Abstract

Photoacoustic imaging has been a focus of research for clinical applications owing to its ability for deep visualization with optical absorption contrast. However, there are various technical challenges remaining for this technique to find its place in clinics. One of the challenges is the occurrence of reflection artifacts. The reflection artifacts may lead to image misinterpretation. Here we propose a new method using multiple wavelengths for identifying and removing the reflection artifacts. By imaging the sample with multiple wavelengths, the spectral response of the features in the photoacoustic image is obtained. We assume that the spectral response of the reflection artifact is better correlated with the proper image feature of its corresponding absorber than with other features in the image. Based on this, the reflection artifacts can be identified and removed. Here, we experimentally demonstrated the potential of this method for real-time identification and correction of reflection artifacts in photoacoustic images in phantoms as well as in vivo using a handheld photoacoustic imaging probe.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reducing artifacts in photoacoustic imaging by using multi-wavelength excitation and transducer displacement

Ho Nhu Y. Nguyen and Wiendelt Steenbergen
Biomed. Opt. Express 10(7) 3124-3138 (2019)

In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion)

Mithun Kuniyil Ajith Singh, Michael Jaeger, Martin Frenz, and Wiendelt Steenbergen
Biomed. Opt. Express 7(8) 2955-2972 (2016)

Identification and removal of laser-induced noise in photoacoustic imaging using singular value decomposition

Emma R. Hill, Wenfeng Xia, Matthew J. Clarkson, and Adrien E. Desjardins
Biomed. Opt. Express 8(1) 68-77 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. K. Upputuri and M. Pramanik, “Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review,” J. Biomed. Opt. 22(4), 041006 (2016).
    [Crossref] [PubMed]
  2. M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
    [Crossref] [PubMed]
  3. M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
    [Crossref] [PubMed]
  4. P. J. van den Berg, K. Daoudi, H. J. Bernelot Moens, and W. Steenbergen, “Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system,” Photoacoustics 8, 8–14 (2017).
    [Crossref] [PubMed]
  5. J. Jo, G. Xu, M. Cao, A. Marquardt, S. Francis, G. Gandikota, and X. Wang, “A functional study of human inflammatory arthritis using photoacoustic imaging,” Sci. Rep. 7(1), 15026 (2017).
    [Crossref] [PubMed]
  6. K. Jansen, M. Wu, A. F. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
    [Crossref] [PubMed]
  7. K. Daoudi, P. J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22(21), 26365–26374 (2014).
    [Crossref] [PubMed]
  8. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
    [Crossref] [PubMed]
  9. C. Kim, T. N. Erpelding, L. Jankovic, M. D. Pashley, and L. V. Wang, “Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system,” Biomed. Opt. Express 1(1), 278–284 (2010).
    [Crossref] [PubMed]
  10. C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem. 397(4), 1503–1510 (2010).
    [Crossref] [PubMed]
  11. K. Sivasubramanian, V. Periyasamy, R. A. Dienzo, and M. Pramanik, “Hand-held, clinical dual mode ultrasound - photoacoustic imaging of rat urinary bladder and its applications,” J. Biophotonics 11(5), e201700317 (2018).
    [Crossref] [PubMed]
  12. K. Sivasubramanian, V. Periyasamy, and M. Pramanik, “Non-invasive sentinel lymph node mapping and needle guidance using clinical handheld photoacoustic imaging system in small animal,” J. Biophotonics 11(1), e201700061 (2018).
    [Crossref] [PubMed]
  13. M. K. A. Singh, V. Parameshwarappa, E. Hendriksen, W. Steenbergen, and S. Manohar, “Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle,” J. Biomed. Opt. 21(12), 120501 (2016).
    [Crossref] [PubMed]
  14. M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
    [Crossref] [PubMed]
  15. M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
    [Crossref] [PubMed]
  16. H.-M. Schwab, M. F. Beckmann, and G. Schmitz, “Photoacoustic clutter reduction by inversion of a linear scatter model using plane wave ultrasound measurements,” Biomed. Opt. Express 7(4), 1468–1478 (2016).
    [Crossref] [PubMed]
  17. M. K. A. Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3(4), 123–131 (2015).
    [Crossref]
  18. D. Allman, A. Reiter, and M. A. L. Bell, “Photoacoustic Source Detection and Reflection Artifact Removal Enabled by Deep Learning,” IEEE Trans. Med. Imaging 37(6), 1464–1477 (2018).
    [Crossref] [PubMed]
  19. T. Petrosyan, M. Theodorou, J. Bamber, M. Frenz, and M. Jaeger, “Fast scanning wide-field clutter elimination in epi-optoacoustic imaging using comb-LOVIT,” in Ultrasonics Symposium (IUS),2017IEEE International (IEEE, 2017), p. 1.
    [Crossref]
  20. H.-M. Schwab and G. Schmitz, “An advanced interpolation approach for photoacoustic clutter reduction based on a linear plane wave scatter model,” in Ultrasonics Symposium (IUS),2016IEEE International (IEEE, 2016), pp. 1–4.
    [Crossref]
  21. M. K. A. Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “Photoacoustic reflection artifact reduction using photoacoustic-guided focused ultrasound: comparison between plane-wave and element-by-element synthetic backpropagation approach,” Biomed. Opt. Express 8(4), 2245–2260 (2017).
    [Crossref] [PubMed]
  22. M. K. A. Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion),” Biomed. Opt. Express 7(8), 2955–2972 (2016).
    [Crossref] [PubMed]
  23. V. E. Gusev, and A. A. Karabutov, “Laser optoacoustics,” NASA STI/Recon Technical Report A, 93 (1991).
  24. A. Oraevsky and A. Karabutov, “Optoacoustic tomography,” Biomedical photonics handbook 34, 1– 34 (2003).
  25. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,” Appl. Opt. 36(1), 402–415 (1997).
    [Crossref] [PubMed]
  26. A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
    [Crossref]
  27. V. V. Tuchin, and V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press Bellingham, 2007).
  28. M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
    [Crossref]
  29. I. Sobel, and G. Feldman, “A 3x3 isotropic gradient operator for image processing, presented at a talk at the Stanford Artificial Project,” in Pattern Classification and Scene Analysis, R. Duda and P. Hart, eds. (John Wiley & Sons, 1968), pp. 271–272.
  30. J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation coefficient,” in Noise Reduction in Speech Processing (Springer, 2009), pp. 1–4.
  31. M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
    [Crossref]
  32. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008).
    [Crossref] [PubMed]
  33. R. Putz and R. Pabst, Sobotta: Atlas of Human Anatomy (Elsevier, Urban & Fischer, 2006).
  34. D. G. Bonett and T. A. Wright, “Sample size requirements for estimating Pearson, Kendall and Spearman correlations,” Psychometrika 65(1), 23–28 (2000).
    [Crossref]

2018 (3)

K. Sivasubramanian, V. Periyasamy, R. A. Dienzo, and M. Pramanik, “Hand-held, clinical dual mode ultrasound - photoacoustic imaging of rat urinary bladder and its applications,” J. Biophotonics 11(5), e201700317 (2018).
[Crossref] [PubMed]

K. Sivasubramanian, V. Periyasamy, and M. Pramanik, “Non-invasive sentinel lymph node mapping and needle guidance using clinical handheld photoacoustic imaging system in small animal,” J. Biophotonics 11(1), e201700061 (2018).
[Crossref] [PubMed]

D. Allman, A. Reiter, and M. A. L. Bell, “Photoacoustic Source Detection and Reflection Artifact Removal Enabled by Deep Learning,” IEEE Trans. Med. Imaging 37(6), 1464–1477 (2018).
[Crossref] [PubMed]

2017 (4)

M. K. A. Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “Photoacoustic reflection artifact reduction using photoacoustic-guided focused ultrasound: comparison between plane-wave and element-by-element synthetic backpropagation approach,” Biomed. Opt. Express 8(4), 2245–2260 (2017).
[Crossref] [PubMed]

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

P. J. van den Berg, K. Daoudi, H. J. Bernelot Moens, and W. Steenbergen, “Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system,” Photoacoustics 8, 8–14 (2017).
[Crossref] [PubMed]

J. Jo, G. Xu, M. Cao, A. Marquardt, S. Francis, G. Gandikota, and X. Wang, “A functional study of human inflammatory arthritis using photoacoustic imaging,” Sci. Rep. 7(1), 15026 (2017).
[Crossref] [PubMed]

2016 (5)

P. K. Upputuri and M. Pramanik, “Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review,” J. Biomed. Opt. 22(4), 041006 (2016).
[Crossref] [PubMed]

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

M. K. A. Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion),” Biomed. Opt. Express 7(8), 2955–2972 (2016).
[Crossref] [PubMed]

M. K. A. Singh, V. Parameshwarappa, E. Hendriksen, W. Steenbergen, and S. Manohar, “Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle,” J. Biomed. Opt. 21(12), 120501 (2016).
[Crossref] [PubMed]

H.-M. Schwab, M. F. Beckmann, and G. Schmitz, “Photoacoustic clutter reduction by inversion of a linear scatter model using plane wave ultrasound measurements,” Biomed. Opt. Express 7(4), 1468–1478 (2016).
[Crossref] [PubMed]

2015 (1)

M. K. A. Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3(4), 123–131 (2015).
[Crossref]

2014 (2)

2013 (1)

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
[Crossref] [PubMed]

2010 (2)

C. Kim, T. N. Erpelding, L. Jankovic, M. D. Pashley, and L. V. Wang, “Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system,” Biomed. Opt. Express 1(1), 278–284 (2010).
[Crossref] [PubMed]

C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem. 397(4), 1503–1510 (2010).
[Crossref] [PubMed]

2009 (1)

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref] [PubMed]

2008 (2)

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[Crossref]

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008).
[Crossref] [PubMed]

2007 (1)

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

2005 (2)

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

2003 (1)

A. Oraevsky and A. Karabutov, “Optoacoustic tomography,” Biomedical photonics handbook 34, 1– 34 (2003).

2000 (1)

D. G. Bonett and T. A. Wright, “Sample size requirements for estimating Pearson, Kendall and Spearman correlations,” Psychometrika 65(1), 23–28 (2000).
[Crossref]

1997 (1)

Allman, D.

D. Allman, A. Reiter, and M. A. L. Bell, “Photoacoustic Source Detection and Reflection Artifact Removal Enabled by Deep Learning,” IEEE Trans. Med. Imaging 37(6), 1464–1477 (2018).
[Crossref] [PubMed]

Asao, Y.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Bamber, J. C.

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
[Crossref] [PubMed]

Bashkatov, A.

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Beckmann, M. F.

Bell, M. A. L.

D. Allman, A. Reiter, and M. A. L. Bell, “Photoacoustic Source Detection and Reflection Artifact Removal Enabled by Deep Learning,” IEEE Trans. Med. Imaging 37(6), 1464–1477 (2018).
[Crossref] [PubMed]

Bernelot Moens, H. J.

P. J. van den Berg, K. Daoudi, H. J. Bernelot Moens, and W. Steenbergen, “Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system,” Photoacoustics 8, 8–14 (2017).
[Crossref] [PubMed]

Bonett, D. G.

D. G. Bonett and T. A. Wright, “Sample size requirements for estimating Pearson, Kendall and Spearman correlations,” Psychometrika 65(1), 23–28 (2000).
[Crossref]

Brands, P.

Cao, M.

J. Jo, G. Xu, M. Cao, A. Marquardt, S. Francis, G. Gandikota, and X. Wang, “A functional study of human inflammatory arthritis using photoacoustic imaging,” Sci. Rep. 7(1), 15026 (2017).
[Crossref] [PubMed]

Daoudi, K.

P. J. van den Berg, K. Daoudi, H. J. Bernelot Moens, and W. Steenbergen, “Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system,” Photoacoustics 8, 8–14 (2017).
[Crossref] [PubMed]

K. Daoudi, P. J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22(21), 26365–26374 (2014).
[Crossref] [PubMed]

Dienzo, R. A.

K. Sivasubramanian, V. Periyasamy, R. A. Dienzo, and M. Pramanik, “Hand-held, clinical dual mode ultrasound - photoacoustic imaging of rat urinary bladder and its applications,” J. Biophotonics 11(5), e201700317 (2018).
[Crossref] [PubMed]

Eilert-Zell, K.

C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem. 397(4), 1503–1510 (2010).
[Crossref] [PubMed]

Endo, T.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Erpelding, T. N.

Fakhrejahani, E.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Foschum, F.

Francis, S.

J. Jo, G. Xu, M. Cao, A. Marquardt, S. Francis, G. Gandikota, and X. Wang, “A functional study of human inflammatory arthritis using photoacoustic imaging,” Sci. Rep. 7(1), 15026 (2017).
[Crossref] [PubMed]

Frenz, M.

M. K. A. Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “Photoacoustic reflection artifact reduction using photoacoustic-guided focused ultrasound: comparison between plane-wave and element-by-element synthetic backpropagation approach,” Biomed. Opt. Express 8(4), 2245–2260 (2017).
[Crossref] [PubMed]

M. K. A. Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion),” Biomed. Opt. Express 7(8), 2955–2972 (2016).
[Crossref] [PubMed]

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
[Crossref] [PubMed]

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref] [PubMed]

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Gandikota, G.

J. Jo, G. Xu, M. Cao, A. Marquardt, S. Francis, G. Gandikota, and X. Wang, “A functional study of human inflammatory arthritis using photoacoustic imaging,” Sci. Rep. 7(1), 15026 (2017).
[Crossref] [PubMed]

Genina, E.

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Gertsch, A.

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

Haisch, C.

C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem. 397(4), 1503–1510 (2010).
[Crossref] [PubMed]

Heijblom, M.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

Hendriksen, E.

M. K. A. Singh, V. Parameshwarappa, E. Hendriksen, W. Steenbergen, and S. Manohar, “Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle,” J. Biomed. Opt. 21(12), 120501 (2016).
[Crossref] [PubMed]

Jacques, S. L.

Jaeger, M.

M. K. A. Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “Photoacoustic reflection artifact reduction using photoacoustic-guided focused ultrasound: comparison between plane-wave and element-by-element synthetic backpropagation approach,” Biomed. Opt. Express 8(4), 2245–2260 (2017).
[Crossref] [PubMed]

M. K. A. Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion),” Biomed. Opt. Express 7(8), 2955–2972 (2016).
[Crossref] [PubMed]

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
[Crossref] [PubMed]

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref] [PubMed]

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Jankovic, L.

Jansen, K.

K. Jansen, M. Wu, A. F. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

Jo, J.

J. Jo, G. Xu, M. Cao, A. Marquardt, S. Francis, G. Gandikota, and X. Wang, “A functional study of human inflammatory arthritis using photoacoustic imaging,” Sci. Rep. 7(1), 15026 (2017).
[Crossref] [PubMed]

Kanao, S.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Karabutov, A.

A. Oraevsky and A. Karabutov, “Optoacoustic tomography,” Biomedical photonics handbook 34, 1– 34 (2003).

Kataoka, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Kawaguchi-Sakita, N.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Kawashima, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Kienle, A.

Kim, C.

Kitz, M.

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref] [PubMed]

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

Klaase, J. M.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

Kochubey, V.

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Kohl, A.

Ku, G.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[Crossref]

Lemor, R.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Li, C.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[Crossref]

Li, M.-L.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[Crossref]

Lungu, G.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[Crossref]

Manohar, S.

M. K. A. Singh, V. Parameshwarappa, E. Hendriksen, W. Steenbergen, and S. Manohar, “Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle,” J. Biomed. Opt. 21(12), 120501 (2016).
[Crossref] [PubMed]

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

Marquardt, A.

J. Jo, G. Xu, M. Cao, A. Marquardt, S. Francis, G. Gandikota, and X. Wang, “A functional study of human inflammatory arthritis using photoacoustic imaging,” Sci. Rep. 7(1), 15026 (2017).
[Crossref] [PubMed]

Matsumoto, Y.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Menzenbach, P.

C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem. 397(4), 1503–1510 (2010).
[Crossref] [PubMed]

Michels, R.

Nakayama, Y.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Niederhauser, J. J.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Niessner, R.

C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem. 397(4), 1503–1510 (2010).
[Crossref] [PubMed]

Oh, J.-T.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[Crossref]

Oraevsky, A.

A. Oraevsky and A. Karabutov, “Optoacoustic tomography,” Biomedical photonics handbook 34, 1– 34 (2003).

Oraevsky, A. A.

Parameshwarappa, V.

M. K. A. Singh, V. Parameshwarappa, E. Hendriksen, W. Steenbergen, and S. Manohar, “Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle,” J. Biomed. Opt. 21(12), 120501 (2016).
[Crossref] [PubMed]

Pashley, M. D.

Periyasamy, V.

K. Sivasubramanian, V. Periyasamy, R. A. Dienzo, and M. Pramanik, “Hand-held, clinical dual mode ultrasound - photoacoustic imaging of rat urinary bladder and its applications,” J. Biophotonics 11(5), e201700317 (2018).
[Crossref] [PubMed]

K. Sivasubramanian, V. Periyasamy, and M. Pramanik, “Non-invasive sentinel lymph node mapping and needle guidance using clinical handheld photoacoustic imaging system in small animal,” J. Biophotonics 11(1), e201700061 (2018).
[Crossref] [PubMed]

Piras, D.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

Pramanik, M.

K. Sivasubramanian, V. Periyasamy, and M. Pramanik, “Non-invasive sentinel lymph node mapping and needle guidance using clinical handheld photoacoustic imaging system in small animal,” J. Biophotonics 11(1), e201700061 (2018).
[Crossref] [PubMed]

K. Sivasubramanian, V. Periyasamy, R. A. Dienzo, and M. Pramanik, “Hand-held, clinical dual mode ultrasound - photoacoustic imaging of rat urinary bladder and its applications,” J. Biophotonics 11(5), e201700317 (2018).
[Crossref] [PubMed]

P. K. Upputuri and M. Pramanik, “Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review,” J. Biomed. Opt. 22(4), 041006 (2016).
[Crossref] [PubMed]

Rabot, O.

Reiter, A.

D. Allman, A. Reiter, and M. A. L. Bell, “Photoacoustic Source Detection and Reflection Artifact Removal Enabled by Deep Learning,” IEEE Trans. Med. Imaging 37(6), 1464–1477 (2018).
[Crossref] [PubMed]

Sakurai, T.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Schmitz, G.

Schüpbach, S.

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

Schwab, H.-M.

Sekiguchi, H.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Shiina, T.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Siegenthaler, L.

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref] [PubMed]

Singh, M. K. A.

M. K. A. Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “Photoacoustic reflection artifact reduction using photoacoustic-guided focused ultrasound: comparison between plane-wave and element-by-element synthetic backpropagation approach,” Biomed. Opt. Express 8(4), 2245–2260 (2017).
[Crossref] [PubMed]

M. K. A. Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion),” Biomed. Opt. Express 7(8), 2955–2972 (2016).
[Crossref] [PubMed]

M. K. A. Singh, V. Parameshwarappa, E. Hendriksen, W. Steenbergen, and S. Manohar, “Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle,” J. Biomed. Opt. 21(12), 120501 (2016).
[Crossref] [PubMed]

M. K. A. Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3(4), 123–131 (2015).
[Crossref]

Sivasubramanian, K.

K. Sivasubramanian, V. Periyasamy, and M. Pramanik, “Non-invasive sentinel lymph node mapping and needle guidance using clinical handheld photoacoustic imaging system in small animal,” J. Biophotonics 11(1), e201700061 (2018).
[Crossref] [PubMed]

K. Sivasubramanian, V. Periyasamy, R. A. Dienzo, and M. Pramanik, “Hand-held, clinical dual mode ultrasound - photoacoustic imaging of rat urinary bladder and its applications,” J. Biophotonics 11(5), e201700317 (2018).
[Crossref] [PubMed]

Steenbergen, W.

P. J. van den Berg, K. Daoudi, H. J. Bernelot Moens, and W. Steenbergen, “Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system,” Photoacoustics 8, 8–14 (2017).
[Crossref] [PubMed]

M. K. A. Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “Photoacoustic reflection artifact reduction using photoacoustic-guided focused ultrasound: comparison between plane-wave and element-by-element synthetic backpropagation approach,” Biomed. Opt. Express 8(4), 2245–2260 (2017).
[Crossref] [PubMed]

M. K. A. Singh, M. Jaeger, M. Frenz, and W. Steenbergen, “In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion),” Biomed. Opt. Express 7(8), 2955–2972 (2016).
[Crossref] [PubMed]

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

M. K. A. Singh, V. Parameshwarappa, E. Hendriksen, W. Steenbergen, and S. Manohar, “Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle,” J. Biomed. Opt. 21(12), 120501 (2016).
[Crossref] [PubMed]

M. K. A. Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3(4), 123–131 (2015).
[Crossref]

K. Daoudi, P. J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22(21), 26365–26374 (2014).
[Crossref] [PubMed]

Stoica, G.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[Crossref]

Takada, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Tisserand, S.

Tittel, F. K.

Togashi, K.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Toi, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Tokiwa, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Torii, M.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Tuchin, V.

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Upputuri, P. K.

P. K. Upputuri and M. Pramanik, “Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review,” J. Biomed. Opt. 22(4), 041006 (2016).
[Crossref] [PubMed]

van den Berg, P. J.

P. J. van den Berg, K. Daoudi, H. J. Bernelot Moens, and W. Steenbergen, “Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system,” Photoacoustics 8, 8–14 (2017).
[Crossref] [PubMed]

K. Daoudi, P. J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22(21), 26365–26374 (2014).
[Crossref] [PubMed]

van den Engh, F. M.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

van der Schaaf, M.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

van der Steen, A. F.

K. Jansen, M. Wu, A. F. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

van Soest, G.

K. Jansen, M. Wu, A. F. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

Vogel, M. M.

C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem. 397(4), 1503–1510 (2010).
[Crossref] [PubMed]

Wang, L. V.

C. Kim, T. N. Erpelding, L. Jankovic, M. D. Pashley, and L. V. Wang, “Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system,” Biomed. Opt. Express 1(1), 278–284 (2010).
[Crossref] [PubMed]

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[Crossref]

Wang, W.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[Crossref]

Wang, X.

J. Jo, G. Xu, M. Cao, A. Marquardt, S. Francis, G. Gandikota, and X. Wang, “A functional study of human inflammatory arthritis using photoacoustic imaging,” Sci. Rep. 7(1), 15026 (2017).
[Crossref] [PubMed]

Weber, P.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Wright, T. A.

D. G. Bonett and T. A. Wright, “Sample size requirements for estimating Pearson, Kendall and Spearman correlations,” Psychometrika 65(1), 23–28 (2000).
[Crossref]

Wu, M.

K. Jansen, M. Wu, A. F. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

Xie, X.

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[Crossref]

Xu, G.

J. Jo, G. Xu, M. Cao, A. Marquardt, S. Francis, G. Gandikota, and X. Wang, “A functional study of human inflammatory arthritis using photoacoustic imaging,” Sci. Rep. 7(1), 15026 (2017).
[Crossref] [PubMed]

Yagi, T.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Yamaga, I.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Yoshikawa, A.

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem. 397(4), 1503–1510 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (4)

Biomedical photonics handbook (1)

A. Oraevsky and A. Karabutov, “Optoacoustic tomography,” Biomedical photonics handbook 34, 1– 34 (2003).

Eur. Radiol. (1)

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (2)

D. Allman, A. Reiter, and M. A. L. Bell, “Photoacoustic Source Detection and Reflection Artifact Removal Enabled by Deep Learning,” IEEE Trans. Med. Imaging 37(6), 1464–1477 (2018).
[Crossref] [PubMed]

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Inverse Probl. (1)

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23(6), S51–S63 (2007).
[Crossref]

J. Biomed. Opt. (3)

M. K. A. Singh, V. Parameshwarappa, E. Hendriksen, W. Steenbergen, and S. Manohar, “Photoacoustic-guided focused ultrasound for accurate visualization of brachytherapy seeds with the photoacoustic needle,” J. Biomed. Opt. 21(12), 120501 (2016).
[Crossref] [PubMed]

M. Jaeger, L. Siegenthaler, M. Kitz, and M. Frenz, “Reduction of background in optoacoustic image sequences obtained under tissue deformation,” J. Biomed. Opt. 14(5), 054011 (2009).
[Crossref] [PubMed]

P. K. Upputuri and M. Pramanik, “Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review,” J. Biomed. Opt. 22(4), 041006 (2016).
[Crossref] [PubMed]

J. Biophotonics (2)

K. Sivasubramanian, V. Periyasamy, R. A. Dienzo, and M. Pramanik, “Hand-held, clinical dual mode ultrasound - photoacoustic imaging of rat urinary bladder and its applications,” J. Biophotonics 11(5), e201700317 (2018).
[Crossref] [PubMed]

K. Sivasubramanian, V. Periyasamy, and M. Pramanik, “Non-invasive sentinel lymph node mapping and needle guidance using clinical handheld photoacoustic imaging system in small animal,” J. Biophotonics 11(1), e201700061 (2018).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Opt. Express (2)

Photoacoustics (4)

K. Jansen, M. Wu, A. F. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

P. J. van den Berg, K. Daoudi, H. J. Bernelot Moens, and W. Steenbergen, “Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system,” Photoacoustics 8, 8–14 (2017).
[Crossref] [PubMed]

M. Jaeger, J. C. Bamber, and M. Frenz, “Clutter elimination for deep clinical optoacoustic imaging using localised vibration tagging (LOVIT),” Photoacoustics 1(2), 19–29 (2013).
[Crossref] [PubMed]

M. K. A. Singh and W. Steenbergen, “Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging,” Photoacoustics 3(4), 123–131 (2015).
[Crossref]

Proc. IEEE (1)

M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008).
[Crossref]

Psychometrika (1)

D. G. Bonett and T. A. Wright, “Sample size requirements for estimating Pearson, Kendall and Spearman correlations,” Psychometrika 65(1), 23–28 (2000).
[Crossref]

Sci. Rep. (2)

J. Jo, G. Xu, M. Cao, A. Marquardt, S. Francis, G. Gandikota, and X. Wang, “A functional study of human inflammatory arthritis using photoacoustic imaging,” Sci. Rep. 7(1), 15026 (2017).
[Crossref] [PubMed]

M. Toi, Y. Asao, Y. Matsumoto, H. Sekiguchi, A. Yoshikawa, M. Takada, M. Kataoka, T. Endo, N. Kawaguchi-Sakita, M. Kawashima, E. Fakhrejahani, S. Kanao, I. Yamaga, Y. Nakayama, M. Tokiwa, M. Torii, T. Yagi, T. Sakurai, K. Togashi, and T. Shiina, “Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array,” Sci. Rep. 7(1), 41970 (2017).
[Crossref] [PubMed]

Other (7)

V. E. Gusev, and A. A. Karabutov, “Laser optoacoustics,” NASA STI/Recon Technical Report A, 93 (1991).

T. Petrosyan, M. Theodorou, J. Bamber, M. Frenz, and M. Jaeger, “Fast scanning wide-field clutter elimination in epi-optoacoustic imaging using comb-LOVIT,” in Ultrasonics Symposium (IUS),2017IEEE International (IEEE, 2017), p. 1.
[Crossref]

H.-M. Schwab and G. Schmitz, “An advanced interpolation approach for photoacoustic clutter reduction based on a linear plane wave scatter model,” in Ultrasonics Symposium (IUS),2016IEEE International (IEEE, 2016), pp. 1–4.
[Crossref]

I. Sobel, and G. Feldman, “A 3x3 isotropic gradient operator for image processing, presented at a talk at the Stanford Artificial Project,” in Pattern Classification and Scene Analysis, R. Duda and P. Hart, eds. (John Wiley & Sons, 1968), pp. 271–272.

J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation coefficient,” in Noise Reduction in Speech Processing (Springer, 2009), pp. 1–4.

V. V. Tuchin, and V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press Bellingham, 2007).

R. Putz and R. Pabst, Sobotta: Atlas of Human Anatomy (Elsevier, Urban & Fischer, 2006).

Supplementary Material (2)

NameDescription
» Data File 1       Complete segmented
» Data File 2       Complete segmented

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 RA in PAI. (a) A deep reflector leads to reflecting US waves. (b) An acquired PA image of a phantom (a black thread placed above a plastic petri dish lid) embedded in demi-water represents this situation.
Fig. 2
Fig. 2 The flowchart of the method.
Fig. 3
Fig. 3 An example of the segmentation process. (a) The original image showing two blood vessels (upward blue arrows) and their reflection (downward yellow arrows). (b) An over-thresholding segmented image. (c) An under-thresholding segmented image. (d) The under-thresholding and peak-processed segmented image.
Fig. 4
Fig. 4 An example of correcting RAs in PA images. (a) The corrected image of Fig. 3(a). (b) The final corrected image.
Fig. 5
Fig. 5 Photo and schematic drawing of the handheld probe.
Fig. 6
Fig. 6 (a) A phantom used for experiments. (b) A schematic cross-section of the phantom (c) Combined PA and US image. (d) 4 PA images acquired at 4 wavelengths (808, 915, 940, and 980 nm).
Fig. 7
Fig. 7 Image analysis of a phantom experiment. (a) Segmented image with numbered features, and all pixels in a feature being assigned the maximum value of that feature. (b) Maximum normalized spectral responses of the features.
Fig. 8
Fig. 8 Processing features in an acquired PA image of the phantom. (a) The corrected segmented image. (b) The final corrected image after de-segmentation. (c) A comparison of the acquired PA image and the final corrected image.
Fig. 9
Fig. 9 RAs in in vivo PAI. Acquired PA (a) and US (b) images of a finger. (c) An image adapted from “Sobotta: Atlas of human anatomy” [33] shows a cross-section of a finger. (d) A photo of an in vivo imaging experiment.
Fig. 10
Fig. 10 Image analysis of an in vivo experiment. (a) A segmented image with numbered features. (b) Spectral responses of the features.
Fig. 11
Fig. 11 Correcting RAs in an in vivo imaging experiment. (a) An acquired PA image of a finger. (b) The corrected image.
Fig. 12
Fig. 12 (a) Correlation coefficient of spectral responses of two identical absorbers versus their vertical distance. (b) Spectral responses of the two suture wires at two different distances Δ z 1 = 0.68 mm and Δ z 2 = 2.1 mm.
Fig. 13
Fig. 13 RA identification of the method without segmentation in an in vivo image. (a) An in vivo PA image. (b) The correlation coefficient map of a pixel in the skin with others at least 2 mm below the considered pixel (values above 0.95 are colored red). (c) Identified RAs (yellow pixels) of the considered pixel.
Fig. 14
Fig. 14 Comparison of the method with and without segmentation. (a), (b), (c) An acquired PA image, the corrected image with segmentation, and the corrected image without segmentation of the phantom, respectively. (d), (e), and (f) An acquired PA image, the corrected image with segmentation, and the corrected image without segmentation in vivo, respectively.
Fig. 15
Fig. 15 Segmented image of the phantom with all features numbered.
Fig. 16
Fig. 16 Segmented in vivo image with all features numbered.

Tables (2)

Tables Icon

Table 1 Lasers specifications at a repetition rate of 1 kHz.

Tables Icon

Table 2 Correlation coefficients of obtained spectral responses in the phantom experiment (see also Data File 1).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

p=Γ μ a Φ
p=f(λ,x,y,z).
ρ(A,B)= cov(A,B) σ A σ B

Metrics