Abstract

The attenuation coefficient has proven to be a useful tool in numerous biological applications, but accurate calculation is dependent on the characterization of the confocal effect. This study presents a method to precisely determine the confocal effect and its focal plane within a sample by examining the ratio of two optical coherence tomography (OCT) images. The method can be employed to produce a single-value estimate, or a 2D map of the focal plane accounting for the curvature or tilt within the sample. Furthermore, this method is applicable to data obtained with both high numerical aperture (NA) and low-NA lenses, thereby furthering the applicability of the attenuation coefficient to high-NA OCT data. We test and validate this method using standard samples of Intralipid 20% and 5%, improving the accuracy to 99% from 65% compared to the traditional method and preliminarily show applicability to real biological data of glioblastoma acquired in vivo in a murine model.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Characterizing the optical properties of human brain tissue with high numerical aperture optical coherence tomography

Hui Wang, Caroline Magnain, Sava Sakadžić, Bruce Fischl, and David A. Boas
Biomed. Opt. Express 8(12) 5617-5636 (2017)

Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography

K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer
Biomed. Opt. Express 5(1) 322-337 (2014)

Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography

Dirk J. Faber, Freek J. van der Meer, Maurice C.G. Aalders, and Ton G. van Leeuwen
Opt. Express 12(19) 4353-4365 (2004)

References

  • View by:
  • |
  • |
  • |

  1. A. G. Podoleanu, “Optical coherence tomography,” The Br. J. Radiol. 78, 976–988 (2005).
    [Crossref] [PubMed]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Reports on Prog. Phys. 66, 239 (2003).
    [Crossref]
  3. Y. Yang, T. Wang, N. C. Biswal, M. Brewer, Q. Zhu, X. Wang, and M. Sanders, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16, 090504 (2011).
    [Crossref] [PubMed]
  4. C. L. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1, 025004 (2014).
    [Crossref]
  5. K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol. 25, 311–315 (2011).
    [Crossref] [PubMed]
  6. A. J. Coleman, T. J. Richardson, G. Orchard, A. Uddin, M. J. Choi, and K. E. Lacy, “Histological correlates of optical coherence tomography in non-melanoma skin cancer,” Ski. Res. Technol. 19, e10–e19 (2013).
    [Crossref]
  7. E. C. Cauberg, D. M. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. Jean, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15, 066013 (2010).
    [Crossref]
  8. G. Van Soest, T. P. Goderie, E. Regar, S. Koljenovic, A. G. J. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
    [Crossref] [PubMed]
  9. C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13, 034003 (2008).
    [Crossref] [PubMed]
  10. K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects,” Diabetes Care 25, 2263–2267 (2002).
    [Crossref] [PubMed]
  11. K. Larin, M. Ghosn, S. Ivers, A. Tellez, and J. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett. 4, 312 (2006).
    [Crossref]
  12. R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26, 992–994 (2001).
    [Crossref]
  13. C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Medicine 7, 292ra100 (2015).
    [Crossref]
  14. G. E. Keles, D. A. Lundin, K. R. Lamborn, E. F. Chang, G. Ojemann, and M. S. Berger, “Intraoperative subcortical stimulation mapping for hemispheric perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients,” J. Neurosurg. 100, 369–375 (2004).
    [Crossref] [PubMed]
  15. M. J. McGirt, D. Mukherjee, K. L. Chaichana, K. D. Than, J. D. Weingart, and A. Quinones-Hinojosa, “Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme,” Neurosurgery 65, 463–470 (2009).
    [Crossref] [PubMed]
  16. D. J. Faber, F. J. Van Der Meer, M. C. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12, 4353–4365 (2004).
    [Crossref] [PubMed]
  17. M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20, 121314 (2015).
    [Crossref]
  18. P. Lee, W. Gao, and X. Zhang, “Performance of single-scattering model versus multiple-scattering model in the determination of optical properties of biological tissue with optical coherence tomography,” Appl. Opt. 49, 3538–3544 (2010).
    [Crossref] [PubMed]
  19. T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum. Electron. 9, 227–233 (2003).
    [Crossref]
  20. H. Wang, C. Magnain, S. Sakadžić, B. Fischl, and D. A. Boas, “Characterizing the optical properties of human brain tissue with high numerical aperture optical coherence tomography,” Biomed. Opt. Express 8, 5617–5636 (2017).
    [Crossref]
  21. G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, depth-resolved estimation of the attenuation coefficient from optical coherence tomography data,” IEEE Trans. Med. Imaging 34, 2592–2602 (2015).
    [Crossref] [PubMed]
  22. J. Xi, Y. Chen, and X. Li, “Characterizing optical properties of nano contrast agents by using cross-referencing OCT imaging,” Biomed. Opt. Express 4, 842–851 (2013).
    [Crossref] [PubMed]
  23. K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Rpe-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment,” Invest. Ophthalmol. & Vis. Sci. 53, 6102–6108 (2012).
    [Crossref]
  24. P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt. 19, 021111 (2013).
    [Crossref]
  25. J. Lee, V. Srinivasan, H. Radhakrishnan, and D. A. Boas, “Motion correction for phase-resolved dynamic optical coherence tomography imaging of rodent cerebral cortex,” Opt. Express 19, 21258–21270 (2011).
    [Crossref] [PubMed]
  26. D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by monte carlo simulation,” Phys. Med. Biol. 43, 3025 (1998).
    [Crossref] [PubMed]
  27. J. Kalkman, A. Bykov, D. Faber, and T. Van Leeuwen, “Multiple and dependent scattering effects in doppler optical coherence tomography,” Opt. Express 18, 3883–3892 (2010).
    [Crossref] [PubMed]
  28. V. Kodach, J. Kalkman, D. Faber, and T. G. van Leeuwen, “Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm,” Biomed. Opt. Express 1, 176–185 (2010).
    [Crossref]
  29. N. Dwork, G. Smith, J. Pauly, and A. E. Bowden, “Automated estimation of OCT confocal function parameters from two b-scans,” in CLEO: Applications and Technology, (Optical Society of America, 2016), pp. AW1O–4.
  30. S. Stefan and J. Lee, “Matlab script to produce a 2d map of the attenuation coefficient from two OCT volume data,” https://doi.org/10.7301/Z0PV6HW1 .
  31. F. A. South, M. Marjanovic, and S. A. Boppart, “Intraoperative OCT in surgical oncology,” Opt. Coherence Tomogr. Technol. Appl. 2015, 2393–2412 (2015).
    [Crossref]
  32. K. Vermeer, J. Mo, J. Weda, H. Lemij, and J. De Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express,  5, 1, 322–337, 2014.
    [Crossref] [PubMed]
  33. S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22, 096004 (2017).
    [Crossref]
  34. R. C. Niemeier, S. Etoz, D. A. Gil, M. C. Skala, C. L. Brace, and J. D. Rogers, “Quantifying optical properties with visible and near-infrared optical coherence tomography to visualize esophageal microwave ablation zones,” Biomed. Opt. Express 9, 1648–1663 (2018).
    [Crossref] [PubMed]
  35. S. Yun, G. Tearney, B. Bouma, B. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 3598–3604 (2003).
    [Crossref] [PubMed]
  36. A. Giese, H. Böhringer, J. Leppert, S. Kantelhardt, E. Lankenau, P. Koch, R. Birngruber, and G. Hüttmann, “Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors,” in Photonic Therapeutics and Diagnostics II, vol. 6078 (International Society for Optics and Photonics, 2006), p. 60782Z.
    [Crossref]

2018 (1)

2017 (2)

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22, 096004 (2017).
[Crossref]

H. Wang, C. Magnain, S. Sakadžić, B. Fischl, and D. A. Boas, “Characterizing the optical properties of human brain tissue with high numerical aperture optical coherence tomography,” Biomed. Opt. Express 8, 5617–5636 (2017).
[Crossref]

2015 (4)

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, depth-resolved estimation of the attenuation coefficient from optical coherence tomography data,” IEEE Trans. Med. Imaging 34, 2592–2602 (2015).
[Crossref] [PubMed]

F. A. South, M. Marjanovic, and S. A. Boppart, “Intraoperative OCT in surgical oncology,” Opt. Coherence Tomogr. Technol. Appl. 2015, 2393–2412 (2015).
[Crossref]

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Medicine 7, 292ra100 (2015).
[Crossref]

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20, 121314 (2015).
[Crossref]

2014 (2)

C. L. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1, 025004 (2014).
[Crossref]

K. Vermeer, J. Mo, J. Weda, H. Lemij, and J. De Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express,  5, 1, 322–337, 2014.
[Crossref] [PubMed]

2013 (3)

J. Xi, Y. Chen, and X. Li, “Characterizing optical properties of nano contrast agents by using cross-referencing OCT imaging,” Biomed. Opt. Express 4, 842–851 (2013).
[Crossref] [PubMed]

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt. 19, 021111 (2013).
[Crossref]

A. J. Coleman, T. J. Richardson, G. Orchard, A. Uddin, M. J. Choi, and K. E. Lacy, “Histological correlates of optical coherence tomography in non-melanoma skin cancer,” Ski. Res. Technol. 19, e10–e19 (2013).
[Crossref]

2012 (1)

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Rpe-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment,” Invest. Ophthalmol. & Vis. Sci. 53, 6102–6108 (2012).
[Crossref]

2011 (3)

J. Lee, V. Srinivasan, H. Radhakrishnan, and D. A. Boas, “Motion correction for phase-resolved dynamic optical coherence tomography imaging of rodent cerebral cortex,” Opt. Express 19, 21258–21270 (2011).
[Crossref] [PubMed]

Y. Yang, T. Wang, N. C. Biswal, M. Brewer, Q. Zhu, X. Wang, and M. Sanders, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16, 090504 (2011).
[Crossref] [PubMed]

K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol. 25, 311–315 (2011).
[Crossref] [PubMed]

2010 (5)

E. C. Cauberg, D. M. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. Jean, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15, 066013 (2010).
[Crossref]

G. Van Soest, T. P. Goderie, E. Regar, S. Koljenovic, A. G. J. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[Crossref] [PubMed]

P. Lee, W. Gao, and X. Zhang, “Performance of single-scattering model versus multiple-scattering model in the determination of optical properties of biological tissue with optical coherence tomography,” Appl. Opt. 49, 3538–3544 (2010).
[Crossref] [PubMed]

J. Kalkman, A. Bykov, D. Faber, and T. Van Leeuwen, “Multiple and dependent scattering effects in doppler optical coherence tomography,” Opt. Express 18, 3883–3892 (2010).
[Crossref] [PubMed]

V. Kodach, J. Kalkman, D. Faber, and T. G. van Leeuwen, “Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm,” Biomed. Opt. Express 1, 176–185 (2010).
[Crossref]

2009 (1)

M. J. McGirt, D. Mukherjee, K. L. Chaichana, K. D. Than, J. D. Weingart, and A. Quinones-Hinojosa, “Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme,” Neurosurgery 65, 463–470 (2009).
[Crossref] [PubMed]

2008 (1)

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13, 034003 (2008).
[Crossref] [PubMed]

2006 (1)

K. Larin, M. Ghosn, S. Ivers, A. Tellez, and J. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett. 4, 312 (2006).
[Crossref]

2005 (1)

A. G. Podoleanu, “Optical coherence tomography,” The Br. J. Radiol. 78, 976–988 (2005).
[Crossref] [PubMed]

2004 (2)

G. E. Keles, D. A. Lundin, K. R. Lamborn, E. F. Chang, G. Ojemann, and M. S. Berger, “Intraoperative subcortical stimulation mapping for hemispheric perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients,” J. Neurosurg. 100, 369–375 (2004).
[Crossref] [PubMed]

D. J. Faber, F. J. Van Der Meer, M. C. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12, 4353–4365 (2004).
[Crossref] [PubMed]

2003 (3)

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum. Electron. 9, 227–233 (2003).
[Crossref]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Reports on Prog. Phys. 66, 239 (2003).
[Crossref]

S. Yun, G. Tearney, B. Bouma, B. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 3598–3604 (2003).
[Crossref] [PubMed]

2002 (1)

K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects,” Diabetes Care 25, 2263–2267 (2002).
[Crossref] [PubMed]

2001 (1)

1998 (1)

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by monte carlo simulation,” Phys. Med. Biol. 43, 3025 (1998).
[Crossref] [PubMed]

Aalders, M. C.

D. J. Faber, F. J. Van Der Meer, M. C. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12, 4353–4365 (2004).
[Crossref] [PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum. Electron. 9, 227–233 (2003).
[Crossref]

Almasian, M.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20, 121314 (2015).
[Crossref]

Barwari, K.

K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol. 25, 311–315 (2011).
[Crossref] [PubMed]

Berger, M. S.

G. E. Keles, D. A. Lundin, K. R. Lamborn, E. F. Chang, G. Ojemann, and M. S. Berger, “Intraoperative subcortical stimulation mapping for hemispheric perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients,” J. Neurosurg. 100, 369–375 (2004).
[Crossref] [PubMed]

Binder, D. K.

C. L. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1, 025004 (2014).
[Crossref]

Birngruber, R.

A. Giese, H. Böhringer, J. Leppert, S. Kantelhardt, E. Lankenau, P. Koch, R. Birngruber, and G. Hüttmann, “Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors,” in Photonic Therapeutics and Diagnostics II, vol. 6078 (International Society for Optics and Photonics, 2006), p. 60782Z.
[Crossref]

Biswal, N. C.

Y. Yang, T. Wang, N. C. Biswal, M. Brewer, Q. Zhu, X. Wang, and M. Sanders, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16, 090504 (2011).
[Crossref] [PubMed]

Boas, D. A.

Böhringer, H.

A. Giese, H. Böhringer, J. Leppert, S. Kantelhardt, E. Lankenau, P. Koch, R. Birngruber, and G. Hüttmann, “Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors,” in Photonic Therapeutics and Diagnostics II, vol. 6078 (International Society for Optics and Photonics, 2006), p. 60782Z.
[Crossref]

Boppart, S. A.

F. A. South, M. Marjanovic, and S. A. Boppart, “Intraoperative OCT in surgical oncology,” Opt. Coherence Tomogr. Technol. Appl. 2015, 2393–2412 (2015).
[Crossref]

Bosschaart, N.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20, 121314 (2015).
[Crossref]

Bouma, B.

Bouma, B. E.

G. Van Soest, T. P. Goderie, E. Regar, S. Koljenovic, A. G. J. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[Crossref] [PubMed]

Bowden, A. E.

N. Dwork, G. Smith, J. Pauly, and A. E. Bowden, “Automated estimation of OCT confocal function parameters from two b-scans,” in CLEO: Applications and Technology, (Optical Society of America, 2016), pp. AW1O–4.

Brace, C. L.

Brewer, M.

Y. Yang, T. Wang, N. C. Biswal, M. Brewer, Q. Zhu, X. Wang, and M. Sanders, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16, 090504 (2011).
[Crossref] [PubMed]

Bykov, A.

Carlier, S. G.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13, 034003 (2008).
[Crossref] [PubMed]

Cauberg, E. C.

K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol. 25, 311–315 (2011).
[Crossref] [PubMed]

E. C. Cauberg, D. M. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. Jean, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15, 066013 (2010).
[Crossref]

Chaichana, K. L.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Medicine 7, 292ra100 (2015).
[Crossref]

M. J. McGirt, D. Mukherjee, K. L. Chaichana, K. D. Than, J. D. Weingart, and A. Quinones-Hinojosa, “Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme,” Neurosurgery 65, 463–470 (2009).
[Crossref] [PubMed]

Chang, E. F.

G. E. Keles, D. A. Lundin, K. R. Lamborn, E. F. Chang, G. Ojemann, and M. S. Berger, “Intraoperative subcortical stimulation mapping for hemispheric perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients,” J. Neurosurg. 100, 369–375 (2004).
[Crossref] [PubMed]

Chen, Y.

Chen, Z.

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by monte carlo simulation,” Phys. Med. Biol. 43, 3025 (1998).
[Crossref] [PubMed]

Choi, M. J.

A. J. Coleman, T. J. Richardson, G. Orchard, A. Uddin, M. J. Choi, and K. E. Lacy, “Histological correlates of optical coherence tomography in non-melanoma skin cancer,” Ski. Res. Technol. 19, e10–e19 (2013).
[Crossref]

Coleman, A. J.

A. J. Coleman, T. J. Richardson, G. Orchard, A. Uddin, M. J. Choi, and K. E. Lacy, “Histological correlates of optical coherence tomography in non-melanoma skin cancer,” Ski. Res. Technol. 19, e10–e19 (2013).
[Crossref]

De Boer, J.

de Boer, J. F.

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Rpe-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment,” Invest. Ophthalmol. & Vis. Sci. 53, 6102–6108 (2012).
[Crossref]

S. Yun, G. Tearney, B. Bouma, B. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 3598–3604 (2003).
[Crossref] [PubMed]

de Bruin, D. M.

K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol. 25, 311–315 (2011).
[Crossref] [PubMed]

de Bruin, D. M. M.

E. C. Cauberg, D. M. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. Jean, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15, 066013 (2010).
[Crossref]

de la Rosette, J.

K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol. 25, 311–315 (2011).
[Crossref] [PubMed]

de Reijke, T. M.

E. C. Cauberg, D. M. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. Jean, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15, 066013 (2010).
[Crossref]

Dijkstra, J.

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22, 096004 (2017).
[Crossref]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Reports on Prog. Phys. 66, 239 (2003).
[Crossref]

Dwork, N.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, depth-resolved estimation of the attenuation coefficient from optical coherence tomography data,” IEEE Trans. Med. Imaging 34, 2592–2602 (2015).
[Crossref] [PubMed]

N. Dwork, G. Smith, J. Pauly, and A. E. Bowden, “Automated estimation of OCT confocal function parameters from two b-scans,” in CLEO: Applications and Technology, (Optical Society of America, 2016), pp. AW1O–4.

Eberle, M. M.

C. L. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1, 025004 (2014).
[Crossref]

Eggermont, J.

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22, 096004 (2017).
[Crossref]

Eledrisi, M. S.

K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects,” Diabetes Care 25, 2263–2267 (2002).
[Crossref] [PubMed]

Ellerbee, A. K.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, depth-resolved estimation of the attenuation coefficient from optical coherence tomography data,” IEEE Trans. Med. Imaging 34, 2592–2602 (2015).
[Crossref] [PubMed]

Esenaliev, R. O.

K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects,” Diabetes Care 25, 2263–2267 (2002).
[Crossref] [PubMed]

R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26, 992–994 (2001).
[Crossref]

Etoz, S.

Faber, D.

Faber, D. J.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20, 121314 (2015).
[Crossref]

K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol. 25, 311–315 (2011).
[Crossref] [PubMed]

E. C. Cauberg, D. M. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. Jean, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15, 066013 (2010).
[Crossref]

D. J. Faber, F. J. Van Der Meer, M. C. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12, 4353–4365 (2004).
[Crossref] [PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum. Electron. 9, 227–233 (2003).
[Crossref]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Reports on Prog. Phys. 66, 239 (2003).
[Crossref]

Fischl, B.

Gao, W.

Ghosn, M.

K. Larin, M. Ghosn, S. Ivers, A. Tellez, and J. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett. 4, 312 (2006).
[Crossref]

Giese, A.

A. Giese, H. Böhringer, J. Leppert, S. Kantelhardt, E. Lankenau, P. Koch, R. Birngruber, and G. Hüttmann, “Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors,” in Photonic Therapeutics and Diagnostics II, vol. 6078 (International Society for Optics and Photonics, 2006), p. 60782Z.
[Crossref]

Gil, D. A.

Goderie, T. P.

G. Van Soest, T. P. Goderie, E. Regar, S. Koljenovic, A. G. J. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[Crossref] [PubMed]

Gong, P.

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt. 19, 021111 (2013).
[Crossref]

Gonzalo, N.

G. Van Soest, T. P. Goderie, E. Regar, S. Koljenovic, A. G. J. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[Crossref] [PubMed]

Granada, J.

K. Larin, M. Ghosn, S. Ivers, A. Tellez, and J. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett. 4, 312 (2006).
[Crossref]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Reports on Prog. Phys. 66, 239 (2003).
[Crossref]

Hsu, M. S.

C. L. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1, 025004 (2014).
[Crossref]

Hüttmann, G.

A. Giese, H. Böhringer, J. Leppert, S. Kantelhardt, E. Lankenau, P. Koch, R. Birngruber, and G. Hüttmann, “Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors,” in Photonic Therapeutics and Diagnostics II, vol. 6078 (International Society for Optics and Photonics, 2006), p. 60782Z.
[Crossref]

Ijichi, T.

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22, 096004 (2017).
[Crossref]

Ivers, S.

K. Larin, M. Ghosn, S. Ivers, A. Tellez, and J. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett. 4, 312 (2006).
[Crossref]

Jean, J.

E. C. Cauberg, D. M. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. Jean, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15, 066013 (2010).
[Crossref]

Kalkman, J.

Kantelhardt, S.

A. Giese, H. Böhringer, J. Leppert, S. Kantelhardt, E. Lankenau, P. Koch, R. Birngruber, and G. Hüttmann, “Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors,” in Photonic Therapeutics and Diagnostics II, vol. 6078 (International Society for Optics and Photonics, 2006), p. 60782Z.
[Crossref]

Keles, G. E.

G. E. Keles, D. A. Lundin, K. R. Lamborn, E. F. Chang, G. Ojemann, and M. S. Berger, “Intraoperative subcortical stimulation mapping for hemispheric perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients,” J. Neurosurg. 100, 369–375 (2004).
[Crossref] [PubMed]

Koch, P.

A. Giese, H. Böhringer, J. Leppert, S. Kantelhardt, E. Lankenau, P. Koch, R. Birngruber, and G. Hüttmann, “Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors,” in Photonic Therapeutics and Diagnostics II, vol. 6078 (International Society for Optics and Photonics, 2006), p. 60782Z.
[Crossref]

Kodach, V.

Koljenovic, S.

G. Van Soest, T. P. Goderie, E. Regar, S. Koljenovic, A. G. J. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[Crossref] [PubMed]

Kut, C.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Medicine 7, 292ra100 (2015).
[Crossref]

Lacy, K. E.

A. J. Coleman, T. J. Richardson, G. Orchard, A. Uddin, M. J. Choi, and K. E. Lacy, “Histological correlates of optical coherence tomography in non-melanoma skin cancer,” Ski. Res. Technol. 19, e10–e19 (2013).
[Crossref]

Laguna, M. P.

K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol. 25, 311–315 (2011).
[Crossref] [PubMed]

Lamborn, K. R.

G. E. Keles, D. A. Lundin, K. R. Lamborn, E. F. Chang, G. Ojemann, and M. S. Berger, “Intraoperative subcortical stimulation mapping for hemispheric perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients,” J. Neurosurg. 100, 369–375 (2004).
[Crossref] [PubMed]

Lankenau, E.

A. Giese, H. Böhringer, J. Leppert, S. Kantelhardt, E. Lankenau, P. Koch, R. Birngruber, and G. Hüttmann, “Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors,” in Photonic Therapeutics and Diagnostics II, vol. 6078 (International Society for Optics and Photonics, 2006), p. 60782Z.
[Crossref]

Larin, K.

K. Larin, M. Ghosn, S. Ivers, A. Tellez, and J. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett. 4, 312 (2006).
[Crossref]

Larin, K. V.

K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects,” Diabetes Care 25, 2263–2267 (2002).
[Crossref] [PubMed]

R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26, 992–994 (2001).
[Crossref]

Larina, I. V.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Reports on Prog. Phys. 66, 239 (2003).
[Crossref]

Lee, J.

Lee, P.

Lelieveldt, B. P.

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22, 096004 (2017).
[Crossref]

Lemij, H.

Lemij, H. G.

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Rpe-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment,” Invest. Ophthalmol. & Vis. Sci. 53, 6102–6108 (2012).
[Crossref]

Leppert, J.

A. Giese, H. Böhringer, J. Leppert, S. Kantelhardt, E. Lankenau, P. Koch, R. Birngruber, and G. Hüttmann, “Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors,” in Photonic Therapeutics and Diagnostics II, vol. 6078 (International Society for Optics and Photonics, 2006), p. 60782Z.
[Crossref]

Li, X.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Medicine 7, 292ra100 (2015).
[Crossref]

J. Xi, Y. Chen, and X. Li, “Characterizing optical properties of nano contrast agents by using cross-referencing OCT imaging,” Biomed. Opt. Express 4, 842–851 (2013).
[Crossref] [PubMed]

Liew, Y. M.

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt. 19, 021111 (2013).
[Crossref]

Lindmo, T.

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by monte carlo simulation,” Phys. Med. Biol. 43, 3025 (1998).
[Crossref] [PubMed]

Liu, S.

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22, 096004 (2017).
[Crossref]

Lundin, D. A.

G. E. Keles, D. A. Lundin, K. R. Lamborn, E. F. Chang, G. Ojemann, and M. S. Berger, “Intraoperative subcortical stimulation mapping for hemispheric perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients,” J. Neurosurg. 100, 369–375 (2004).
[Crossref] [PubMed]

Lurie, K. L.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, depth-resolved estimation of the attenuation coefficient from optical coherence tomography data,” IEEE Trans. Med. Imaging 34, 2592–2602 (2015).
[Crossref] [PubMed]

Magnain, C.

Marjanovic, M.

F. A. South, M. Marjanovic, and S. A. Boppart, “Intraoperative OCT in surgical oncology,” Opt. Coherence Tomogr. Technol. Appl. 2015, 2393–2412 (2015).
[Crossref]

McGirt, M. J.

M. J. McGirt, D. Mukherjee, K. L. Chaichana, K. D. Than, J. D. Weingart, and A. Quinones-Hinojosa, “Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme,” Neurosurgery 65, 463–470 (2009).
[Crossref] [PubMed]

McLaughlin, R. A.

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt. 19, 021111 (2013).
[Crossref]

McVeigh, E. R.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Medicine 7, 292ra100 (2015).
[Crossref]

Milner, T. E.

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by monte carlo simulation,” Phys. Med. Biol. 43, 3025 (1998).
[Crossref] [PubMed]

Mo, J.

Motamedi, M.

K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects,” Diabetes Care 25, 2263–2267 (2002).
[Crossref] [PubMed]

R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherence tomography,” Opt. Lett. 26, 992–994 (2001).
[Crossref]

Mukherjee, D.

M. J. McGirt, D. Mukherjee, K. L. Chaichana, K. D. Than, J. D. Weingart, and A. Quinones-Hinojosa, “Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme,” Neurosurgery 65, 463–470 (2009).
[Crossref] [PubMed]

Munro, P. R.

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt. 19, 021111 (2013).
[Crossref]

Nakazawa, G.

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22, 096004 (2017).
[Crossref]

Nelson, J. S.

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by monte carlo simulation,” Phys. Med. Biol. 43, 3025 (1998).
[Crossref] [PubMed]

Niemeier, R. C.

O’Connor, D.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, depth-resolved estimation of the attenuation coefficient from optical coherence tomography data,” IEEE Trans. Med. Imaging 34, 2592–2602 (2015).
[Crossref] [PubMed]

Ojemann, G.

G. E. Keles, D. A. Lundin, K. R. Lamborn, E. F. Chang, G. Ojemann, and M. S. Berger, “Intraoperative subcortical stimulation mapping for hemispheric perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients,” J. Neurosurg. 100, 369–375 (2004).
[Crossref] [PubMed]

Okamura, T.

G. Van Soest, T. P. Goderie, E. Regar, S. Koljenovic, A. G. J. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[Crossref] [PubMed]

Onuma, Y.

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22, 096004 (2017).
[Crossref]

Oosterhuis, W.

G. Van Soest, T. P. Goderie, E. Regar, S. Koljenovic, A. G. J. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[Crossref] [PubMed]

Orchard, G.

A. J. Coleman, T. J. Richardson, G. Orchard, A. Uddin, M. J. Choi, and K. E. Lacy, “Histological correlates of optical coherence tomography in non-melanoma skin cancer,” Ski. Res. Technol. 19, e10–e19 (2013).
[Crossref]

Park, B.

Park, B. H.

C. L. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1, 025004 (2014).
[Crossref]

Pauly, J.

N. Dwork, G. Smith, J. Pauly, and A. E. Bowden, “Automated estimation of OCT confocal function parameters from two b-scans,” in CLEO: Applications and Technology, (Optical Society of America, 2016), pp. AW1O–4.

Pauly, J. M.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, depth-resolved estimation of the attenuation coefficient from optical coherence tomography data,” IEEE Trans. Med. Imaging 34, 2592–2602 (2015).
[Crossref] [PubMed]

Podoleanu, A. G.

A. G. Podoleanu, “Optical coherence tomography,” The Br. J. Radiol. 78, 976–988 (2005).
[Crossref] [PubMed]

Quinones-Hinojosa, A.

M. J. McGirt, D. Mukherjee, K. L. Chaichana, K. D. Than, J. D. Weingart, and A. Quinones-Hinojosa, “Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme,” Neurosurgery 65, 463–470 (2009).
[Crossref] [PubMed]

Quiñones-Hinojosa, A.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Medicine 7, 292ra100 (2015).
[Crossref]

Radhakrishnan, H.

Raza, S. M.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Medicine 7, 292ra100 (2015).
[Crossref]

Regar, E.

G. Van Soest, T. P. Goderie, E. Regar, S. Koljenovic, A. G. J. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[Crossref] [PubMed]

Richardson, T. J.

A. J. Coleman, T. J. Richardson, G. Orchard, A. Uddin, M. J. Choi, and K. E. Lacy, “Histological correlates of optical coherence tomography in non-melanoma skin cancer,” Ski. Res. Technol. 19, e10–e19 (2013).
[Crossref]

Rodriguez, C. L.

C. L. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1, 025004 (2014).
[Crossref]

Rodriguez, F. J.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Medicine 7, 292ra100 (2015).
[Crossref]

Rogers, J. D.

Sakadžic, S.

Sampson, D. D.

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt. 19, 021111 (2013).
[Crossref]

Sanders, M.

Y. Yang, T. Wang, N. C. Biswal, M. Brewer, Q. Zhu, X. Wang, and M. Sanders, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16, 090504 (2011).
[Crossref] [PubMed]

Schmitt, J. M.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13, 034003 (2008).
[Crossref] [PubMed]

Serruys, P. W.

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22, 096004 (2017).
[Crossref]

G. Van Soest, T. P. Goderie, E. Regar, S. Koljenovic, A. G. J. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[Crossref] [PubMed]

Sikora, U.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, depth-resolved estimation of the attenuation coefficient from optical coherence tomography data,” IEEE Trans. Med. Imaging 34, 2592–2602 (2015).
[Crossref] [PubMed]

Skala, M. C.

Smith, G.

N. Dwork, G. Smith, J. Pauly, and A. E. Bowden, “Automated estimation of OCT confocal function parameters from two b-scans,” in CLEO: Applications and Technology, (Optical Society of America, 2016), pp. AW1O–4.

Smith, G. T.

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, depth-resolved estimation of the attenuation coefficient from optical coherence tomography data,” IEEE Trans. Med. Imaging 34, 2592–2602 (2015).
[Crossref] [PubMed]

Smithies, D. J.

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by monte carlo simulation,” Phys. Med. Biol. 43, 3025 (1998).
[Crossref] [PubMed]

Sotomi, Y.

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22, 096004 (2017).
[Crossref]

South, F. A.

F. A. South, M. Marjanovic, and S. A. Boppart, “Intraoperative OCT in surgical oncology,” Opt. Coherence Tomogr. Technol. Appl. 2015, 2393–2412 (2015).
[Crossref]

Srinivasan, V.

Szu, J. I.

C. L. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1, 025004 (2014).
[Crossref]

Tearney, G.

Tearney, G. J.

G. Van Soest, T. P. Goderie, E. Regar, S. Koljenovic, A. G. J. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[Crossref] [PubMed]

Tellez, A.

K. Larin, M. Ghosn, S. Ivers, A. Tellez, and J. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett. 4, 312 (2006).
[Crossref]

Than, K. D.

M. J. McGirt, D. Mukherjee, K. L. Chaichana, K. D. Than, J. D. Weingart, and A. Quinones-Hinojosa, “Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme,” Neurosurgery 65, 463–470 (2009).
[Crossref] [PubMed]

Torii, S.

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22, 096004 (2017).
[Crossref]

Uddin, A.

A. J. Coleman, T. J. Richardson, G. Orchard, A. Uddin, M. J. Choi, and K. E. Lacy, “Histological correlates of optical coherence tomography in non-melanoma skin cancer,” Ski. Res. Technol. 19, e10–e19 (2013).
[Crossref]

Van Der Meer, F. J.

van der Schoot, J.

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Rpe-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment,” Invest. Ophthalmol. & Vis. Sci. 53, 6102–6108 (2012).
[Crossref]

van der Steen, A. F.

G. Van Soest, T. P. Goderie, E. Regar, S. Koljenovic, A. G. J. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[Crossref] [PubMed]

van Leenders, A. G. J.

G. Van Soest, T. P. Goderie, E. Regar, S. Koljenovic, A. G. J. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[Crossref] [PubMed]

Van Leeuwen, T.

van Leeuwen, T. G.

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20, 121314 (2015).
[Crossref]

K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol. 25, 311–315 (2011).
[Crossref] [PubMed]

E. C. Cauberg, D. M. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. Jean, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15, 066013 (2010).
[Crossref]

V. Kodach, J. Kalkman, D. Faber, and T. G. van Leeuwen, “Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm,” Biomed. Opt. Express 1, 176–185 (2010).
[Crossref]

D. J. Faber, F. J. Van Der Meer, M. C. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12, 4353–4365 (2004).
[Crossref] [PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum. Electron. 9, 227–233 (2003).
[Crossref]

van Noorden, S.

G. Van Soest, T. P. Goderie, E. Regar, S. Koljenovic, A. G. J. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[Crossref] [PubMed]

Van Soest, G.

G. Van Soest, T. P. Goderie, E. Regar, S. Koljenovic, A. G. J. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[Crossref] [PubMed]

Vermeer, K.

Vermeer, K. A.

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Rpe-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment,” Invest. Ophthalmol. & Vis. Sci. 53, 6102–6108 (2012).
[Crossref]

Virmani, R.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13, 034003 (2008).
[Crossref] [PubMed]

Visser, M.

E. C. Cauberg, D. M. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. Jean, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15, 066013 (2010).
[Crossref]

Wang, H.

Wang, T.

Y. Yang, T. Wang, N. C. Biswal, M. Brewer, Q. Zhu, X. Wang, and M. Sanders, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16, 090504 (2011).
[Crossref] [PubMed]

Wang, X.

Y. Yang, T. Wang, N. C. Biswal, M. Brewer, Q. Zhu, X. Wang, and M. Sanders, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16, 090504 (2011).
[Crossref] [PubMed]

Wang, Y.

C. L. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1, 025004 (2014).
[Crossref]

Weda, J.

Weingart, J. D.

M. J. McGirt, D. Mukherjee, K. L. Chaichana, K. D. Than, J. D. Weingart, and A. Quinones-Hinojosa, “Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme,” Neurosurgery 65, 463–470 (2009).
[Crossref] [PubMed]

Wijkstra, H.

K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol. 25, 311–315 (2011).
[Crossref] [PubMed]

Wood, F. M.

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt. 19, 021111 (2013).
[Crossref]

Xi, J.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Medicine 7, 292ra100 (2015).
[Crossref]

J. Xi, Y. Chen, and X. Li, “Characterizing optical properties of nano contrast agents by using cross-referencing OCT imaging,” Biomed. Opt. Express 4, 842–851 (2013).
[Crossref] [PubMed]

Xu, C.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13, 034003 (2008).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, T. Wang, N. C. Biswal, M. Brewer, Q. Zhu, X. Wang, and M. Sanders, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16, 090504 (2011).
[Crossref] [PubMed]

Ye, X.

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Medicine 7, 292ra100 (2015).
[Crossref]

Yun, S.

Zhang, X.

Zhu, Q.

Y. Yang, T. Wang, N. C. Biswal, M. Brewer, Q. Zhu, X. Wang, and M. Sanders, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16, 090504 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (5)

Diabetes Care (1)

K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects,” Diabetes Care 25, 2263–2267 (2002).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum. Electron. (1)

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum. Electron. 9, 227–233 (2003).
[Crossref]

IEEE Trans. Med. Imaging (1)

G. T. Smith, N. Dwork, D. O’Connor, U. Sikora, K. L. Lurie, J. M. Pauly, and A. K. Ellerbee, “Automated, depth-resolved estimation of the attenuation coefficient from optical coherence tomography data,” IEEE Trans. Med. Imaging 34, 2592–2602 (2015).
[Crossref] [PubMed]

Invest. Ophthalmol. & Vis. Sci. (1)

K. A. Vermeer, J. van der Schoot, H. G. Lemij, and J. F. de Boer, “Rpe-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment,” Invest. Ophthalmol. & Vis. Sci. 53, 6102–6108 (2012).
[Crossref]

J. Biomed. Opt. (7)

P. Gong, R. A. McLaughlin, Y. M. Liew, P. R. Munro, F. M. Wood, and D. D. Sampson, “Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking,” J. Biomed. Opt. 19, 021111 (2013).
[Crossref]

Y. Yang, T. Wang, N. C. Biswal, M. Brewer, Q. Zhu, X. Wang, and M. Sanders, “Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue,” J. Biomed. Opt. 16, 090504 (2011).
[Crossref] [PubMed]

E. C. Cauberg, D. M. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. Jean, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15, 066013 (2010).
[Crossref]

G. Van Soest, T. P. Goderie, E. Regar, S. Koljenovic, A. G. J. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, W. Oosterhuis, P. W. Serruys, and A. F. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[Crossref] [PubMed]

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13, 034003 (2008).
[Crossref] [PubMed]

S. Liu, Y. Sotomi, J. Eggermont, G. Nakazawa, S. Torii, T. Ijichi, Y. Onuma, P. W. Serruys, B. P. Lelieveldt, and J. Dijkstra, “Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images,” J. Biomed. Opt. 22, 096004 (2017).
[Crossref]

M. Almasian, N. Bosschaart, T. G. van Leeuwen, and D. J. Faber, “Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime,” J. Biomed. Opt. 20, 121314 (2015).
[Crossref]

J. Endourol. (1)

K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, “Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report,” J. Endourol. 25, 311–315 (2011).
[Crossref] [PubMed]

J. Neurosurg. (1)

G. E. Keles, D. A. Lundin, K. R. Lamborn, E. F. Chang, G. Ojemann, and M. S. Berger, “Intraoperative subcortical stimulation mapping for hemispheric perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients,” J. Neurosurg. 100, 369–375 (2004).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

K. Larin, M. Ghosn, S. Ivers, A. Tellez, and J. Granada, “Quantification of glucose diffusion in arterial tissues by using optical coherence tomography,” Laser Phys. Lett. 4, 312 (2006).
[Crossref]

Neurophotonics (1)

C. L. Rodriguez, J. I. Szu, M. M. Eberle, Y. Wang, M. S. Hsu, D. K. Binder, and B. H. Park, “Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography,” Neurophotonics 1, 025004 (2014).
[Crossref]

Neurosurgery (1)

M. J. McGirt, D. Mukherjee, K. L. Chaichana, K. D. Than, J. D. Weingart, and A. Quinones-Hinojosa, “Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme,” Neurosurgery 65, 463–470 (2009).
[Crossref] [PubMed]

Opt. Coherence Tomogr. Technol. Appl. (1)

F. A. South, M. Marjanovic, and S. A. Boppart, “Intraoperative OCT in surgical oncology,” Opt. Coherence Tomogr. Technol. Appl. 2015, 2393–2412 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Med. Biol. (1)

D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by monte carlo simulation,” Phys. Med. Biol. 43, 3025 (1998).
[Crossref] [PubMed]

Reports on Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Reports on Prog. Phys. 66, 239 (2003).
[Crossref]

Sci. Transl. Medicine (1)

C. Kut, K. L. Chaichana, J. Xi, S. M. Raza, X. Ye, E. R. McVeigh, F. J. Rodriguez, A. Quiñones-Hinojosa, and X. Li, “Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography,” Sci. Transl. Medicine 7, 292ra100 (2015).
[Crossref]

Ski. Res. Technol. (1)

A. J. Coleman, T. J. Richardson, G. Orchard, A. Uddin, M. J. Choi, and K. E. Lacy, “Histological correlates of optical coherence tomography in non-melanoma skin cancer,” Ski. Res. Technol. 19, e10–e19 (2013).
[Crossref]

The Br. J. Radiol. (1)

A. G. Podoleanu, “Optical coherence tomography,” The Br. J. Radiol. 78, 976–988 (2005).
[Crossref] [PubMed]

Other (3)

N. Dwork, G. Smith, J. Pauly, and A. E. Bowden, “Automated estimation of OCT confocal function parameters from two b-scans,” in CLEO: Applications and Technology, (Optical Society of America, 2016), pp. AW1O–4.

S. Stefan and J. Lee, “Matlab script to produce a 2d map of the attenuation coefficient from two OCT volume data,” https://doi.org/10.7301/Z0PV6HW1 .

A. Giese, H. Böhringer, J. Leppert, S. Kantelhardt, E. Lankenau, P. Koch, R. Birngruber, and G. Hüttmann, “Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors,” in Photonic Therapeutics and Diagnostics II, vol. 6078 (International Society for Optics and Photonics, 2006), p. 60782Z.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Illustration of the pipeline performed in this paper to estimate the confocal profile using the novel methods, and the application of these methods in calculating attenuation coefficient maps.
Fig. 2
Fig. 2 Examples of the procedures to determine zf, where the high-NA lens and the standard sample (Intralipid 20%) were used. Left B-scan images present I1 and I2 (a vertical shift of the lens by about 0.1 mm) after coregistration by aligning the sample surfaces. Overlaid color lines in the right figures present Eq. (3) as a result of least square fittings. (a) Methods 1 and 2 for single-value estimates of zf from the laterally-averaged Id. (b) Methods 3 for estimating as a function of (x,y); only one example at the specific position (the blue vertical line on the B-scan image) is presented.
Fig. 3
Fig. 3 An example of the smooth-surface fitting of the individual zf values for Method 3 using Intralipid 20% and a high-NA lens.
Fig. 4
Fig. 4 An example of the procedure to find the theoretical focal plane with the true attenuation coefficient. For this example, the same dataset to Figs. 1 and 2 was used.
Fig. 5
Fig. 5 Focal planes determined with true μt (yellow) and Methods 1–3 (red, green, and blue, respectively). The estimations in the standard samples of Intralipid 20% and 5%, taken with both high- and low-NA lenses, are presented. For the theoretical focal planes, we used the true μt values as provided by literature.
Fig. 6
Fig. 6 Examples of attenuation coefficient calculation from an A-scan divided by the confocal effect, for Methods 1–3. When fitting a decaying exponential to the A-scan, the region of fitting was determined by examining the region of linearity of the log intensity. The middle panel shows the estimated position of focus, and the right panel shows the fitting result.
Fig. 7
Fig. 7 Attenuation coefficient maps obtained using Methods 1, 2 and 3. Histograms show the distribution of values for each map in comparison to the reference value, μ t ref .
Fig. 8
Fig. 8 OCT intensity and attenuation coefficient maps of the rodent xenograft glioblastoma in vivo. (a) The en face OCT image of the mouse brain is presented in the log mean intensity. (b) Example B-scans at three y-positions (red lines in (a)) are presented in the log scale of intensity. (c) The attenuation coefficient map determined using Method 3. The white crossheads indicate the injection location of human glioblastoma cells. Scale bars, 0.1 mm.

Tables (4)

Tables Icon

Table 1 Methods employed in this paper to estimate the position of the focal plane.

Tables Icon

Table 2 Mean and standard deviations of the calculated attenuation coefficients of standard samples of Intralipid 20% and 5%.

Tables Icon

Table 3 Accuracy and precision of the three different methods tested in estimating the attenuation coefficients of standard samples of Intralipid 20% and 5% for which the attenuation coefficients are known.

Tables Icon

Table 4 Accuracy and precision of Method 1 (β = 1) and Method 1′ (β = n)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( z ) = h ( z ) exp ( 2 μ t z )
h ( z ) = ( ( z z f α n z R ) 2 + 1 ) 1
I d I 1 ( z ) I 2 ( z ) ( z z f β Δ z ) / z r ) 2 + 1 ( z z f ) / z r ) 2 + 1
χ 2 = i = 1 N ( y i f ( x i ; a 1 a M ) ) 2
Accuracy 1 | < μ t > μ t ref μ t ref |
Precision 1 σ ( μ t ) < μ t >
I ( z ) = S ( z ) h ( z ) exp ( 2 μ t z )

Metrics