Abstract

A smartphone-based image analysis system is advantageous for point-of-care testing applications. However, the processes of observation and image recording rely heavily on an external attachment that includes additional light sources. Moreover, microfluidic point-of-care devices are highly miniaturized, and can be clearly observed only under magnification. To address these issues, the present work proposes a novel imaging box for converting the built-in light source of a smartphone into uniform backlight illumination to avoid interference arising from reflections. A multi-piece orthoscopic lens is embedded in the imaging box to enable the imaging of micro-sized samples. As such, the colorimetric signal of a microchannel with a width as small as 25 µm can be faithfully recorded. Protein concentration quantification based on the bicinchoninic acid assay method was demonstrated with the proposed smartphone/imaging box system from an analysis of colorimetric signals. In addition, a microfluidic chip for conducting ABO blood typing was fabricated, and the microscopic imaging of induced blood coagulation can be clearly observed in a 3 µL sample using the proposed system. These results highlight the potential for adopting smartphone-based analysis systems in point-of-care testing applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Geometrical-optics approach to increase the accuracy in LED-based photometers for point-of-care testing

Marco Marsan, Massimiliano Lucidi, Francesco Pudda, Mattia Pirolo, Emanuela Frangipani, Paolo Visca, and Gabriella Cincotti
Biomed. Opt. Express 10(7) 3654-3662 (2019)

Smartphone-based colorimetric analysis for detection of saliva alcohol concentration

Youngkee Jung, Jinhee Kim, Olumide Awofeso, Huisung Kim, Fred Regnier, and Euiwon Bae
Appl. Opt. 54(31) 9183-9189 (2015)

Smartphone instrument for portable enzyme- linked immunosorbent assays

Kenneth D. Long, Hojeong Yu, and Brian T. Cunningham
Biomed. Opt. Express 5(11) 3792-3806 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. H. Im, K. R. Kim, Y. M. Park, J. H. Yoon, J. W. Hong, and H. C. Yoon, “An animal cell culture monitoring system using a smartphone-mountable paper-based analytical device,” Sens. Actuators B Chem. 229, 166–173 (2016).
    [Crossref]
  2. Y. Zeng, K. Jin, J. Li, J. Liu, J. Li, T. Li, and S. Li, “A low cost and portable smartphone microscopic device for cell counting,” Sens. Actuators A Phys. 274, 57–63 (2018).
  3. W. I. Lee, S. Shrivastava, L. T. Duy, B. Yeong Kim, Y. M. Son, and N. E. Lee, “A smartphone imaging-based label-free and dual-wavelength fluorescent biosensor with high sensitivity and accuracy,” Biosens. Bioelectron. 94, 643–650 (2017).
    [Crossref] [PubMed]
  4. K. D. Long, H. Yu, and B. T. Cunningham, “Smartphone instrument for portable enzyme-linked immunosorbent assays,” Biomed. Opt. Express 5(11), 3792–3806 (2014).
    [Crossref] [PubMed]
  5. C. K. Sang, U. M. Jalal, S. B. Im, S. Ko, and J. S. Shim, “A smartphone-based optical platform for colorimetric analysis of microfluidic device,” Sens. Actuators B Chem. 239, 52–59 (2017).
    [Crossref]
  6. S. K. Vashist, T. van Oordt, E. M. Schneider, R. Zengerle, F. von Stetten, and J. H. T. Luong, “A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets,” Biosens. Bioelectron. 67, 248–255 (2015).
    [Crossref] [PubMed]
  7. X. Wang, T. W. Chang, G. Lin, M. R. Gartia, and G. L. Liu, “Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing,” Anal. Chem. 89(1), 611–615 (2017).
    [Crossref] [PubMed]
  8. C. Dunsby, “Optically sectioned imaging by oblique plane microscopy,” Opt. Express 16(25), 20306–20316 (2008).
    [Crossref] [PubMed]
  9. D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile Phone Based Clinical Microscopy for Global Health Applications,” PLoS One 4(7), e6320 (2009).
    [Crossref] [PubMed]
  10. A. F. Coskun, J. Wong, D. Khodadadi, R. Nagi, A. Tey, and A. Ozcan, “A personalized food allergen testing platform on a cellphone,” Lab Chip 13(4), 636–640 (2013).
    [Crossref] [PubMed]
  11. K. Bremer and B. Roth, “Fibre optic surface plasmon resonance sensor system designed for smartphones,” Opt. Express 23(13), 17179–17184 (2015).
    [Crossref] [PubMed]
  12. Y. Jung, H. Kim, Y. H. B. Kim, and E. Bae, “Design of smartphone-based spectrometer to assess fresh meat color,” Proc. SPIE 10072, 1007213 (2017).
    [Crossref]
  13. H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Cost-effective and compact wide-field fluorescent imaging on a cell-phone,” Lab Chip 11(2), 315–322 (2011).
    [Crossref] [PubMed]
  14. A. S. Paterson, B. Raja, V. Mandadi, B. Townsend, M. Lee, A. Buell, B. Vu, J. Brgoch, and R. C. Willson, “A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors,” Lab Chip 17(6), 1051–1059 (2017).
    [Crossref] [PubMed]
  15. V. Oncescu, D. O’Dell, and D. Erickson, “Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva,” Lab Chip 13(16), 3232–3238 (2013).
    [Crossref] [PubMed]
  16. H. J. Chun, Y. M. Park, Y. D. Han, Y. H. Jang, and H. C. Yoon, “Paper-based glucose biosensing system utilizing a smartphone as a signal reader,” Biochip J. 8(3), 218–226 (2014).
    [Crossref]
  17. D. Calabria, C. Caliceti, M. Zangheri, M. Mirasoli, P. Simoni, and A. Roda, “Smartphone-based enzymatic biosensor for oral fluid L-lactate detection in one minute using confined multilayer paper reflectometry,” Biosens. Bioelectron. 94, 124–130 (2017).
    [Crossref] [PubMed]
  18. Y. Jung, J. Kim, O. Awofeso, H. Kim, F. Regnier, and E. Bae, “Smartphone-based colorimetric analysis for detection of saliva alcohol concentration,” Appl. Opt. 54(31), 9183–9189 (2015).
    [Crossref] [PubMed]
  19. A. X. Gao, Y. L. Tian, Z. Z. Shi, and L. Yu, “A cost-effective microdevice bridges microfluidic and conventional in vitro scratch / wound-healing assay for personalized therapy validation,” Biochip J. 10(1), 56–64 (2016).
    [Crossref]
  20. W. T. J. Morgan and W. M. Watkins, “Unravelling the biochemical basis of blood group ABO and Lewis antigenic specificity,” Glycoconj. J. 17(7-9), 501–530 (2000).
    [Crossref] [PubMed]
  21. Y. Lu, Z.Z. Shi, L. Yu, and C.M. Li, “Fast prototyping of a customized microfluidic device in a non-clean-room setting by cutting and laminating Parafilm,” RSC Adv. In press (2018).
    [Crossref]

2018 (1)

Y. Zeng, K. Jin, J. Li, J. Liu, J. Li, T. Li, and S. Li, “A low cost and portable smartphone microscopic device for cell counting,” Sens. Actuators A Phys. 274, 57–63 (2018).

2017 (6)

W. I. Lee, S. Shrivastava, L. T. Duy, B. Yeong Kim, Y. M. Son, and N. E. Lee, “A smartphone imaging-based label-free and dual-wavelength fluorescent biosensor with high sensitivity and accuracy,” Biosens. Bioelectron. 94, 643–650 (2017).
[Crossref] [PubMed]

C. K. Sang, U. M. Jalal, S. B. Im, S. Ko, and J. S. Shim, “A smartphone-based optical platform for colorimetric analysis of microfluidic device,” Sens. Actuators B Chem. 239, 52–59 (2017).
[Crossref]

X. Wang, T. W. Chang, G. Lin, M. R. Gartia, and G. L. Liu, “Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing,” Anal. Chem. 89(1), 611–615 (2017).
[Crossref] [PubMed]

Y. Jung, H. Kim, Y. H. B. Kim, and E. Bae, “Design of smartphone-based spectrometer to assess fresh meat color,” Proc. SPIE 10072, 1007213 (2017).
[Crossref]

A. S. Paterson, B. Raja, V. Mandadi, B. Townsend, M. Lee, A. Buell, B. Vu, J. Brgoch, and R. C. Willson, “A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors,” Lab Chip 17(6), 1051–1059 (2017).
[Crossref] [PubMed]

D. Calabria, C. Caliceti, M. Zangheri, M. Mirasoli, P. Simoni, and A. Roda, “Smartphone-based enzymatic biosensor for oral fluid L-lactate detection in one minute using confined multilayer paper reflectometry,” Biosens. Bioelectron. 94, 124–130 (2017).
[Crossref] [PubMed]

2016 (2)

S. H. Im, K. R. Kim, Y. M. Park, J. H. Yoon, J. W. Hong, and H. C. Yoon, “An animal cell culture monitoring system using a smartphone-mountable paper-based analytical device,” Sens. Actuators B Chem. 229, 166–173 (2016).
[Crossref]

A. X. Gao, Y. L. Tian, Z. Z. Shi, and L. Yu, “A cost-effective microdevice bridges microfluidic and conventional in vitro scratch / wound-healing assay for personalized therapy validation,” Biochip J. 10(1), 56–64 (2016).
[Crossref]

2015 (3)

S. K. Vashist, T. van Oordt, E. M. Schneider, R. Zengerle, F. von Stetten, and J. H. T. Luong, “A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets,” Biosens. Bioelectron. 67, 248–255 (2015).
[Crossref] [PubMed]

Y. Jung, J. Kim, O. Awofeso, H. Kim, F. Regnier, and E. Bae, “Smartphone-based colorimetric analysis for detection of saliva alcohol concentration,” Appl. Opt. 54(31), 9183–9189 (2015).
[Crossref] [PubMed]

K. Bremer and B. Roth, “Fibre optic surface plasmon resonance sensor system designed for smartphones,” Opt. Express 23(13), 17179–17184 (2015).
[Crossref] [PubMed]

2014 (2)

K. D. Long, H. Yu, and B. T. Cunningham, “Smartphone instrument for portable enzyme-linked immunosorbent assays,” Biomed. Opt. Express 5(11), 3792–3806 (2014).
[Crossref] [PubMed]

H. J. Chun, Y. M. Park, Y. D. Han, Y. H. Jang, and H. C. Yoon, “Paper-based glucose biosensing system utilizing a smartphone as a signal reader,” Biochip J. 8(3), 218–226 (2014).
[Crossref]

2013 (2)

A. F. Coskun, J. Wong, D. Khodadadi, R. Nagi, A. Tey, and A. Ozcan, “A personalized food allergen testing platform on a cellphone,” Lab Chip 13(4), 636–640 (2013).
[Crossref] [PubMed]

V. Oncescu, D. O’Dell, and D. Erickson, “Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva,” Lab Chip 13(16), 3232–3238 (2013).
[Crossref] [PubMed]

2011 (1)

H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Cost-effective and compact wide-field fluorescent imaging on a cell-phone,” Lab Chip 11(2), 315–322 (2011).
[Crossref] [PubMed]

2009 (1)

D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile Phone Based Clinical Microscopy for Global Health Applications,” PLoS One 4(7), e6320 (2009).
[Crossref] [PubMed]

2008 (1)

2000 (1)

W. T. J. Morgan and W. M. Watkins, “Unravelling the biochemical basis of blood group ABO and Lewis antigenic specificity,” Glycoconj. J. 17(7-9), 501–530 (2000).
[Crossref] [PubMed]

Awofeso, O.

Bae, E.

Y. Jung, H. Kim, Y. H. B. Kim, and E. Bae, “Design of smartphone-based spectrometer to assess fresh meat color,” Proc. SPIE 10072, 1007213 (2017).
[Crossref]

Y. Jung, J. Kim, O. Awofeso, H. Kim, F. Regnier, and E. Bae, “Smartphone-based colorimetric analysis for detection of saliva alcohol concentration,” Appl. Opt. 54(31), 9183–9189 (2015).
[Crossref] [PubMed]

Bremer, K.

Breslauer, D. N.

D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile Phone Based Clinical Microscopy for Global Health Applications,” PLoS One 4(7), e6320 (2009).
[Crossref] [PubMed]

Brgoch, J.

A. S. Paterson, B. Raja, V. Mandadi, B. Townsend, M. Lee, A. Buell, B. Vu, J. Brgoch, and R. C. Willson, “A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors,” Lab Chip 17(6), 1051–1059 (2017).
[Crossref] [PubMed]

Buell, A.

A. S. Paterson, B. Raja, V. Mandadi, B. Townsend, M. Lee, A. Buell, B. Vu, J. Brgoch, and R. C. Willson, “A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors,” Lab Chip 17(6), 1051–1059 (2017).
[Crossref] [PubMed]

Calabria, D.

D. Calabria, C. Caliceti, M. Zangheri, M. Mirasoli, P. Simoni, and A. Roda, “Smartphone-based enzymatic biosensor for oral fluid L-lactate detection in one minute using confined multilayer paper reflectometry,” Biosens. Bioelectron. 94, 124–130 (2017).
[Crossref] [PubMed]

Caliceti, C.

D. Calabria, C. Caliceti, M. Zangheri, M. Mirasoli, P. Simoni, and A. Roda, “Smartphone-based enzymatic biosensor for oral fluid L-lactate detection in one minute using confined multilayer paper reflectometry,” Biosens. Bioelectron. 94, 124–130 (2017).
[Crossref] [PubMed]

Chang, T. W.

X. Wang, T. W. Chang, G. Lin, M. R. Gartia, and G. L. Liu, “Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing,” Anal. Chem. 89(1), 611–615 (2017).
[Crossref] [PubMed]

Chun, H. J.

H. J. Chun, Y. M. Park, Y. D. Han, Y. H. Jang, and H. C. Yoon, “Paper-based glucose biosensing system utilizing a smartphone as a signal reader,” Biochip J. 8(3), 218–226 (2014).
[Crossref]

Coskun, A. F.

A. F. Coskun, J. Wong, D. Khodadadi, R. Nagi, A. Tey, and A. Ozcan, “A personalized food allergen testing platform on a cellphone,” Lab Chip 13(4), 636–640 (2013).
[Crossref] [PubMed]

Cunningham, B. T.

Dunsby, C.

Duy, L. T.

W. I. Lee, S. Shrivastava, L. T. Duy, B. Yeong Kim, Y. M. Son, and N. E. Lee, “A smartphone imaging-based label-free and dual-wavelength fluorescent biosensor with high sensitivity and accuracy,” Biosens. Bioelectron. 94, 643–650 (2017).
[Crossref] [PubMed]

Erickson, D.

V. Oncescu, D. O’Dell, and D. Erickson, “Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva,” Lab Chip 13(16), 3232–3238 (2013).
[Crossref] [PubMed]

Fletcher, D. A.

D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile Phone Based Clinical Microscopy for Global Health Applications,” PLoS One 4(7), e6320 (2009).
[Crossref] [PubMed]

Gao, A. X.

A. X. Gao, Y. L. Tian, Z. Z. Shi, and L. Yu, “A cost-effective microdevice bridges microfluidic and conventional in vitro scratch / wound-healing assay for personalized therapy validation,” Biochip J. 10(1), 56–64 (2016).
[Crossref]

Gartia, M. R.

X. Wang, T. W. Chang, G. Lin, M. R. Gartia, and G. L. Liu, “Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing,” Anal. Chem. 89(1), 611–615 (2017).
[Crossref] [PubMed]

Han, Y. D.

H. J. Chun, Y. M. Park, Y. D. Han, Y. H. Jang, and H. C. Yoon, “Paper-based glucose biosensing system utilizing a smartphone as a signal reader,” Biochip J. 8(3), 218–226 (2014).
[Crossref]

Hong, J. W.

S. H. Im, K. R. Kim, Y. M. Park, J. H. Yoon, J. W. Hong, and H. C. Yoon, “An animal cell culture monitoring system using a smartphone-mountable paper-based analytical device,” Sens. Actuators B Chem. 229, 166–173 (2016).
[Crossref]

Im, S. B.

C. K. Sang, U. M. Jalal, S. B. Im, S. Ko, and J. S. Shim, “A smartphone-based optical platform for colorimetric analysis of microfluidic device,” Sens. Actuators B Chem. 239, 52–59 (2017).
[Crossref]

Im, S. H.

S. H. Im, K. R. Kim, Y. M. Park, J. H. Yoon, J. W. Hong, and H. C. Yoon, “An animal cell culture monitoring system using a smartphone-mountable paper-based analytical device,” Sens. Actuators B Chem. 229, 166–173 (2016).
[Crossref]

Jalal, U. M.

C. K. Sang, U. M. Jalal, S. B. Im, S. Ko, and J. S. Shim, “A smartphone-based optical platform for colorimetric analysis of microfluidic device,” Sens. Actuators B Chem. 239, 52–59 (2017).
[Crossref]

Jang, Y. H.

H. J. Chun, Y. M. Park, Y. D. Han, Y. H. Jang, and H. C. Yoon, “Paper-based glucose biosensing system utilizing a smartphone as a signal reader,” Biochip J. 8(3), 218–226 (2014).
[Crossref]

Jin, K.

Y. Zeng, K. Jin, J. Li, J. Liu, J. Li, T. Li, and S. Li, “A low cost and portable smartphone microscopic device for cell counting,” Sens. Actuators A Phys. 274, 57–63 (2018).

Jung, Y.

Y. Jung, H. Kim, Y. H. B. Kim, and E. Bae, “Design of smartphone-based spectrometer to assess fresh meat color,” Proc. SPIE 10072, 1007213 (2017).
[Crossref]

Y. Jung, J. Kim, O. Awofeso, H. Kim, F. Regnier, and E. Bae, “Smartphone-based colorimetric analysis for detection of saliva alcohol concentration,” Appl. Opt. 54(31), 9183–9189 (2015).
[Crossref] [PubMed]

Khodadadi, D.

A. F. Coskun, J. Wong, D. Khodadadi, R. Nagi, A. Tey, and A. Ozcan, “A personalized food allergen testing platform on a cellphone,” Lab Chip 13(4), 636–640 (2013).
[Crossref] [PubMed]

Kim, H.

Y. Jung, H. Kim, Y. H. B. Kim, and E. Bae, “Design of smartphone-based spectrometer to assess fresh meat color,” Proc. SPIE 10072, 1007213 (2017).
[Crossref]

Y. Jung, J. Kim, O. Awofeso, H. Kim, F. Regnier, and E. Bae, “Smartphone-based colorimetric analysis for detection of saliva alcohol concentration,” Appl. Opt. 54(31), 9183–9189 (2015).
[Crossref] [PubMed]

Kim, J.

Kim, K. R.

S. H. Im, K. R. Kim, Y. M. Park, J. H. Yoon, J. W. Hong, and H. C. Yoon, “An animal cell culture monitoring system using a smartphone-mountable paper-based analytical device,” Sens. Actuators B Chem. 229, 166–173 (2016).
[Crossref]

Kim, Y. H. B.

Y. Jung, H. Kim, Y. H. B. Kim, and E. Bae, “Design of smartphone-based spectrometer to assess fresh meat color,” Proc. SPIE 10072, 1007213 (2017).
[Crossref]

Ko, S.

C. K. Sang, U. M. Jalal, S. B. Im, S. Ko, and J. S. Shim, “A smartphone-based optical platform for colorimetric analysis of microfluidic device,” Sens. Actuators B Chem. 239, 52–59 (2017).
[Crossref]

Lam, W. A.

D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile Phone Based Clinical Microscopy for Global Health Applications,” PLoS One 4(7), e6320 (2009).
[Crossref] [PubMed]

Lee, M.

A. S. Paterson, B. Raja, V. Mandadi, B. Townsend, M. Lee, A. Buell, B. Vu, J. Brgoch, and R. C. Willson, “A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors,” Lab Chip 17(6), 1051–1059 (2017).
[Crossref] [PubMed]

Lee, N. E.

W. I. Lee, S. Shrivastava, L. T. Duy, B. Yeong Kim, Y. M. Son, and N. E. Lee, “A smartphone imaging-based label-free and dual-wavelength fluorescent biosensor with high sensitivity and accuracy,” Biosens. Bioelectron. 94, 643–650 (2017).
[Crossref] [PubMed]

Lee, W. I.

W. I. Lee, S. Shrivastava, L. T. Duy, B. Yeong Kim, Y. M. Son, and N. E. Lee, “A smartphone imaging-based label-free and dual-wavelength fluorescent biosensor with high sensitivity and accuracy,” Biosens. Bioelectron. 94, 643–650 (2017).
[Crossref] [PubMed]

Li, C.M.

Y. Lu, Z.Z. Shi, L. Yu, and C.M. Li, “Fast prototyping of a customized microfluidic device in a non-clean-room setting by cutting and laminating Parafilm,” RSC Adv. In press (2018).
[Crossref]

Li, J.

Y. Zeng, K. Jin, J. Li, J. Liu, J. Li, T. Li, and S. Li, “A low cost and portable smartphone microscopic device for cell counting,” Sens. Actuators A Phys. 274, 57–63 (2018).

Y. Zeng, K. Jin, J. Li, J. Liu, J. Li, T. Li, and S. Li, “A low cost and portable smartphone microscopic device for cell counting,” Sens. Actuators A Phys. 274, 57–63 (2018).

Li, S.

Y. Zeng, K. Jin, J. Li, J. Liu, J. Li, T. Li, and S. Li, “A low cost and portable smartphone microscopic device for cell counting,” Sens. Actuators A Phys. 274, 57–63 (2018).

Li, T.

Y. Zeng, K. Jin, J. Li, J. Liu, J. Li, T. Li, and S. Li, “A low cost and portable smartphone microscopic device for cell counting,” Sens. Actuators A Phys. 274, 57–63 (2018).

Lin, G.

X. Wang, T. W. Chang, G. Lin, M. R. Gartia, and G. L. Liu, “Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing,” Anal. Chem. 89(1), 611–615 (2017).
[Crossref] [PubMed]

Liu, G. L.

X. Wang, T. W. Chang, G. Lin, M. R. Gartia, and G. L. Liu, “Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing,” Anal. Chem. 89(1), 611–615 (2017).
[Crossref] [PubMed]

Liu, J.

Y. Zeng, K. Jin, J. Li, J. Liu, J. Li, T. Li, and S. Li, “A low cost and portable smartphone microscopic device for cell counting,” Sens. Actuators A Phys. 274, 57–63 (2018).

Long, K. D.

Lu, Y.

Y. Lu, Z.Z. Shi, L. Yu, and C.M. Li, “Fast prototyping of a customized microfluidic device in a non-clean-room setting by cutting and laminating Parafilm,” RSC Adv. In press (2018).
[Crossref]

Luong, J. H. T.

S. K. Vashist, T. van Oordt, E. M. Schneider, R. Zengerle, F. von Stetten, and J. H. T. Luong, “A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets,” Biosens. Bioelectron. 67, 248–255 (2015).
[Crossref] [PubMed]

Maamari, R. N.

D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile Phone Based Clinical Microscopy for Global Health Applications,” PLoS One 4(7), e6320 (2009).
[Crossref] [PubMed]

Mandadi, V.

A. S. Paterson, B. Raja, V. Mandadi, B. Townsend, M. Lee, A. Buell, B. Vu, J. Brgoch, and R. C. Willson, “A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors,” Lab Chip 17(6), 1051–1059 (2017).
[Crossref] [PubMed]

Mirasoli, M.

D. Calabria, C. Caliceti, M. Zangheri, M. Mirasoli, P. Simoni, and A. Roda, “Smartphone-based enzymatic biosensor for oral fluid L-lactate detection in one minute using confined multilayer paper reflectometry,” Biosens. Bioelectron. 94, 124–130 (2017).
[Crossref] [PubMed]

Morgan, W. T. J.

W. T. J. Morgan and W. M. Watkins, “Unravelling the biochemical basis of blood group ABO and Lewis antigenic specificity,” Glycoconj. J. 17(7-9), 501–530 (2000).
[Crossref] [PubMed]

Nagi, R.

A. F. Coskun, J. Wong, D. Khodadadi, R. Nagi, A. Tey, and A. Ozcan, “A personalized food allergen testing platform on a cellphone,” Lab Chip 13(4), 636–640 (2013).
[Crossref] [PubMed]

O’Dell, D.

V. Oncescu, D. O’Dell, and D. Erickson, “Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva,” Lab Chip 13(16), 3232–3238 (2013).
[Crossref] [PubMed]

Oncescu, V.

V. Oncescu, D. O’Dell, and D. Erickson, “Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva,” Lab Chip 13(16), 3232–3238 (2013).
[Crossref] [PubMed]

Ozcan, A.

A. F. Coskun, J. Wong, D. Khodadadi, R. Nagi, A. Tey, and A. Ozcan, “A personalized food allergen testing platform on a cellphone,” Lab Chip 13(4), 636–640 (2013).
[Crossref] [PubMed]

H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Cost-effective and compact wide-field fluorescent imaging on a cell-phone,” Lab Chip 11(2), 315–322 (2011).
[Crossref] [PubMed]

Park, Y. M.

S. H. Im, K. R. Kim, Y. M. Park, J. H. Yoon, J. W. Hong, and H. C. Yoon, “An animal cell culture monitoring system using a smartphone-mountable paper-based analytical device,” Sens. Actuators B Chem. 229, 166–173 (2016).
[Crossref]

H. J. Chun, Y. M. Park, Y. D. Han, Y. H. Jang, and H. C. Yoon, “Paper-based glucose biosensing system utilizing a smartphone as a signal reader,” Biochip J. 8(3), 218–226 (2014).
[Crossref]

Paterson, A. S.

A. S. Paterson, B. Raja, V. Mandadi, B. Townsend, M. Lee, A. Buell, B. Vu, J. Brgoch, and R. C. Willson, “A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors,” Lab Chip 17(6), 1051–1059 (2017).
[Crossref] [PubMed]

Raja, B.

A. S. Paterson, B. Raja, V. Mandadi, B. Townsend, M. Lee, A. Buell, B. Vu, J. Brgoch, and R. C. Willson, “A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors,” Lab Chip 17(6), 1051–1059 (2017).
[Crossref] [PubMed]

Regnier, F.

Roda, A.

D. Calabria, C. Caliceti, M. Zangheri, M. Mirasoli, P. Simoni, and A. Roda, “Smartphone-based enzymatic biosensor for oral fluid L-lactate detection in one minute using confined multilayer paper reflectometry,” Biosens. Bioelectron. 94, 124–130 (2017).
[Crossref] [PubMed]

Roth, B.

Sang, C. K.

C. K. Sang, U. M. Jalal, S. B. Im, S. Ko, and J. S. Shim, “A smartphone-based optical platform for colorimetric analysis of microfluidic device,” Sens. Actuators B Chem. 239, 52–59 (2017).
[Crossref]

Schneider, E. M.

S. K. Vashist, T. van Oordt, E. M. Schneider, R. Zengerle, F. von Stetten, and J. H. T. Luong, “A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets,” Biosens. Bioelectron. 67, 248–255 (2015).
[Crossref] [PubMed]

Shi, Z. Z.

A. X. Gao, Y. L. Tian, Z. Z. Shi, and L. Yu, “A cost-effective microdevice bridges microfluidic and conventional in vitro scratch / wound-healing assay for personalized therapy validation,” Biochip J. 10(1), 56–64 (2016).
[Crossref]

Shi, Z.Z.

Y. Lu, Z.Z. Shi, L. Yu, and C.M. Li, “Fast prototyping of a customized microfluidic device in a non-clean-room setting by cutting and laminating Parafilm,” RSC Adv. In press (2018).
[Crossref]

Shim, J. S.

C. K. Sang, U. M. Jalal, S. B. Im, S. Ko, and J. S. Shim, “A smartphone-based optical platform for colorimetric analysis of microfluidic device,” Sens. Actuators B Chem. 239, 52–59 (2017).
[Crossref]

Shrivastava, S.

W. I. Lee, S. Shrivastava, L. T. Duy, B. Yeong Kim, Y. M. Son, and N. E. Lee, “A smartphone imaging-based label-free and dual-wavelength fluorescent biosensor with high sensitivity and accuracy,” Biosens. Bioelectron. 94, 643–650 (2017).
[Crossref] [PubMed]

Simoni, P.

D. Calabria, C. Caliceti, M. Zangheri, M. Mirasoli, P. Simoni, and A. Roda, “Smartphone-based enzymatic biosensor for oral fluid L-lactate detection in one minute using confined multilayer paper reflectometry,” Biosens. Bioelectron. 94, 124–130 (2017).
[Crossref] [PubMed]

Son, Y. M.

W. I. Lee, S. Shrivastava, L. T. Duy, B. Yeong Kim, Y. M. Son, and N. E. Lee, “A smartphone imaging-based label-free and dual-wavelength fluorescent biosensor with high sensitivity and accuracy,” Biosens. Bioelectron. 94, 643–650 (2017).
[Crossref] [PubMed]

Su, T. W.

H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Cost-effective and compact wide-field fluorescent imaging on a cell-phone,” Lab Chip 11(2), 315–322 (2011).
[Crossref] [PubMed]

Switz, N. A.

D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile Phone Based Clinical Microscopy for Global Health Applications,” PLoS One 4(7), e6320 (2009).
[Crossref] [PubMed]

Tey, A.

A. F. Coskun, J. Wong, D. Khodadadi, R. Nagi, A. Tey, and A. Ozcan, “A personalized food allergen testing platform on a cellphone,” Lab Chip 13(4), 636–640 (2013).
[Crossref] [PubMed]

Tian, Y. L.

A. X. Gao, Y. L. Tian, Z. Z. Shi, and L. Yu, “A cost-effective microdevice bridges microfluidic and conventional in vitro scratch / wound-healing assay for personalized therapy validation,” Biochip J. 10(1), 56–64 (2016).
[Crossref]

Townsend, B.

A. S. Paterson, B. Raja, V. Mandadi, B. Townsend, M. Lee, A. Buell, B. Vu, J. Brgoch, and R. C. Willson, “A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors,” Lab Chip 17(6), 1051–1059 (2017).
[Crossref] [PubMed]

Tseng, D.

H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Cost-effective and compact wide-field fluorescent imaging on a cell-phone,” Lab Chip 11(2), 315–322 (2011).
[Crossref] [PubMed]

van Oordt, T.

S. K. Vashist, T. van Oordt, E. M. Schneider, R. Zengerle, F. von Stetten, and J. H. T. Luong, “A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets,” Biosens. Bioelectron. 67, 248–255 (2015).
[Crossref] [PubMed]

Vashist, S. K.

S. K. Vashist, T. van Oordt, E. M. Schneider, R. Zengerle, F. von Stetten, and J. H. T. Luong, “A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets,” Biosens. Bioelectron. 67, 248–255 (2015).
[Crossref] [PubMed]

von Stetten, F.

S. K. Vashist, T. van Oordt, E. M. Schneider, R. Zengerle, F. von Stetten, and J. H. T. Luong, “A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets,” Biosens. Bioelectron. 67, 248–255 (2015).
[Crossref] [PubMed]

Vu, B.

A. S. Paterson, B. Raja, V. Mandadi, B. Townsend, M. Lee, A. Buell, B. Vu, J. Brgoch, and R. C. Willson, “A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors,” Lab Chip 17(6), 1051–1059 (2017).
[Crossref] [PubMed]

Wang, X.

X. Wang, T. W. Chang, G. Lin, M. R. Gartia, and G. L. Liu, “Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing,” Anal. Chem. 89(1), 611–615 (2017).
[Crossref] [PubMed]

Watkins, W. M.

W. T. J. Morgan and W. M. Watkins, “Unravelling the biochemical basis of blood group ABO and Lewis antigenic specificity,” Glycoconj. J. 17(7-9), 501–530 (2000).
[Crossref] [PubMed]

Willson, R. C.

A. S. Paterson, B. Raja, V. Mandadi, B. Townsend, M. Lee, A. Buell, B. Vu, J. Brgoch, and R. C. Willson, “A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors,” Lab Chip 17(6), 1051–1059 (2017).
[Crossref] [PubMed]

Wong, J.

A. F. Coskun, J. Wong, D. Khodadadi, R. Nagi, A. Tey, and A. Ozcan, “A personalized food allergen testing platform on a cellphone,” Lab Chip 13(4), 636–640 (2013).
[Crossref] [PubMed]

Yaglidere, O.

H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Cost-effective and compact wide-field fluorescent imaging on a cell-phone,” Lab Chip 11(2), 315–322 (2011).
[Crossref] [PubMed]

Yeong Kim, B.

W. I. Lee, S. Shrivastava, L. T. Duy, B. Yeong Kim, Y. M. Son, and N. E. Lee, “A smartphone imaging-based label-free and dual-wavelength fluorescent biosensor with high sensitivity and accuracy,” Biosens. Bioelectron. 94, 643–650 (2017).
[Crossref] [PubMed]

Yoon, H. C.

S. H. Im, K. R. Kim, Y. M. Park, J. H. Yoon, J. W. Hong, and H. C. Yoon, “An animal cell culture monitoring system using a smartphone-mountable paper-based analytical device,” Sens. Actuators B Chem. 229, 166–173 (2016).
[Crossref]

H. J. Chun, Y. M. Park, Y. D. Han, Y. H. Jang, and H. C. Yoon, “Paper-based glucose biosensing system utilizing a smartphone as a signal reader,” Biochip J. 8(3), 218–226 (2014).
[Crossref]

Yoon, J. H.

S. H. Im, K. R. Kim, Y. M. Park, J. H. Yoon, J. W. Hong, and H. C. Yoon, “An animal cell culture monitoring system using a smartphone-mountable paper-based analytical device,” Sens. Actuators B Chem. 229, 166–173 (2016).
[Crossref]

Yu, H.

Yu, L.

A. X. Gao, Y. L. Tian, Z. Z. Shi, and L. Yu, “A cost-effective microdevice bridges microfluidic and conventional in vitro scratch / wound-healing assay for personalized therapy validation,” Biochip J. 10(1), 56–64 (2016).
[Crossref]

Y. Lu, Z.Z. Shi, L. Yu, and C.M. Li, “Fast prototyping of a customized microfluidic device in a non-clean-room setting by cutting and laminating Parafilm,” RSC Adv. In press (2018).
[Crossref]

Zangheri, M.

D. Calabria, C. Caliceti, M. Zangheri, M. Mirasoli, P. Simoni, and A. Roda, “Smartphone-based enzymatic biosensor for oral fluid L-lactate detection in one minute using confined multilayer paper reflectometry,” Biosens. Bioelectron. 94, 124–130 (2017).
[Crossref] [PubMed]

Zeng, Y.

Y. Zeng, K. Jin, J. Li, J. Liu, J. Li, T. Li, and S. Li, “A low cost and portable smartphone microscopic device for cell counting,” Sens. Actuators A Phys. 274, 57–63 (2018).

Zengerle, R.

S. K. Vashist, T. van Oordt, E. M. Schneider, R. Zengerle, F. von Stetten, and J. H. T. Luong, “A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets,” Biosens. Bioelectron. 67, 248–255 (2015).
[Crossref] [PubMed]

Zhu, H.

H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Cost-effective and compact wide-field fluorescent imaging on a cell-phone,” Lab Chip 11(2), 315–322 (2011).
[Crossref] [PubMed]

Anal. Chem. (1)

X. Wang, T. W. Chang, G. Lin, M. R. Gartia, and G. L. Liu, “Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing,” Anal. Chem. 89(1), 611–615 (2017).
[Crossref] [PubMed]

Appl. Opt. (1)

Biochip J. (2)

A. X. Gao, Y. L. Tian, Z. Z. Shi, and L. Yu, “A cost-effective microdevice bridges microfluidic and conventional in vitro scratch / wound-healing assay for personalized therapy validation,” Biochip J. 10(1), 56–64 (2016).
[Crossref]

H. J. Chun, Y. M. Park, Y. D. Han, Y. H. Jang, and H. C. Yoon, “Paper-based glucose biosensing system utilizing a smartphone as a signal reader,” Biochip J. 8(3), 218–226 (2014).
[Crossref]

Biomed. Opt. Express (1)

Biosens. Bioelectron. (3)

W. I. Lee, S. Shrivastava, L. T. Duy, B. Yeong Kim, Y. M. Son, and N. E. Lee, “A smartphone imaging-based label-free and dual-wavelength fluorescent biosensor with high sensitivity and accuracy,” Biosens. Bioelectron. 94, 643–650 (2017).
[Crossref] [PubMed]

S. K. Vashist, T. van Oordt, E. M. Schneider, R. Zengerle, F. von Stetten, and J. H. T. Luong, “A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets,” Biosens. Bioelectron. 67, 248–255 (2015).
[Crossref] [PubMed]

D. Calabria, C. Caliceti, M. Zangheri, M. Mirasoli, P. Simoni, and A. Roda, “Smartphone-based enzymatic biosensor for oral fluid L-lactate detection in one minute using confined multilayer paper reflectometry,” Biosens. Bioelectron. 94, 124–130 (2017).
[Crossref] [PubMed]

Glycoconj. J. (1)

W. T. J. Morgan and W. M. Watkins, “Unravelling the biochemical basis of blood group ABO and Lewis antigenic specificity,” Glycoconj. J. 17(7-9), 501–530 (2000).
[Crossref] [PubMed]

Lab Chip (4)

A. F. Coskun, J. Wong, D. Khodadadi, R. Nagi, A. Tey, and A. Ozcan, “A personalized food allergen testing platform on a cellphone,” Lab Chip 13(4), 636–640 (2013).
[Crossref] [PubMed]

H. Zhu, O. Yaglidere, T. W. Su, D. Tseng, and A. Ozcan, “Cost-effective and compact wide-field fluorescent imaging on a cell-phone,” Lab Chip 11(2), 315–322 (2011).
[Crossref] [PubMed]

A. S. Paterson, B. Raja, V. Mandadi, B. Townsend, M. Lee, A. Buell, B. Vu, J. Brgoch, and R. C. Willson, “A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors,” Lab Chip 17(6), 1051–1059 (2017).
[Crossref] [PubMed]

V. Oncescu, D. O’Dell, and D. Erickson, “Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva,” Lab Chip 13(16), 3232–3238 (2013).
[Crossref] [PubMed]

Opt. Express (2)

PLoS One (1)

D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile Phone Based Clinical Microscopy for Global Health Applications,” PLoS One 4(7), e6320 (2009).
[Crossref] [PubMed]

Proc. SPIE (1)

Y. Jung, H. Kim, Y. H. B. Kim, and E. Bae, “Design of smartphone-based spectrometer to assess fresh meat color,” Proc. SPIE 10072, 1007213 (2017).
[Crossref]

Sens. Actuators A Phys. (1)

Y. Zeng, K. Jin, J. Li, J. Liu, J. Li, T. Li, and S. Li, “A low cost and portable smartphone microscopic device for cell counting,” Sens. Actuators A Phys. 274, 57–63 (2018).

Sens. Actuators B Chem. (2)

S. H. Im, K. R. Kim, Y. M. Park, J. H. Yoon, J. W. Hong, and H. C. Yoon, “An animal cell culture monitoring system using a smartphone-mountable paper-based analytical device,” Sens. Actuators B Chem. 229, 166–173 (2016).
[Crossref]

C. K. Sang, U. M. Jalal, S. B. Im, S. Ko, and J. S. Shim, “A smartphone-based optical platform for colorimetric analysis of microfluidic device,” Sens. Actuators B Chem. 239, 52–59 (2017).
[Crossref]

Other (1)

Y. Lu, Z.Z. Shi, L. Yu, and C.M. Li, “Fast prototyping of a customized microfluidic device in a non-clean-room setting by cutting and laminating Parafilm,” RSC Adv. In press (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Design and fabrication of the smartphone-based imaging box: A) dimensions and components of the imaging box; B) schematic of the internal backlighting and magnification systems of the imaging box; C) schematic of the converting of smartphone light source to backlight illumination; D) schematic of the guide light plate; E) the magnification module; F) interface between the imaging box and the smartphone via a cover-like adapter.
Fig. 2
Fig. 2 Prototype of the image box (A); backlight illumination (B).
Fig. 3
Fig. 3 Comparison of image quality. A) Carbon grid captured with smartphone zoom in function and smartphone-docked with image box ; particle counting by Image Pro Plus; B) Microfluidic channels captured with smartphone zoom in function and smartphone-docked with image box; the Gray intensity variation at the right edge area of the 250 μm channel (width: 250 μm) imaged with different model.
Fig. 4
Fig. 4 Colorimetric analysis of bicinchoninic acid (BCA) protein detection assay: A) images captured via the smartphone/imaging box system with increasing BSA concentration from 0 to 0.5 mg/mL; B) analysis of images captured via the smartphone/imaging box system by Image J (ΔGreen channel intensity); C) analysis of images captured via the smartphone/imaging box system by smartphone APP color name (ΔGreen channel intensity); D) dose-signal curves obtained from optical absorbance obtained by a spectrophotometric microplate reader at 570 nm (A570nm).
Fig. 5
Fig. 5 On-chip ABO blood typing and observation. A) blood typing results taken by smartphone; B) blood typing results taken by smartphone/imaging box.

Tables (2)

Tables Icon

Table 1 Comparison of smartphone based image acquisition and analysis

Tables Icon

Table 2 Determination of BSA concentrations by the Smartphone-based colorimetric analysis and conventional spectrometer microplate reader

Metrics