neurophotonics 1(2), 020901 (2014).
[PubMed]

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[PubMed]

Magro, C.

Majeska, R. J.

L. M. McNamara, R. J. Majeska, S. Weinbaum, V. Friedrich, and M. B. Schaffler, “Attachment of Osteocyte Cell Processes to the Bone Matrix,” Anat. Rec. (Hoboken) 292(3), 355–363 (2009).
[PubMed]

Mann, C.

Mann, V.

D. Grimm, J. Grosse, M. Wehland, V. Mann, J. E. Reseland, A. Sundaresan, and T. J. Corydon, “The impact of microgravity on bone in humans,” Bone 87, 44–56 (2016).
[PubMed]

Marie, P. J.

E. Zerath, X. Holy, S. G. Roberts, C. Andre, S. Renault, M. Hott, and P. J. Marie, “Spaceflight inhibits bone formation independent of corticosteroid status in growing rats,” J. Bone Miner. Res. 15(7), 1310–1320 (2000).
[PubMed]

Marquet, P.

B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy,” Opt. Express 23(10), 13333–13347 (2015).
[PubMed]

P. Marquet, C. Depeursinge, and P. J. Magistretti, “Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders,” Neurophotonics 1(2), 020901 (2014).
[PubMed]

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
[PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
[PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182, 59–69 (2000).

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
[PubMed]

Martínez-Corral, M.

McGarry, J. G.

J. G. McGarry, J. Klein-Nulend, and P. J. Prendergast, “The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E2 release in osteocytes and osteoblasts,” Biochem. Biophys. Res. Commun. 330(1), 341–348 (2005).
[PubMed]

McNamara, L. M.

L. M. McNamara, R. J. Majeska, S. Weinbaum, V. Friedrich, and M. B. Schaffler, “Attachment of Osteocyte Cell Processes to the Bone Matrix,” Anat. Rec. (Hoboken) 292(3), 355–363 (2009).
[PubMed]

Miccio, L.

A. Calabuig, M. Mugnano, L. Miccio, S. Grilli, and P. Ferraro, “Investigating fibroblast cells under “safe” and “injurious” blue-light exposure by holographic microscopy,” J. Biophotonics 10(6-7), 919–927 (2017).
[PubMed]

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).

Mihailescu, M.

Mihale, N.

Minetti, C.

Moisescu, M. G.

Montfort, F.

Moon, I.

Mugnano, M.

A. Calabuig, M. Mugnano, L. Miccio, S. Grilli, and P. Ferraro, “Investigating fibroblast cells under “safe” and “injurious” blue-light exposure by holographic microscopy,” J. Biophotonics 10(6-7), 919–927 (2017).
[PubMed]

Muhd Kamauzaman, T. M. H. T.

M. Y. Kapitonova, N. Salim, S. Othman, T. M. H. T. Muhd Kamauzaman, A. M. Ali, H. M. Nawawi, and G. R. A. Froemming, “Alteration of cell cytoskeleton and functions of cell recovery of normal human osteoblast cells caused by factors associated with real space flight,” Malays. J. Pathol. 35(2), 153–163 (2013).
[PubMed]

Müller, P.

M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophotonics 9(10), 1068–1076 (2016).
[PubMed]

Murshid, S. A.

S. A. Murshid, H. Kamioka, Y. Ishihara, R. Ando, Y. Sugawara, and T. Takano-Yamamoto, “Actin and microtubule cytoskeletons of the processes of 3D-cultured MC3T3-E1 cells and osteocytes,” J. Bone Miner. Metab. 25(3), 151–158 (2007).
[PubMed]

Nadeau, J.

Nawawi, H. M.

M. Y. Kapitonova, N. Salim, S. Othman, T. M. H. T. Muhd Kamauzaman, A. M. Ali, H. M. Nawawi, and G. R. A. Froemming, “Alteration of cell cytoskeleton and functions of cell recovery of normal human osteoblast cells caused by factors associated with real space flight,” Malays. J. Pathol. 35(2), 153–163 (2013).
[PubMed]

Nicola, S. D.

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).

Oberleithner, H.

C. Kronlage, M. Schäfer-Herte, D. Böning, H. Oberleithner, and J. Fels, “Feeling for Filaments: Quantification of the Cortical Actin Web in Live Vascular Endothelium,” Biophys. J. 109(4), 687–698 (2015).
[PubMed]

Oganov, V.

A. LeBlanc, V. Schneider, L. Shackelford, S. West, V. Oganov, A. Bakulin, and L. Voronin, “Bone mineral and lean tissue loss after long duration space flight,” J. Musculoskelet. Neuronal Interact. 1(2), 157–160 (2000).
[PubMed]

Othman, S.

M. Y. Kapitonova, N. Salim, S. Othman, T. M. H. T. Muhd Kamauzaman, A. M. Ali, H. M. Nawawi, and G. R. A. Froemming, “Alteration of cell cytoskeleton and functions of cell recovery of normal human osteoblast cells caused by factors associated with real space flight,” Malays. J. Pathol. 35(2), 153–163 (2013).
[PubMed]

Pache, C.

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt. 15(2), 026021 (2010).
[PubMed]

Pan, F.

Parent, J. M.

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt. 15(2), 026021 (2010).
[PubMed]

Park, Y.

S.-A. Yang, J. Yoon, K. Kim, and Y. Park, “Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease,” Cytometry A 91(5), 510–518 (2017).
[PubMed]

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[PubMed]

Pavalko, F. M.

F. M. Pavalko, N. X. Chen, C. H. Turner, D. B. Burr, S. Atkinson, Y.-F. Hsieh, J. Qiu, and R. L. Duncan, “Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions,” Am. J. Physiol. 275(6 Pt 1), C1591–C1601 (1998).
[PubMed]

Perez-Morga, D.

Petrov, N. V.

Pierattini, G.

Podgorski, T.

Popescu, G.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[PubMed]

Prendergast, P. J.

G. M. Kelly, J. I. Kilpatrick, M. H. van Es, P. P. Weafer, P. J. Prendergast, and S. P. Jarvis, “Bone cell elasticity and morphology changes during the cell cycle,” J. Biomech. 44(8), 1484–1490 (2011).
[PubMed]

J. G. McGarry, J. Klein-Nulend, and P. J. Prendergast, “The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E2 release in osteocytes and osteoblasts,” Biochem. Biophys. Res. Commun. 330(1), 341–348 (2005).
[PubMed]

Qiu, J.

F. M. Pavalko, N. X. Chen, C. H. Turner, D. B. Burr, S. Atkinson, Y.-F. Hsieh, J. Qiu, and R. L. Duncan, “Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions,” Am. J. Physiol. 275(6 Pt 1), C1591–C1601 (1998).
[PubMed]

Radmacher, M.

C. Rotsch and M. Radmacher, “Drug-Induced Changes of Cytoskeletal Structure and Mechanics in Fibroblasts: An Atomic Force Microscopy Study,” Biophys. J. 78(1), 520–535 (2000).
[PubMed]

Rappaz, B.

Renault, S.

E. Zerath, X. Holy, S. G. Roberts, C. Andre, S. Renault, M. Hott, and P. J. Marie, “Spaceflight inhibits bone formation independent of corticosteroid status in growing rats,” J. Bone Miner. Res. 15(7), 1310–1320 (2000).
[PubMed]

Reseland, J. E.

D. Grimm, J. Grosse, M. Wehland, V. Mann, J. E. Reseland, A. Sundaresan, and T. J. Corydon, “The impact of microgravity on bone in humans,” Bone 87, 44–56 (2016).
[PubMed]

Ribeiro de Sousa, D.

Rider, S.

Ris, H.

K. Tanaka-Kamioka, H. Kamioka, H. Ris, and S. S. Lim, “Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections,” J. Bone Miner. Res. 13(10), 1555–1568 (1998).
[PubMed]

Roberts, S. G.

E. Zerath, X. Holy, S. G. Roberts, C. Andre, S. Renault, M. Hott, and P. J. Marie, “Spaceflight inhibits bone formation independent of corticosteroid status in growing rats,” J. Bone Miner. Res. 15(7), 1310–1320 (2000).
[PubMed]

Roos, W. H.

D. Vorselen, W. H. Roos, F. C. MacKintosh, G. J. L. Wuite, and J. J. W. A. van Loon, “The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells,” FASEB J. 28(2), 536–547 (2014).
[PubMed]

Rotsch, C.

C. Rotsch and M. Radmacher, “Drug-Induced Changes of Cytoskeletal Structure and Mechanics in Fibroblasts: An Atomic Force Microscopy Study,” Biophys. J. 78(1), 520–535 (2000).
[PubMed]

Saavedra, G.

Salim, N.

M. Y. Kapitonova, N. Salim, S. Othman, T. M. H. T. Muhd Kamauzaman, A. M. Ali, H. M. Nawawi, and G. R. A. Froemming, “Alteration of cell cytoskeleton and functions of cell recovery of normal human osteoblast cells caused by factors associated with real space flight,” Malays. J. Pathol. 35(2), 153–163 (2013).
[PubMed]

Salova, A. V.

Sánchez-Ortiga, E.

Savopol, T.

Schäfer, M.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[PubMed]

Schäfer-Herte, M.

C. Kronlage, M. Schäfer-Herte, D. Böning, H. Oberleithner, and J. Fels, “Feeling for Filaments: Quantification of the Cortical Actin Web in Live Vascular Endothelium,” Biophys. J. 109(4), 687–698 (2015).
[PubMed]

Schaffler, M. B.

L. M. McNamara, R. J. Majeska, S. Weinbaum, V. Friedrich, and M. B. Schaffler, “Attachment of Osteocyte Cell Processes to the Bone Matrix,” Anat. Rec. (Hoboken) 292(3), 355–363 (2009).
[PubMed]

Y. Han, S. C. Cowin, M. B. Schaffler, and S. Weinbaum, “Mechanotransduction and strain amplification in osteocyte cell processes,” Proc. Natl. Acad. Sci. U.S.A. 101(47), 16689–16694 (2004).
[PubMed]

Schneider, V.

A. LeBlanc, V. Schneider, L. Shackelford, S. West, V. Oganov, A. Bakulin, and L. Voronin, “Bone mineral and lean tissue loss after long duration space flight,” J. Musculoskelet. Neuronal Interact. 1(2), 157–160 (2000).
[PubMed]

Schnekenburger, J.

J. Schnekenburger, I. Bredebusch, W. Domschke, B. Kemper, P. Langehanenberg, and G. von Bally, “Digital holographic imaging of dynamic cytoskeleton changes,” Med. Laser Appl. 22, 165–172 (2007).

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[PubMed]

Scholze, J.

M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophotonics 9(10), 1068–1076 (2016).
[PubMed]

Schürmann, M.

M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophotonics 9(10), 1068–1076 (2016).
[PubMed]

Semenova, I. V.

Serabyn, E.

Shackelford, L.

A. LeBlanc, V. Schneider, L. Shackelford, S. West, V. Oganov, A. Bakulin, and L. Voronin, “Bone mineral and lean tissue loss after long duration space flight,” J. Musculoskelet. Neuronal Interact. 1(2), 157–160 (2000).
[PubMed]

Shang, P.

Showalter, G.

Sugawara, Y.

S. A. Murshid, H. Kamioka, Y. Ishihara, R. Ando, Y. Sugawara, and T. Takano-Yamamoto, “Actin and microtubule cytoskeletons of the processes of 3D-cultured MC3T3-E1 cells and osteocytes,” J. Bone Miner. Metab. 25(3), 151–158 (2007).
[PubMed]

H. Kamioka, Y. Sugawara, T. Honjo, T. Yamashiro, and T. Takano-Yamamoto, “Terminal Differentiation of Osteoblasts to Osteocytes Is Accompanied by Dramatic Changes in the Distribution of Actin-Binding Proteins,” J. Bone Miner. Res. 19(3), 471–478 (2004).
[PubMed]

Sundaresan, A.

D. Grimm, J. Grosse, M. Wehland, V. Mann, J. E. Reseland, A. Sundaresan, and T. J. Corydon, “The impact of microgravity on bone in humans,” Bone 87, 44–56 (2016).
[PubMed]

Szeto, D. P.

Takano-Yamamoto, T.

T. Adachi, Y. Aonuma, M. Tanaka, M. Hojo, T. Takano-Yamamoto, and H. Kamioka, “Calcium response in single osteocytes to locally applied mechanical stimulus: Differences in cell process and cell body,” J. Biomech. 42(12), 1989–1995 (2009).
[PubMed]

S. A. Murshid, H. Kamioka, Y. Ishihara, R. Ando, Y. Sugawara, and T. Takano-Yamamoto, “Actin and microtubule cytoskeletons of the processes of 3D-cultured MC3T3-E1 cells and osteocytes,” J. Bone Miner. Metab. 25(3), 151–158 (2007).
[PubMed]

H. Kamioka, Y. Sugawara, T. Honjo, T. Yamashiro, and T. Takano-Yamamoto, “Terminal Differentiation of Osteoblasts to Osteocytes Is Accompanied by Dramatic Changes in the Distribution of Actin-Binding Proteins,” J. Bone Miner. Res. 19(3), 471–478 (2004).
[PubMed]

Tanaka, M.

T. Adachi, Y. Aonuma, M. Tanaka, M. Hojo, T. Takano-Yamamoto, and H. Kamioka, “Calcium response in single osteocytes to locally applied mechanical stimulus: Differences in cell process and cell body,” J. Biomech. 42(12), 1989–1995 (2009).
[PubMed]

Tanaka-Kamioka, K.

K. Tanaka-Kamioka, H. Kamioka, H. Ris, and S. S. Lim, “Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections,” J. Bone Miner. Res. 13(10), 1555–1568 (1998).
[PubMed]

Toy, M. F.

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt. 15(2), 026021 (2010).
[PubMed]

Turcatti, G.

Turner, C. H.

F. M. Pavalko, N. X. Chen, C. H. Turner, D. B. Burr, S. Atkinson, Y.-F. Hsieh, J. Qiu, and R. L. Duncan, “Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions,” Am. J. Physiol. 275(6 Pt 1), C1591–C1601 (1998).
[PubMed]

Uzureau, P.

van Es, M. H.

G. M. Kelly, J. I. Kilpatrick, M. H. van Es, P. P. Weafer, P. J. Prendergast, and S. P. Jarvis, “Bone cell elasticity and morphology changes during the cell cycle,” J. Biomech. 44(8), 1484–1490 (2011).
[PubMed]

van Loon, J. J. W. A.

D. Vorselen, W. H. Roos, F. C. MacKintosh, G. J. L. Wuite, and J. J. W. A. van Loon, “The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells,” FASEB J. 28(2), 536–547 (2014).
[PubMed]

Vasyutinskii, O. S.

von Bally, G.

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).
[PubMed]

J. Schnekenburger, I. Bredebusch, W. Domschke, B. Kemper, P. Langehanenberg, and G. von Bally, “Digital holographic imaging of dynamic cytoskeleton changes,” Med. Laser Appl. 22, 165–172 (2007).

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[PubMed]

D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004).
[PubMed]

Voronin, L.

A. LeBlanc, V. Schneider, L. Shackelford, S. West, V. Oganov, A. Bakulin, and L. Voronin, “Bone mineral and lean tissue loss after long duration space flight,” J. Musculoskelet. Neuronal Interact. 1(2), 157–160 (2000).
[PubMed]

Vorselen, D.

D. Vorselen, W. H. Roos, F. C. MacKintosh, G. J. L. Wuite, and J. J. W. A. van Loon, “The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells,” FASEB J. 28(2), 536–547 (2014).
[PubMed]

Wallace, J. K.

Wang, Z.

Weafer, P. P.

G. M. Kelly, J. I. Kilpatrick, M. H. van Es, P. P. Weafer, P. J. Prendergast, and S. P. Jarvis, “Bone cell elasticity and morphology changes during the cell cycle,” J. Biomech. 44(8), 1484–1490 (2011).
[PubMed]

Wehland, M.

D. Grimm, J. Grosse, M. Wehland, V. Mann, J. E. Reseland, A. Sundaresan, and T. J. Corydon, “The impact of microgravity on bone in humans,” Bone 87, 44–56 (2016).
[PubMed]

Weinbaum, S.

L. M. McNamara, R. J. Majeska, S. Weinbaum, V. Friedrich, and M. B. Schaffler, “Attachment of Osteocyte Cell Processes to the Bone Matrix,” Anat. Rec. (Hoboken) 292(3), 355–363 (2009).
[PubMed]

Y. Han, S. C. Cowin, M. B. Schaffler, and S. Weinbaum, “Mechanotransduction and strain amplification in osteocyte cell processes,” Proc. Natl. Acad. Sci. U.S.A. 101(47), 16689–16694 (2004).
[PubMed]

Wernicke, G.

West, S.

A. LeBlanc, V. Schneider, L. Shackelford, S. West, V. Oganov, A. Bakulin, and L. Voronin, “Bone mineral and lean tissue loss after long duration space flight,” J. Musculoskelet. Neuronal Interact. 1(2), 157–160 (2000).
[PubMed]

Westphal, K.

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt. 15(2), 026021 (2010).
[PubMed]

Wuite, G. J. L.

D. Vorselen, W. H. Roos, F. C. MacKintosh, G. J. L. Wuite, and J. J. W. A. van Loon, “The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells,” FASEB J. 28(2), 536–547 (2014).
[PubMed]

Xiao, W.

Yamashiro, T.

H. Kamioka, Y. Sugawara, T. Honjo, T. Yamashiro, and T. Takano-Yamamoto, “Terminal Differentiation of Osteoblasts to Osteocytes Is Accompanied by Dramatic Changes in the Distribution of Actin-Binding Proteins,” J. Bone Miner. Res. 19(3), 471–478 (2004).
[PubMed]

Yang, S.-A.

S.-A. Yang, J. Yoon, K. Kim, and Y. Park, “Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease,” Cytometry A 91(5), 510–518 (2017).
[PubMed]

Yi, F.

Yoon, J.

S.-A. Yang, J. Yoon, K. Kim, and Y. Park, “Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease,” Cytometry A 91(5), 510–518 (2017).
[PubMed]

Yourassowsky, C.

Yu, L.

Zerath, E.

E. Zerath, X. Holy, S. G. Roberts, C. Andre, S. Renault, M. Hott, and P. J. Marie, “Spaceflight inhibits bone formation independent of corticosteroid status in growing rats,” J. Bone Miner. Res. 15(7), 1310–1320 (2000).
[PubMed]

Zhikhoreva, A. A.

Am. J. Physiol. (1)

F. M. Pavalko, N. X. Chen, C. H. Turner, D. B. Burr, S. Atkinson, Y.-F. Hsieh, J. Qiu, and R. L. Duncan, “Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions,” Am. J. Physiol. 275(6 Pt 1), C1591–C1601 (1998).
[PubMed]

Am. J. Physiol. Cell Physiol. (1)

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[PubMed]

Anat. Rec. (Hoboken) (1)

L. M. McNamara, R. J. Majeska, S. Weinbaum, V. Friedrich, and M. B. Schaffler, “Attachment of Osteocyte Cell Processes to the Bone Matrix,” Anat. Rec. (Hoboken) 292(3), 355–363 (2009).
[PubMed]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007).

Biochem. Biophys. Res. Commun. (1)

J. G. McGarry, J. Klein-Nulend, and P. J. Prendergast, “The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E2 release in osteocytes and osteoblasts,” Biochem. Biophys. Res. Commun. 330(1), 341–348 (2005).
[PubMed]

Biomed. Opt. Express (4)

Biophys. J. (3)

C. Rotsch and M. Radmacher, “Drug-Induced Changes of Cytoskeletal Structure and Mechanics in Fibroblasts: An Atomic Force Microscopy Study,” Biophys. J. 78(1), 520–535 (2000).
[PubMed]

G. T. Charras and M. A. Horton, “Single Cell Mechanotransduction and Its Modulation Analyzed by Atomic Force Microscope Indentation,” Biophys. J. 82(6), 2970–2981 (2002).
[PubMed]

C. Kronlage, M. Schäfer-Herte, D. Böning, H. Oberleithner, and J. Fels, “Feeling for Filaments: Quantification of the Cortical Actin Web in Live Vascular Endothelium,” Biophys. J. 109(4), 687–698 (2015).
[PubMed]

Blood Cells Mol. Dis. (1)

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[PubMed]

Bone (1)

D. Grimm, J. Grosse, M. Wehland, V. Mann, J. E. Reseland, A. Sundaresan, and T. J. Corydon, “The impact of microgravity on bone in humans,” Bone 87, 44–56 (2016).
[PubMed]

Cytometry A (2)

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[PubMed]

S.-A. Yang, J. Yoon, K. Kim, and Y. Park, “Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson’s disease,” Cytometry A 91(5), 510–518 (2017).
[PubMed]

Eur. Cell. Mater. (1)

J. Klein-Nulend, R. G. Bacabac, and A. D. Bakker, “Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton,” Eur. Cell. Mater. 24, 278–291 (2012).
[PubMed]

FASEB J. (1)

D. Vorselen, W. H. Roos, F. C. MacKintosh, G. J. L. Wuite, and J. J. W. A. van Loon, “The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells,” FASEB J. 28(2), 536–547 (2014).
[PubMed]

J. Biomech. (2)

G. M. Kelly, J. I. Kilpatrick, M. H. van Es, P. P. Weafer, P. J. Prendergast, and S. P. Jarvis, “Bone cell elasticity and morphology changes during the cell cycle,” J. Biomech. 44(8), 1484–1490 (2011).
[PubMed]

T. Adachi, Y. Aonuma, M. Tanaka, M. Hojo, T. Takano-Yamamoto, and H. Kamioka, “Calcium response in single osteocytes to locally applied mechanical stimulus: Differences in cell process and cell body,” J. Biomech. 42(12), 1989–1995 (2009).
[PubMed]

J. Biomed. Opt. (3)

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt. 15(2), 026021 (2010).
[PubMed]

A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed. Opt. 19(4), 046022 (2014).
[PubMed]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11(3), 34005 (2006).
[PubMed]

J. Biophotonics (2)

M. Schürmann, J. Scholze, P. Müller, J. Guck, and C. J. Chan, “Cell nuclei have lower refractive index and mass density than cytoplasm,” J. Biophotonics 9(10), 1068–1076 (2016).
[PubMed]

A. Calabuig, M. Mugnano, L. Miccio, S. Grilli, and P. Ferraro, “Investigating fibroblast cells under “safe” and “injurious” blue-light exposure by holographic microscopy,” J. Biophotonics 10(6-7), 919–927 (2017).
[PubMed]

J. Bone Miner. Metab. (1)

S. A. Murshid, H. Kamioka, Y. Ishihara, R. Ando, Y. Sugawara, and T. Takano-Yamamoto, “Actin and microtubule cytoskeletons of the processes of 3D-cultured MC3T3-E1 cells and osteocytes,” J. Bone Miner. Metab. 25(3), 151–158 (2007).
[PubMed]

J. Bone Miner. Res. (3)

H. Kamioka, Y. Sugawara, T. Honjo, T. Yamashiro, and T. Takano-Yamamoto, “Terminal Differentiation of Osteoblasts to Osteocytes Is Accompanied by Dramatic Changes in the Distribution of Actin-Binding Proteins,” J. Bone Miner. Res. 19(3), 471–478 (2004).
[PubMed]

K. Tanaka-Kamioka, H. Kamioka, H. Ris, and S. S. Lim, “Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections,” J. Bone Miner. Res. 13(10), 1555–1568 (1998).
[PubMed]

E. Zerath, X. Holy, S. G. Roberts, C. Andre, S. Renault, M. Hott, and P. J. Marie, “Spaceflight inhibits bone formation independent of corticosteroid status in growing rats,” J. Bone Miner. Res. 15(7), 1310–1320 (2000).
[PubMed]

J. Musculoskelet. Neuronal Interact. (1)

A. LeBlanc, V. Schneider, L. Shackelford, S. West, V. Oganov, A. Bakulin, and L. Voronin, “Bone mineral and lean tissue loss after long duration space flight,” J. Musculoskelet. Neuronal Interact. 1(2), 157–160 (2000).
[PubMed]

J. Opt. Soc. Am. A (1)

Malays. J. Pathol. (1)

M. Y. Kapitonova, N. Salim, S. Othman, T. M. H. T. Muhd Kamauzaman, A. M. Ali, H. M. Nawawi, and G. R. A. Froemming, “Alteration of cell cytoskeleton and functions of cell recovery of normal human osteoblast cells caused by factors associated with real space flight,” Malays. J. Pathol. 35(2), 153–163 (2013).
[PubMed]

Mayo Clin. Proc. (1)

L. A. Fitzpatrick, “Secondary Causes of Osteoporosis,” Mayo Clin. Proc. 77(5), 453–468 (2002).
[PubMed]

Med. Laser Appl. (1)

J. Schnekenburger, I. Bredebusch, W. Domschke, B. Kemper, P. Langehanenberg, and G. von Bally, “Digital holographic imaging of dynamic cytoskeleton changes,” Med. Laser Appl. 22, 165–172 (2007).

Neurophotonics (1)

P. Marquet, C. Depeursinge, and P. J. Magistretti, “Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders,” Neurophotonics 1(2), 020901 (2014).
[PubMed]

Opt. Commun. (1)

E. Cuche, P. Marquet, and C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182, 59–69 (2000).

Opt. Express (5)

Opt. Lett. (4)

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Han, S. C. Cowin, M. B. Schaffler, and S. Weinbaum, “Mechanotransduction and strain amplification in osteocyte cell processes,” Proc. Natl. Acad. Sci. U.S.A. 101(47), 16689–16694 (2004).
[PubMed]

Supplementary Material (2)

NameDescription
» Visualization 1       A quasi 3D phase image of three cells in the three groups are dynamically displayed in the movie and the projected area and volumes of these cells are also performed.
» Visualization 2       The video exhibits the time-changing processes of cell thickness maps in three experimental groups during 20 minutes.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of DHM system setup. NDF: neutral density filter; 1/2: half-wave plate; M1-M3: mirrors; SF: spatial filter; BS: beamsplitter; PBS: polarizing beamsplitter; CL: condense lens; TL: tube lens.
Fig. 2
Fig. 2 Calculation of cell height and cell width at different cell parts: (a) cell height map; (b) cell body profile at the long red line; (c) cell process profile at the short red line.
Fig. 3
Fig. 3 The structural changes of F-actin by immunofluorescence-staining, 20 min after treatment: (a) CON group with no drug, (b) CB group, and (c) JAS group.
Fig. 4
Fig. 4 Holographic phase images at the 1st, 5th, 10th, 15th, and 20th minute over a 20-min period measurement for a(1)–a(5): cells in CON group, b(1)–b(5): cells in CB group, and c(1)–c(5): cells in JAS group.
Fig. 5
Fig. 5 Temporal variations of average cell height at (a) cell process and (b) cell body. Black dashed lines with dots represent the CON group, blue solid lines with squares represent the CB group, and red dashed lines with triangles represent the JAS group. (c): change rates of cell height in the three groups.
Fig. 6
Fig. 6 Temporal variations of average cell width at (a) cell process and (b) cell body. Black dashed lines with dots represent the CON group, blue solid lines with squares represent the CB group, and red dashed line with triangles represent the JAS group. (c): change rates of cell width in the three groups.
Fig. 7
Fig. 7 Temporal variations of (a) cell projected area and (b) cell volume over 20 min. Black dashed lines with dots represent the CON group, blue solid lines with squares represent the CB group, and red dashed line with triangles represent the JAS group. (c): change rates of cell projected area and (d): change rates of cell volume in the three groups.

Tables (2)

Tables Icon

Table 1 Comparison of p Values of Cell-height Change Rates for the Three Groups

Tables Icon

Table 2 Comparison of p Values of Cell-width Change Rates for the Three Groups

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

h ( x , y ) = λ 2 π × Δ φ ( x , y ) n ( x , y ) n ¯ m e d i u m .
h ( x , y ) = λ 2 π × Δ φ ( x , y ) 1 n ( x , y ) n ¯ m
h ( x , y ) = λ 2 π × Δ φ ( x , y ) 2 n ( x , y ) n ¯ ' m .

Metrics