Abstract

The high rate of drug attrition caused by cardiotoxicity is a major challenge for drug development. Here, we developed a reflective lens-free imaging (RLFI) approach to non-invasively record in vitro cell deformation in cardiac monolayers with high temporal (169 fps) and non-reconstructed spatial resolution (352 µm) over a field-of-view of maximally 57 mm2. The method is compatible with opaque surfaces and silicon-based devices. Further, we demonstrated that the system can detect the impairment of both contractility and fast excitation waves in cardiac monolayers. Additionally, the RLFI device was implemented on a CMOS-based microelectrode array to retrieve multi-parametric information of cardiac cells, thereby offering more in-depth analysis of drug-induced (cardiomyopathic) effects for preclinical cardiotoxicity screening applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Label-free imaging of metabolism and oxidative stress in human induced pluripotent stem cell-derived cardiomyocytes

Rupsa Datta, Christopher Heylman, Steven C. George, and Enrico Gratton
Biomed. Opt. Express 7(5) 1690-1701 (2016)

Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy

Benjamin Rappaz, Inkyu Moon, Faliu Yi, Bahram Javidi, Pierre Marquet, and Gerardo Turcatti
Opt. Express 23(10) 13333-13347 (2015)

Optical assessment of the cardiac rhythm of contracting cardiomyocytes in vitro and a pulsating heart in vivo for pharmacological screening

Yu-Cheng Lai, Wei-Tien Chang, Kuen-You Lin, and Ian Liau
Biomed. Opt. Express 5(5) 1616-1625 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Dykens and Y. Will, “The significance of mitochondrial toxicity testing in drug development,” Drug Discov. Today 12(17-18), 777–785 (2007).
    [Crossref] [PubMed]
  2. D. M. Roden, “Predicting drug-induced QT prolongation and torsades de Pointes,” J. Physiol. 594(9), 2459–2468 (2016).
    [Crossref] [PubMed]
  3. H. R. Lu, E. Vlaminckx, A. N. Hermans, J. Rohrbacher, K. Van Ammel, R. Towart, M. Pugsley, and D. J. Gallacher, “Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in the ICHS7B Guidelines,” Br. J. Pharmacol. 154(7), 1427–1438 (2008).
    [Crossref] [PubMed]
  4. E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays,” Circulation 128(11), S3–S13 (2013).
    [Crossref] [PubMed]
  5. T. Danker and C. Möller, “Early identification of hERG liability in drug discovery programs by automated patch clamp,” Front. Pharmacol. 5(AUG), 203 (2014).
    [PubMed]
  6. D. Rajamohan, S. Kalra, M. D. Hoang, V. George, A. Staniforth, H. Russell, X. Yang, and C. Denning, “Automated Electrophysiological and Pharmacological Evaluation of Human Pluripotent Stem Cell-Derived Cardiomyocytes,” Stem Cells Dev. 25, scd.2015.0253 (2016).
    [Crossref]
  7. D. Braeken, D. Jans, R. Huys, A. Stassen, N. Collaert, L. Hoffman, W. Eberle, P. Peumans, and G. Callewaert, “Open-cell recording of action potentials using active electrode arrays,” Lab Chip 12(21), 4397–4402 (2012).
    [Crossref] [PubMed]
  8. Z. C. Lin, A. F. Mcguire, P. W. Burridge, E. Matsa, H.-Y. Lou, J. C. Wu, and B. Cui, “Accurate Nanoelectrode Recording of Human Pluripotent Stem Cell-Derived Cardiomyocytes for Assaying Drugs and Modeling Disease,” Microsystems Nanoeng. 1–8 (2017).
    [Crossref]
  9. A. Fendyur and M. E. Spira, “Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes,” Front. Neuroeng. 5, 21 (2012).
    [Crossref] [PubMed]
  10. H. Zhu, K. S. Scharnhorst, A. Z. Stieg, J. K. Gimzewski, I. Minami, N. Nakatsuji, H. Nakano, and A. Nakano, “Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system,” Sci. Rep. 7, 43210 (2017).
    [Crossref] [PubMed]
  11. R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
    [Crossref] [PubMed]
  12. F. Heer, S. Hafizovic, T. Ugniwenko, U. Frey, W. Franks, E. Perriard, J.-C. Perriard, A. Blau, C. Ziegler, and A. Hierlemann, “Single-chip microelectronic system to interface with living cells,” Biosens. Bioelectron. 22(11), 2546–2553 (2007).
    [Crossref] [PubMed]
  13. U. Frey, U. Egert, F. Heer, S. Hafizovic, and A. Hierlemann, “Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices,” Biosens. Bioelectron. 24(7), 2191–2198 (2009).
    [Crossref] [PubMed]
  14. A. Hierlemann, U. Frey, S. Hafizovic, and F. Heer, “Growing cells atop microelectronic chips: Interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays,” Proc. IEEE 99(2), 252–284 (2011).
    [Crossref]
  15. R. Shinnawi, I. Huber, L. Maizels, N. Shaheen, A. Gepstein, G. Arbel, A. J. Tijsen, and L. Gepstein, “Monitoring human-induced pluripotent stem cell-derived cardiomyocytes with genetically encoded calcium and voltage fluorescent reporters,” Stem Cell Reports 5(4), 582–596 (2015).
    [Crossref] [PubMed]
  16. O. Sirenko, E. F. Cromwell, C. Crittenden, J. A. Wignall, F. A. Wright, and I. Rusyn, “Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity,” Toxicol. Appl. Pharmacol. 273(3), 500–507 (2013).
    [Crossref] [PubMed]
  17. R. M. Paredes, J. C. Etzler, L. T. Watts, W. Zheng, and J. D. Lechleiter, “Chemical calcium indicators,” Methods 46(3), 143–151 (2008).
    [Crossref] [PubMed]
  18. J. E. McCombs and A. E. Palmer, “Measuring calcium dynamics in living cells with genetically encodable calcium indicators,” Methods 46(3), 152–159 (2008).
    [Crossref] [PubMed]
  19. B. Xi, T. Wang, N. Li, W. Ouyang, W. Zhang, J. Wu, X. Xu, X. Wang, and Y. A. Abassi, “Functional Cardiotoxicity Profiling and Screening Using the xCELLigence RTCA Cardio System,” J. Lab. Autom. 16(6), 415–421 (2011).
    [Crossref] [PubMed]
  20. F. Qian, C. Huang, Y.-D. Lin, A. N. Ivanovskaya, T. J. O’Hara, R. H. Booth, C. J. Creek, H. A. Enright, D. A. Soscia, A. M. Belle, R. Liao, F. C. Lightstone, K. S. Kulp, and E. K. Wheeler, “Simultaneous Electrical Recording of Cardiac Electrophysiology and Contraction on Chip,” Lab Chip 17(10), 1732–1739 (2017).
    [Crossref] [PubMed]
  21. M. M. Hossain, E. Shimizu, M. Saito, S. R. Rao, Y. Yamaguchi, and E. Tamiya, “Non-invasive characterization of mouse embryonic stem cell derived cardiomyocytes based on the intensity variation in digital beating video,” Analyst (Lond.) 135(7), 1624–1630 (2010).
    [Crossref] [PubMed]
  22. T. Hayakawa, T. Kunihiro, S. Dowaki, H. Uno, E. Matsui, M. Uchida, S. Kobayashi, A. Yasuda, T. Shimizu, and T. Okano, “Noninvasive Evaluation of Contractile Behavior of Cardiomyocyte Monolayers Based on Motion Vector Analysis,” Tissue Eng. Part C Methods 18(1), 21–32 (2012).
    [Crossref] [PubMed]
  23. A. Ahola, A. L. Kiviaho, K. Larsson, M. Honkanen, K. Aalto-Setälä, and J. Hyttinen, “Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation,” Biomed. Eng. Online 13(1), 39 (2014).
    [Crossref] [PubMed]
  24. E. K. Lee, Y. K. Kurokawa, R. Tu, S. C. George, and M. Khine, “Machine learning plus optical flow: a simple and sensitive method to detect cardioactive drugs,” Sci. Rep. 5(1), 11817 (2015).
    [Crossref] [PubMed]
  25. N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1(2), 706–719 (2010).
    [Crossref] [PubMed]
  26. C. Cordeiro, O. J. Abilez, G. Goetz, T. Gupta, Y. Zhuge, O. Solgaard, and D. Palanker, “Optophysiology of cardiomyocytes: characterizing cellular motion with quantitative phase imaging,” Biomed. Opt. Express 8(10), 4652–4662 (2017).
    [Crossref] [PubMed]
  27. A. R. Harmer, N. Abi-Gerges, M. J. Morton, G. F. Pullen, J. P. Valentin, and C. E. Pollard, “Validation of an in vitro contractility assay using canine ventricular myocytes,” Toxicol. Appl. Pharmacol. 260(2), 162–172 (2012).
    [Crossref] [PubMed]
  28. D. Gabor, “A New Microscopic Principle,” Nature 161(4098), 777–778 (1948).
    [Crossref] [PubMed]
  29. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999).
    [Crossref]
  30. S. B. Kim, H. Bae, K.-I. Koo, M. R. Dokmeci, A. Ozcan, and A. Khademhosseini, “Lens-free imaging for biological applications,” J. Lab. Autom. 17(1), 43–49 (2012).
    [Crossref] [PubMed]
  31. W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
    [Crossref] [PubMed]
  32. X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
    [Crossref] [PubMed]
  33. O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
    [Crossref] [PubMed]
  34. S. B. Kim, H. Bae, J. M. Cha, S. J. Moon, M. R. Dokmeci, D. M. Cropek, and A. Khademhosseini, “A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging,” Lab Chip 11(10), 1801–1807 (2011).
    [Crossref] [PubMed]
  35. T. Pauwelyn, V. Reumers, G. Vanmeerbeeck, R. Stahl, S. Janssens, L. Lagae, D. Braeken, and A. Lambrechts, “Label-free cardiac contractility monitoring for drug screening applications based on compact high-speed lens-free imaging,” in SPIE BiOS (2015), Vol. 9328, p. 932818.
  36. P. J. Guns, D. M. Johnson, E. Weltens, and J. Lissens, “Negative electro-mechanical windows are required for drug-induced Torsades de Pointes in the anesthetized guinea pig,” J. Pharmacol. Toxicol. Methods 66(2), 125–134 (2012).
    [Crossref] [PubMed]
  37. T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
    [Crossref] [PubMed]
  38. O. Sirenko, E. F. Cromwell, C. Crittenden, J. A. Wignall, F. A. Wright, and I. Rusyn, “Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity,” Toxicol. Appl. Pharmacol. 273(3), 500–507 (2013).
    [Crossref] [PubMed]
  39. R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
    [Crossref] [PubMed]
  40. A. Susloparova, D. Koppenhöfer, X. T. Vu, M. Weil, and S. Ingebrandt, “Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells,” Biosens. Bioelectron. 40(1), 50–56 (2013).
    [Crossref] [PubMed]
  41. A. Valero, J. N. Post, J. W. van Nieuwkasteele, P. M. Ter Braak, W. Kruijer, and A. van den Berg, “Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device,” Lab Chip 8(1), 62–67 (2008).
    [Crossref] [PubMed]
  42. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
    [Crossref] [PubMed]
  43. M. Lee, O. Yaglidere, and A. Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. Express 2(9), 2721–2730 (2011).
    [Crossref] [PubMed]
  44. M. Welkenhuysen, L. Hoffman, Z. Luo, A. De Proft, C. Van den Haute, V. Baekelandt, Z. Debyser, G. Gielen, R. Puers, and D. Braeken, “An integrated multi-electrode-optrode array for in vitro optogenetics,” Sci. Rep. 6(1), 20353 (2016).
    [Crossref] [PubMed]
  45. D. M. Bers, “Calcium fluxes involved in control of cardiac myocyte contraction,” Circ. Res. 87(4), 275–281 (2000).
    [Crossref] [PubMed]
  46. G. Gintant, P. T. Sager, and N. Stockbridge, “Evolution of strategies to improve preclinical cardiac safety testing,” Nat. Rev. Drug Discov. 15(7), 457–471 (2016).
    [Crossref] [PubMed]
  47. H. V. M. van Rijen, T. A. B. van Veen, D. Gros, R. Wilders, and J. M. T. de Bakker, “Connexins and cardiac arrhythmias,” Adv. Cardiol. 42, 150–160 (2006).
    [Crossref] [PubMed]
  48. S. Rohr, D. M. Schölly, and A. G. Kléber, “Patterned growth of neonatal rat heart cells in culture. Morphological and electrophysiological characterization,” Circ. Res. 68(1), 114–130 (1991).
    [Crossref] [PubMed]
  49. E. Entcheva, S. N. Lu, R. H. Troppman, V. Sharma, and L. Tung, “Contact fluorescence imaging of reentry in monolayers of cultured neonatal rat ventricular myocytes,” J. Cardiovasc. Electrophysiol. 11(6), 665–676 (2000).
    [Crossref] [PubMed]
  50. W. C. Cole, J. B. Picone, and N. Sperelakis, “Gap junction uncoupling and discontinuous propagation in the heart. A comparison of experimental data with computer simulations,” Biophys. J. 53(5), 809–818 (1988).
    [Crossref] [PubMed]

2017 (3)

H. Zhu, K. S. Scharnhorst, A. Z. Stieg, J. K. Gimzewski, I. Minami, N. Nakatsuji, H. Nakano, and A. Nakano, “Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system,” Sci. Rep. 7, 43210 (2017).
[Crossref] [PubMed]

F. Qian, C. Huang, Y.-D. Lin, A. N. Ivanovskaya, T. J. O’Hara, R. H. Booth, C. J. Creek, H. A. Enright, D. A. Soscia, A. M. Belle, R. Liao, F. C. Lightstone, K. S. Kulp, and E. K. Wheeler, “Simultaneous Electrical Recording of Cardiac Electrophysiology and Contraction on Chip,” Lab Chip 17(10), 1732–1739 (2017).
[Crossref] [PubMed]

C. Cordeiro, O. J. Abilez, G. Goetz, T. Gupta, Y. Zhuge, O. Solgaard, and D. Palanker, “Optophysiology of cardiomyocytes: characterizing cellular motion with quantitative phase imaging,” Biomed. Opt. Express 8(10), 4652–4662 (2017).
[Crossref] [PubMed]

2016 (3)

D. M. Roden, “Predicting drug-induced QT prolongation and torsades de Pointes,” J. Physiol. 594(9), 2459–2468 (2016).
[Crossref] [PubMed]

M. Welkenhuysen, L. Hoffman, Z. Luo, A. De Proft, C. Van den Haute, V. Baekelandt, Z. Debyser, G. Gielen, R. Puers, and D. Braeken, “An integrated multi-electrode-optrode array for in vitro optogenetics,” Sci. Rep. 6(1), 20353 (2016).
[Crossref] [PubMed]

G. Gintant, P. T. Sager, and N. Stockbridge, “Evolution of strategies to improve preclinical cardiac safety testing,” Nat. Rev. Drug Discov. 15(7), 457–471 (2016).
[Crossref] [PubMed]

2015 (2)

R. Shinnawi, I. Huber, L. Maizels, N. Shaheen, A. Gepstein, G. Arbel, A. J. Tijsen, and L. Gepstein, “Monitoring human-induced pluripotent stem cell-derived cardiomyocytes with genetically encoded calcium and voltage fluorescent reporters,” Stem Cell Reports 5(4), 582–596 (2015).
[Crossref] [PubMed]

E. K. Lee, Y. K. Kurokawa, R. Tu, S. C. George, and M. Khine, “Machine learning plus optical flow: a simple and sensitive method to detect cardioactive drugs,” Sci. Rep. 5(1), 11817 (2015).
[Crossref] [PubMed]

2014 (3)

A. Ahola, A. L. Kiviaho, K. Larsson, M. Honkanen, K. Aalto-Setälä, and J. Hyttinen, “Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation,” Biomed. Eng. Online 13(1), 39 (2014).
[Crossref] [PubMed]

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

T. Danker and C. Möller, “Early identification of hERG liability in drug discovery programs by automated patch clamp,” Front. Pharmacol. 5(AUG), 203 (2014).
[PubMed]

2013 (4)

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays,” Circulation 128(11), S3–S13 (2013).
[Crossref] [PubMed]

O. Sirenko, E. F. Cromwell, C. Crittenden, J. A. Wignall, F. A. Wright, and I. Rusyn, “Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity,” Toxicol. Appl. Pharmacol. 273(3), 500–507 (2013).
[Crossref] [PubMed]

O. Sirenko, E. F. Cromwell, C. Crittenden, J. A. Wignall, F. A. Wright, and I. Rusyn, “Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity,” Toxicol. Appl. Pharmacol. 273(3), 500–507 (2013).
[Crossref] [PubMed]

A. Susloparova, D. Koppenhöfer, X. T. Vu, M. Weil, and S. Ingebrandt, “Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells,” Biosens. Bioelectron. 40(1), 50–56 (2013).
[Crossref] [PubMed]

2012 (8)

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

S. B. Kim, H. Bae, K.-I. Koo, M. R. Dokmeci, A. Ozcan, and A. Khademhosseini, “Lens-free imaging for biological applications,” J. Lab. Autom. 17(1), 43–49 (2012).
[Crossref] [PubMed]

A. R. Harmer, N. Abi-Gerges, M. J. Morton, G. F. Pullen, J. P. Valentin, and C. E. Pollard, “Validation of an in vitro contractility assay using canine ventricular myocytes,” Toxicol. Appl. Pharmacol. 260(2), 162–172 (2012).
[Crossref] [PubMed]

T. Hayakawa, T. Kunihiro, S. Dowaki, H. Uno, E. Matsui, M. Uchida, S. Kobayashi, A. Yasuda, T. Shimizu, and T. Okano, “Noninvasive Evaluation of Contractile Behavior of Cardiomyocyte Monolayers Based on Motion Vector Analysis,” Tissue Eng. Part C Methods 18(1), 21–32 (2012).
[Crossref] [PubMed]

D. Braeken, D. Jans, R. Huys, A. Stassen, N. Collaert, L. Hoffman, W. Eberle, P. Peumans, and G. Callewaert, “Open-cell recording of action potentials using active electrode arrays,” Lab Chip 12(21), 4397–4402 (2012).
[Crossref] [PubMed]

A. Fendyur and M. E. Spira, “Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes,” Front. Neuroeng. 5, 21 (2012).
[Crossref] [PubMed]

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

P. J. Guns, D. M. Johnson, E. Weltens, and J. Lissens, “Negative electro-mechanical windows are required for drug-induced Torsades de Pointes in the anesthetized guinea pig,” J. Pharmacol. Toxicol. Methods 66(2), 125–134 (2012).
[Crossref] [PubMed]

2011 (5)

M. Lee, O. Yaglidere, and A. Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. Express 2(9), 2721–2730 (2011).
[Crossref] [PubMed]

A. Hierlemann, U. Frey, S. Hafizovic, and F. Heer, “Growing cells atop microelectronic chips: Interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays,” Proc. IEEE 99(2), 252–284 (2011).
[Crossref]

B. Xi, T. Wang, N. Li, W. Ouyang, W. Zhang, J. Wu, X. Xu, X. Wang, and Y. A. Abassi, “Functional Cardiotoxicity Profiling and Screening Using the xCELLigence RTCA Cardio System,” J. Lab. Autom. 16(6), 415–421 (2011).
[Crossref] [PubMed]

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

S. B. Kim, H. Bae, J. M. Cha, S. J. Moon, M. R. Dokmeci, D. M. Cropek, and A. Khademhosseini, “A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging,” Lab Chip 11(10), 1801–1807 (2011).
[Crossref] [PubMed]

2010 (3)

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1(2), 706–719 (2010).
[Crossref] [PubMed]

M. M. Hossain, E. Shimizu, M. Saito, S. R. Rao, Y. Yamaguchi, and E. Tamiya, “Non-invasive characterization of mouse embryonic stem cell derived cardiomyocytes based on the intensity variation in digital beating video,” Analyst (Lond.) 135(7), 1624–1630 (2010).
[Crossref] [PubMed]

2009 (1)

U. Frey, U. Egert, F. Heer, S. Hafizovic, and A. Hierlemann, “Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices,” Biosens. Bioelectron. 24(7), 2191–2198 (2009).
[Crossref] [PubMed]

2008 (5)

R. M. Paredes, J. C. Etzler, L. T. Watts, W. Zheng, and J. D. Lechleiter, “Chemical calcium indicators,” Methods 46(3), 143–151 (2008).
[Crossref] [PubMed]

J. E. McCombs and A. E. Palmer, “Measuring calcium dynamics in living cells with genetically encodable calcium indicators,” Methods 46(3), 152–159 (2008).
[Crossref] [PubMed]

H. R. Lu, E. Vlaminckx, A. N. Hermans, J. Rohrbacher, K. Van Ammel, R. Towart, M. Pugsley, and D. J. Gallacher, “Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in the ICHS7B Guidelines,” Br. J. Pharmacol. 154(7), 1427–1438 (2008).
[Crossref] [PubMed]

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

A. Valero, J. N. Post, J. W. van Nieuwkasteele, P. M. Ter Braak, W. Kruijer, and A. van den Berg, “Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device,” Lab Chip 8(1), 62–67 (2008).
[Crossref] [PubMed]

2007 (2)

J. A. Dykens and Y. Will, “The significance of mitochondrial toxicity testing in drug development,” Drug Discov. Today 12(17-18), 777–785 (2007).
[Crossref] [PubMed]

F. Heer, S. Hafizovic, T. Ugniwenko, U. Frey, W. Franks, E. Perriard, J.-C. Perriard, A. Blau, C. Ziegler, and A. Hierlemann, “Single-chip microelectronic system to interface with living cells,” Biosens. Bioelectron. 22(11), 2546–2553 (2007).
[Crossref] [PubMed]

2006 (1)

H. V. M. van Rijen, T. A. B. van Veen, D. Gros, R. Wilders, and J. M. T. de Bakker, “Connexins and cardiac arrhythmias,” Adv. Cardiol. 42, 150–160 (2006).
[Crossref] [PubMed]

2000 (3)

E. Entcheva, S. N. Lu, R. H. Troppman, V. Sharma, and L. Tung, “Contact fluorescence imaging of reentry in monolayers of cultured neonatal rat ventricular myocytes,” J. Cardiovasc. Electrophysiol. 11(6), 665–676 (2000).
[Crossref] [PubMed]

D. M. Bers, “Calcium fluxes involved in control of cardiac myocyte contraction,” Circ. Res. 87(4), 275–281 (2000).
[Crossref] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
[Crossref] [PubMed]

1999 (1)

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999).
[Crossref]

1991 (1)

S. Rohr, D. M. Schölly, and A. G. Kléber, “Patterned growth of neonatal rat heart cells in culture. Morphological and electrophysiological characterization,” Circ. Res. 68(1), 114–130 (1991).
[Crossref] [PubMed]

1988 (1)

W. C. Cole, J. B. Picone, and N. Sperelakis, “Gap junction uncoupling and discontinuous propagation in the heart. A comparison of experimental data with computer simulations,” Biophys. J. 53(5), 809–818 (1988).
[Crossref] [PubMed]

1948 (1)

D. Gabor, “A New Microscopic Principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Aalto-Setälä, K.

A. Ahola, A. L. Kiviaho, K. Larsson, M. Honkanen, K. Aalto-Setälä, and J. Hyttinen, “Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation,” Biomed. Eng. Online 13(1), 39 (2014).
[Crossref] [PubMed]

Abassi, Y. A.

B. Xi, T. Wang, N. Li, W. Ouyang, W. Zhang, J. Wu, X. Xu, X. Wang, and Y. A. Abassi, “Functional Cardiotoxicity Profiling and Screening Using the xCELLigence RTCA Cardio System,” J. Lab. Autom. 16(6), 415–421 (2011).
[Crossref] [PubMed]

Abi-Gerges, N.

A. R. Harmer, N. Abi-Gerges, M. J. Morton, G. F. Pullen, J. P. Valentin, and C. E. Pollard, “Validation of an in vitro contractility assay using canine ventricular myocytes,” Toxicol. Appl. Pharmacol. 260(2), 162–172 (2012).
[Crossref] [PubMed]

Abilez, O. J.

Ahola, A.

A. Ahola, A. L. Kiviaho, K. Larsson, M. Honkanen, K. Aalto-Setälä, and J. Hyttinen, “Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation,” Biomed. Eng. Online 13(1), 39 (2014).
[Crossref] [PubMed]

Ando, T.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Arbel, G.

R. Shinnawi, I. Huber, L. Maizels, N. Shaheen, A. Gepstein, G. Arbel, A. J. Tijsen, and L. Gepstein, “Monitoring human-induced pluripotent stem cell-derived cardiomyocytes with genetically encoded calcium and voltage fluorescent reporters,” Stem Cell Reports 5(4), 582–596 (2015).
[Crossref] [PubMed]

Bae, H.

S. B. Kim, H. Bae, K.-I. Koo, M. R. Dokmeci, A. Ozcan, and A. Khademhosseini, “Lens-free imaging for biological applications,” J. Lab. Autom. 17(1), 43–49 (2012).
[Crossref] [PubMed]

S. B. Kim, H. Bae, J. M. Cha, S. J. Moon, M. R. Dokmeci, D. M. Cropek, and A. Khademhosseini, “A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging,” Lab Chip 11(10), 1801–1807 (2011).
[Crossref] [PubMed]

Baekelandt, V.

M. Welkenhuysen, L. Hoffman, Z. Luo, A. De Proft, C. Van den Haute, V. Baekelandt, Z. Debyser, G. Gielen, R. Puers, and D. Braeken, “An integrated multi-electrode-optrode array for in vitro optogenetics,” Sci. Rep. 6(1), 20353 (2016).
[Crossref] [PubMed]

Bartic, C.

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

Belle, A. M.

F. Qian, C. Huang, Y.-D. Lin, A. N. Ivanovskaya, T. J. O’Hara, R. H. Booth, C. J. Creek, H. A. Enright, D. A. Soscia, A. M. Belle, R. Liao, F. C. Lightstone, K. S. Kulp, and E. K. Wheeler, “Simultaneous Electrical Recording of Cardiac Electrophysiology and Contraction on Chip,” Lab Chip 17(10), 1732–1739 (2017).
[Crossref] [PubMed]

Bers, D. M.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays,” Circulation 128(11), S3–S13 (2013).
[Crossref] [PubMed]

D. M. Bers, “Calcium fluxes involved in control of cardiac myocyte contraction,” Circ. Res. 87(4), 275–281 (2000).
[Crossref] [PubMed]

Beygui, R. E.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays,” Circulation 128(11), S3–S13 (2013).
[Crossref] [PubMed]

Bishara, W.

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Blau, A.

F. Heer, S. Hafizovic, T. Ugniwenko, U. Frey, W. Franks, E. Perriard, J.-C. Perriard, A. Blau, C. Ziegler, and A. Hierlemann, “Single-chip microelectronic system to interface with living cells,” Biosens. Bioelectron. 22(11), 2546–2553 (2007).
[Crossref] [PubMed]

Booth, R. H.

F. Qian, C. Huang, Y.-D. Lin, A. N. Ivanovskaya, T. J. O’Hara, R. H. Booth, C. J. Creek, H. A. Enright, D. A. Soscia, A. M. Belle, R. Liao, F. C. Lightstone, K. S. Kulp, and E. K. Wheeler, “Simultaneous Electrical Recording of Cardiac Electrophysiology and Contraction on Chip,” Lab Chip 17(10), 1732–1739 (2017).
[Crossref] [PubMed]

Braeken, D.

M. Welkenhuysen, L. Hoffman, Z. Luo, A. De Proft, C. Van den Haute, V. Baekelandt, Z. Debyser, G. Gielen, R. Puers, and D. Braeken, “An integrated multi-electrode-optrode array for in vitro optogenetics,” Sci. Rep. 6(1), 20353 (2016).
[Crossref] [PubMed]

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

D. Braeken, D. Jans, R. Huys, A. Stassen, N. Collaert, L. Hoffman, W. Eberle, P. Peumans, and G. Callewaert, “Open-cell recording of action potentials using active electrode arrays,” Lab Chip 12(21), 4397–4402 (2012).
[Crossref] [PubMed]

Burridge, P. W.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays,” Circulation 128(11), S3–S13 (2013).
[Crossref] [PubMed]

Bursac, N.

Callewaert, G.

D. Braeken, D. Jans, R. Huys, A. Stassen, N. Collaert, L. Hoffman, W. Eberle, P. Peumans, and G. Callewaert, “Open-cell recording of action potentials using active electrode arrays,” Lab Chip 12(21), 4397–4402 (2012).
[Crossref] [PubMed]

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

Cha, J. M.

S. B. Kim, H. Bae, J. M. Cha, S. J. Moon, M. R. Dokmeci, D. M. Cropek, and A. Khademhosseini, “A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging,” Lab Chip 11(10), 1801–1807 (2011).
[Crossref] [PubMed]

Charalambous, P.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999).
[Crossref]

Cole, W. C.

W. C. Cole, J. B. Picone, and N. Sperelakis, “Gap junction uncoupling and discontinuous propagation in the heart. A comparison of experimental data with computer simulations,” Biophys. J. 53(5), 809–818 (1988).
[Crossref] [PubMed]

Collaert, N.

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

D. Braeken, D. Jans, R. Huys, A. Stassen, N. Collaert, L. Hoffman, W. Eberle, P. Peumans, and G. Callewaert, “Open-cell recording of action potentials using active electrode arrays,” Lab Chip 12(21), 4397–4402 (2012).
[Crossref] [PubMed]

Cordeiro, C.

Creek, C. J.

F. Qian, C. Huang, Y.-D. Lin, A. N. Ivanovskaya, T. J. O’Hara, R. H. Booth, C. J. Creek, H. A. Enright, D. A. Soscia, A. M. Belle, R. Liao, F. C. Lightstone, K. S. Kulp, and E. K. Wheeler, “Simultaneous Electrical Recording of Cardiac Electrophysiology and Contraction on Chip,” Lab Chip 17(10), 1732–1739 (2017).
[Crossref] [PubMed]

Crittenden, C.

O. Sirenko, E. F. Cromwell, C. Crittenden, J. A. Wignall, F. A. Wright, and I. Rusyn, “Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity,” Toxicol. Appl. Pharmacol. 273(3), 500–507 (2013).
[Crossref] [PubMed]

O. Sirenko, E. F. Cromwell, C. Crittenden, J. A. Wignall, F. A. Wright, and I. Rusyn, “Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity,” Toxicol. Appl. Pharmacol. 273(3), 500–507 (2013).
[Crossref] [PubMed]

Cromwell, E. F.

O. Sirenko, E. F. Cromwell, C. Crittenden, J. A. Wignall, F. A. Wright, and I. Rusyn, “Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity,” Toxicol. Appl. Pharmacol. 273(3), 500–507 (2013).
[Crossref] [PubMed]

O. Sirenko, E. F. Cromwell, C. Crittenden, J. A. Wignall, F. A. Wright, and I. Rusyn, “Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity,” Toxicol. Appl. Pharmacol. 273(3), 500–507 (2013).
[Crossref] [PubMed]

Cropek, D. M.

S. B. Kim, H. Bae, J. M. Cha, S. J. Moon, M. R. Dokmeci, D. M. Cropek, and A. Khademhosseini, “A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging,” Lab Chip 11(10), 1801–1807 (2011).
[Crossref] [PubMed]

Cuche, E.

Cui, X.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

Danker, T.

T. Danker and C. Möller, “Early identification of hERG liability in drug discovery programs by automated patch clamp,” Front. Pharmacol. 5(AUG), 203 (2014).
[PubMed]

de Bakker, J. M. T.

H. V. M. van Rijen, T. A. B. van Veen, D. Gros, R. Wilders, and J. M. T. de Bakker, “Connexins and cardiac arrhythmias,” Adv. Cardiol. 42, 150–160 (2006).
[Crossref] [PubMed]

De Proft, A.

M. Welkenhuysen, L. Hoffman, Z. Luo, A. De Proft, C. Van den Haute, V. Baekelandt, Z. Debyser, G. Gielen, R. Puers, and D. Braeken, “An integrated multi-electrode-optrode array for in vitro optogenetics,” Sci. Rep. 6(1), 20353 (2016).
[Crossref] [PubMed]

Debyser, Z.

M. Welkenhuysen, L. Hoffman, Z. Luo, A. De Proft, C. Van den Haute, V. Baekelandt, Z. Debyser, G. Gielen, R. Puers, and D. Braeken, “An integrated multi-electrode-optrode array for in vitro optogenetics,” Sci. Rep. 6(1), 20353 (2016).
[Crossref] [PubMed]

Depeursinge, C.

Dokmeci, M. R.

S. B. Kim, H. Bae, K.-I. Koo, M. R. Dokmeci, A. Ozcan, and A. Khademhosseini, “Lens-free imaging for biological applications,” J. Lab. Autom. 17(1), 43–49 (2012).
[Crossref] [PubMed]

S. B. Kim, H. Bae, J. M. Cha, S. J. Moon, M. R. Dokmeci, D. M. Cropek, and A. Khademhosseini, “A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging,” Lab Chip 11(10), 1801–1807 (2011).
[Crossref] [PubMed]

Dowaki, S.

T. Hayakawa, T. Kunihiro, S. Dowaki, H. Uno, E. Matsui, M. Uchida, S. Kobayashi, A. Yasuda, T. Shimizu, and T. Okano, “Noninvasive Evaluation of Contractile Behavior of Cardiomyocyte Monolayers Based on Motion Vector Analysis,” Tissue Eng. Part C Methods 18(1), 21–32 (2012).
[Crossref] [PubMed]

Dykens, J. A.

J. A. Dykens and Y. Will, “The significance of mitochondrial toxicity testing in drug development,” Drug Discov. Today 12(17-18), 777–785 (2007).
[Crossref] [PubMed]

Eberle, W.

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

D. Braeken, D. Jans, R. Huys, A. Stassen, N. Collaert, L. Hoffman, W. Eberle, P. Peumans, and G. Callewaert, “Open-cell recording of action potentials using active electrode arrays,” Lab Chip 12(21), 4397–4402 (2012).
[Crossref] [PubMed]

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

Egert, U.

U. Frey, U. Egert, F. Heer, S. Hafizovic, and A. Hierlemann, “Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices,” Biosens. Bioelectron. 24(7), 2191–2198 (2009).
[Crossref] [PubMed]

Enright, H. A.

F. Qian, C. Huang, Y.-D. Lin, A. N. Ivanovskaya, T. J. O’Hara, R. H. Booth, C. J. Creek, H. A. Enright, D. A. Soscia, A. M. Belle, R. Liao, F. C. Lightstone, K. S. Kulp, and E. K. Wheeler, “Simultaneous Electrical Recording of Cardiac Electrophysiology and Contraction on Chip,” Lab Chip 17(10), 1732–1739 (2017).
[Crossref] [PubMed]

Entcheva, E.

E. Entcheva, S. N. Lu, R. H. Troppman, V. Sharma, and L. Tung, “Contact fluorescence imaging of reentry in monolayers of cultured neonatal rat ventricular myocytes,” J. Cardiovasc. Electrophysiol. 11(6), 665–676 (2000).
[Crossref] [PubMed]

Etzler, J. C.

R. M. Paredes, J. C. Etzler, L. T. Watts, W. Zheng, and J. D. Lechleiter, “Chemical calcium indicators,” Methods 46(3), 143–151 (2008).
[Crossref] [PubMed]

Fendyur, A.

A. Fendyur and M. E. Spira, “Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes,” Front. Neuroeng. 5, 21 (2012).
[Crossref] [PubMed]

Franks, W.

F. Heer, S. Hafizovic, T. Ugniwenko, U. Frey, W. Franks, E. Perriard, J.-C. Perriard, A. Blau, C. Ziegler, and A. Hierlemann, “Single-chip microelectronic system to interface with living cells,” Biosens. Bioelectron. 22(11), 2546–2553 (2007).
[Crossref] [PubMed]

Frey, U.

A. Hierlemann, U. Frey, S. Hafizovic, and F. Heer, “Growing cells atop microelectronic chips: Interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays,” Proc. IEEE 99(2), 252–284 (2011).
[Crossref]

U. Frey, U. Egert, F. Heer, S. Hafizovic, and A. Hierlemann, “Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices,” Biosens. Bioelectron. 24(7), 2191–2198 (2009).
[Crossref] [PubMed]

F. Heer, S. Hafizovic, T. Ugniwenko, U. Frey, W. Franks, E. Perriard, J.-C. Perriard, A. Blau, C. Ziegler, and A. Hierlemann, “Single-chip microelectronic system to interface with living cells,” Biosens. Bioelectron. 22(11), 2546–2553 (2007).
[Crossref] [PubMed]

Furukawa, T.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Gabor, D.

D. Gabor, “A New Microscopic Principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

Gallacher, D. J.

H. R. Lu, E. Vlaminckx, A. N. Hermans, J. Rohrbacher, K. Van Ammel, R. Towart, M. Pugsley, and D. J. Gallacher, “Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in the ICHS7B Guidelines,” Br. J. Pharmacol. 154(7), 1427–1438 (2008).
[Crossref] [PubMed]

George, S. C.

E. K. Lee, Y. K. Kurokawa, R. Tu, S. C. George, and M. Khine, “Machine learning plus optical flow: a simple and sensitive method to detect cardioactive drugs,” Sci. Rep. 5(1), 11817 (2015).
[Crossref] [PubMed]

Gepstein, A.

R. Shinnawi, I. Huber, L. Maizels, N. Shaheen, A. Gepstein, G. Arbel, A. J. Tijsen, and L. Gepstein, “Monitoring human-induced pluripotent stem cell-derived cardiomyocytes with genetically encoded calcium and voltage fluorescent reporters,” Stem Cell Reports 5(4), 582–596 (2015).
[Crossref] [PubMed]

Gepstein, L.

R. Shinnawi, I. Huber, L. Maizels, N. Shaheen, A. Gepstein, G. Arbel, A. J. Tijsen, and L. Gepstein, “Monitoring human-induced pluripotent stem cell-derived cardiomyocytes with genetically encoded calcium and voltage fluorescent reporters,” Stem Cell Reports 5(4), 582–596 (2015).
[Crossref] [PubMed]

Gielen, G.

M. Welkenhuysen, L. Hoffman, Z. Luo, A. De Proft, C. Van den Haute, V. Baekelandt, Z. Debyser, G. Gielen, R. Puers, and D. Braeken, “An integrated multi-electrode-optrode array for in vitro optogenetics,” Sci. Rep. 6(1), 20353 (2016).
[Crossref] [PubMed]

Gimzewski, J. K.

H. Zhu, K. S. Scharnhorst, A. Z. Stieg, J. K. Gimzewski, I. Minami, N. Nakatsuji, H. Nakano, and A. Nakano, “Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system,” Sci. Rep. 7, 43210 (2017).
[Crossref] [PubMed]

Gintant, G.

G. Gintant, P. T. Sager, and N. Stockbridge, “Evolution of strategies to improve preclinical cardiac safety testing,” Nat. Rev. Drug Discov. 15(7), 457–471 (2016).
[Crossref] [PubMed]

Goetz, G.

Gong, T.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays,” Circulation 128(11), S3–S13 (2013).
[Crossref] [PubMed]

Gros, D.

H. V. M. van Rijen, T. A. B. van Veen, D. Gros, R. Wilders, and J. M. T. de Bakker, “Connexins and cardiac arrhythmias,” Adv. Cardiol. 42, 150–160 (2006).
[Crossref] [PubMed]

Guns, P. J.

P. J. Guns, D. M. Johnson, E. Weltens, and J. Lissens, “Negative electro-mechanical windows are required for drug-induced Torsades de Pointes in the anesthetized guinea pig,” J. Pharmacol. Toxicol. Methods 66(2), 125–134 (2012).
[Crossref] [PubMed]

Gupta, T.

Hafizovic, S.

A. Hierlemann, U. Frey, S. Hafizovic, and F. Heer, “Growing cells atop microelectronic chips: Interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays,” Proc. IEEE 99(2), 252–284 (2011).
[Crossref]

U. Frey, U. Egert, F. Heer, S. Hafizovic, and A. Hierlemann, “Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices,” Biosens. Bioelectron. 24(7), 2191–2198 (2009).
[Crossref] [PubMed]

F. Heer, S. Hafizovic, T. Ugniwenko, U. Frey, W. Franks, E. Perriard, J.-C. Perriard, A. Blau, C. Ziegler, and A. Hierlemann, “Single-chip microelectronic system to interface with living cells,” Biosens. Bioelectron. 22(11), 2546–2553 (2007).
[Crossref] [PubMed]

Harmer, A. R.

A. R. Harmer, N. Abi-Gerges, M. J. Morton, G. F. Pullen, J. P. Valentin, and C. E. Pollard, “Validation of an in vitro contractility assay using canine ventricular myocytes,” Toxicol. Appl. Pharmacol. 260(2), 162–172 (2012).
[Crossref] [PubMed]

Hayakawa, T.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

T. Hayakawa, T. Kunihiro, S. Dowaki, H. Uno, E. Matsui, M. Uchida, S. Kobayashi, A. Yasuda, T. Shimizu, and T. Okano, “Noninvasive Evaluation of Contractile Behavior of Cardiomyocyte Monolayers Based on Motion Vector Analysis,” Tissue Eng. Part C Methods 18(1), 21–32 (2012).
[Crossref] [PubMed]

Heer, F.

A. Hierlemann, U. Frey, S. Hafizovic, and F. Heer, “Growing cells atop microelectronic chips: Interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays,” Proc. IEEE 99(2), 252–284 (2011).
[Crossref]

U. Frey, U. Egert, F. Heer, S. Hafizovic, and A. Hierlemann, “Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices,” Biosens. Bioelectron. 24(7), 2191–2198 (2009).
[Crossref] [PubMed]

F. Heer, S. Hafizovic, T. Ugniwenko, U. Frey, W. Franks, E. Perriard, J.-C. Perriard, A. Blau, C. Ziegler, and A. Hierlemann, “Single-chip microelectronic system to interface with living cells,” Biosens. Bioelectron. 22(11), 2546–2553 (2007).
[Crossref] [PubMed]

Heng, X.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

Hermans, A. N.

H. R. Lu, E. Vlaminckx, A. N. Hermans, J. Rohrbacher, K. Van Ammel, R. Towart, M. Pugsley, and D. J. Gallacher, “Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in the ICHS7B Guidelines,” Br. J. Pharmacol. 154(7), 1427–1438 (2008).
[Crossref] [PubMed]

Hierlemann, A.

A. Hierlemann, U. Frey, S. Hafizovic, and F. Heer, “Growing cells atop microelectronic chips: Interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays,” Proc. IEEE 99(2), 252–284 (2011).
[Crossref]

U. Frey, U. Egert, F. Heer, S. Hafizovic, and A. Hierlemann, “Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices,” Biosens. Bioelectron. 24(7), 2191–2198 (2009).
[Crossref] [PubMed]

F. Heer, S. Hafizovic, T. Ugniwenko, U. Frey, W. Franks, E. Perriard, J.-C. Perriard, A. Blau, C. Ziegler, and A. Hierlemann, “Single-chip microelectronic system to interface with living cells,” Biosens. Bioelectron. 22(11), 2546–2553 (2007).
[Crossref] [PubMed]

Hoffman, L.

M. Welkenhuysen, L. Hoffman, Z. Luo, A. De Proft, C. Van den Haute, V. Baekelandt, Z. Debyser, G. Gielen, R. Puers, and D. Braeken, “An integrated multi-electrode-optrode array for in vitro optogenetics,” Sci. Rep. 6(1), 20353 (2016).
[Crossref] [PubMed]

D. Braeken, D. Jans, R. Huys, A. Stassen, N. Collaert, L. Hoffman, W. Eberle, P. Peumans, and G. Callewaert, “Open-cell recording of action potentials using active electrode arrays,” Lab Chip 12(21), 4397–4402 (2012).
[Crossref] [PubMed]

Honkanen, M.

A. Ahola, A. L. Kiviaho, K. Larsson, M. Honkanen, K. Aalto-Setälä, and J. Hyttinen, “Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation,” Biomed. Eng. Online 13(1), 39 (2014).
[Crossref] [PubMed]

Hossain, M. M.

M. M. Hossain, E. Shimizu, M. Saito, S. R. Rao, Y. Yamaguchi, and E. Tamiya, “Non-invasive characterization of mouse embryonic stem cell derived cardiomyocytes based on the intensity variation in digital beating video,” Analyst (Lond.) 135(7), 1624–1630 (2010).
[Crossref] [PubMed]

Huang, C.

F. Qian, C. Huang, Y.-D. Lin, A. N. Ivanovskaya, T. J. O’Hara, R. H. Booth, C. J. Creek, H. A. Enright, D. A. Soscia, A. M. Belle, R. Liao, F. C. Lightstone, K. S. Kulp, and E. K. Wheeler, “Simultaneous Electrical Recording of Cardiac Electrophysiology and Contraction on Chip,” Lab Chip 17(10), 1732–1739 (2017).
[Crossref] [PubMed]

Huber, I.

R. Shinnawi, I. Huber, L. Maizels, N. Shaheen, A. Gepstein, G. Arbel, A. J. Tijsen, and L. Gepstein, “Monitoring human-induced pluripotent stem cell-derived cardiomyocytes with genetically encoded calcium and voltage fluorescent reporters,” Stem Cell Reports 5(4), 582–596 (2015).
[Crossref] [PubMed]

Huys, R.

D. Braeken, D. Jans, R. Huys, A. Stassen, N. Collaert, L. Hoffman, W. Eberle, P. Peumans, and G. Callewaert, “Open-cell recording of action potentials using active electrode arrays,” Lab Chip 12(21), 4397–4402 (2012).
[Crossref] [PubMed]

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

Hyttinen, J.

A. Ahola, A. L. Kiviaho, K. Larsson, M. Honkanen, K. Aalto-Setälä, and J. Hyttinen, “Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation,” Biomed. Eng. Online 13(1), 39 (2014).
[Crossref] [PubMed]

Ingebrandt, S.

A. Susloparova, D. Koppenhöfer, X. T. Vu, M. Weil, and S. Ingebrandt, “Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells,” Biosens. Bioelectron. 40(1), 50–56 (2013).
[Crossref] [PubMed]

Isikman, S. O.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Ivanovskaya, A. N.

F. Qian, C. Huang, Y.-D. Lin, A. N. Ivanovskaya, T. J. O’Hara, R. H. Booth, C. J. Creek, H. A. Enright, D. A. Soscia, A. M. Belle, R. Liao, F. C. Lightstone, K. S. Kulp, and E. K. Wheeler, “Simultaneous Electrical Recording of Cardiac Electrophysiology and Contraction on Chip,” Lab Chip 17(10), 1732–1739 (2017).
[Crossref] [PubMed]

Jans, D.

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

D. Braeken, D. Jans, R. Huys, A. Stassen, N. Collaert, L. Hoffman, W. Eberle, P. Peumans, and G. Callewaert, “Open-cell recording of action potentials using active electrode arrays,” Lab Chip 12(21), 4397–4402 (2012).
[Crossref] [PubMed]

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

Johnson, D. M.

P. J. Guns, D. M. Johnson, E. Weltens, and J. Lissens, “Negative electro-mechanical windows are required for drug-induced Torsades de Pointes in the anesthetized guinea pig,” J. Pharmacol. Toxicol. Methods 66(2), 125–134 (2012).
[Crossref] [PubMed]

Kanda, Y.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Khademhosseini, A.

S. B. Kim, H. Bae, K.-I. Koo, M. R. Dokmeci, A. Ozcan, and A. Khademhosseini, “Lens-free imaging for biological applications,” J. Lab. Autom. 17(1), 43–49 (2012).
[Crossref] [PubMed]

S. B. Kim, H. Bae, J. M. Cha, S. J. Moon, M. R. Dokmeci, D. M. Cropek, and A. Khademhosseini, “A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging,” Lab Chip 11(10), 1801–1807 (2011).
[Crossref] [PubMed]

Khademhosseini, B.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Khine, M.

E. K. Lee, Y. K. Kurokawa, R. Tu, S. C. George, and M. Khine, “Machine learning plus optical flow: a simple and sensitive method to detect cardioactive drugs,” Sci. Rep. 5(1), 11817 (2015).
[Crossref] [PubMed]

Kim, S. B.

S. B. Kim, H. Bae, K.-I. Koo, M. R. Dokmeci, A. Ozcan, and A. Khademhosseini, “Lens-free imaging for biological applications,” J. Lab. Autom. 17(1), 43–49 (2012).
[Crossref] [PubMed]

S. B. Kim, H. Bae, J. M. Cha, S. J. Moon, M. R. Dokmeci, D. M. Cropek, and A. Khademhosseini, “A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging,” Lab Chip 11(10), 1801–1807 (2011).
[Crossref] [PubMed]

Kirz, J.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999).
[Crossref]

Kiviaho, A. L.

A. Ahola, A. L. Kiviaho, K. Larsson, M. Honkanen, K. Aalto-Setälä, and J. Hyttinen, “Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation,” Biomed. Eng. Online 13(1), 39 (2014).
[Crossref] [PubMed]

Kléber, A. G.

S. Rohr, D. M. Schölly, and A. G. Kléber, “Patterned growth of neonatal rat heart cells in culture. Morphological and electrophysiological characterization,” Circ. Res. 68(1), 114–130 (1991).
[Crossref] [PubMed]

Kobayashi, S.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

T. Hayakawa, T. Kunihiro, S. Dowaki, H. Uno, E. Matsui, M. Uchida, S. Kobayashi, A. Yasuda, T. Shimizu, and T. Okano, “Noninvasive Evaluation of Contractile Behavior of Cardiomyocyte Monolayers Based on Motion Vector Analysis,” Tissue Eng. Part C Methods 18(1), 21–32 (2012).
[Crossref] [PubMed]

Koo, K.-I.

S. B. Kim, H. Bae, K.-I. Koo, M. R. Dokmeci, A. Ozcan, and A. Khademhosseini, “Lens-free imaging for biological applications,” J. Lab. Autom. 17(1), 43–49 (2012).
[Crossref] [PubMed]

Koppenhöfer, D.

A. Susloparova, D. Koppenhöfer, X. T. Vu, M. Weil, and S. Ingebrandt, “Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells,” Biosens. Bioelectron. 40(1), 50–56 (2013).
[Crossref] [PubMed]

Kruijer, W.

A. Valero, J. N. Post, J. W. van Nieuwkasteele, P. M. Ter Braak, W. Kruijer, and A. van den Berg, “Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device,” Lab Chip 8(1), 62–67 (2008).
[Crossref] [PubMed]

Kulp, K. S.

F. Qian, C. Huang, Y.-D. Lin, A. N. Ivanovskaya, T. J. O’Hara, R. H. Booth, C. J. Creek, H. A. Enright, D. A. Soscia, A. M. Belle, R. Liao, F. C. Lightstone, K. S. Kulp, and E. K. Wheeler, “Simultaneous Electrical Recording of Cardiac Electrophysiology and Contraction on Chip,” Lab Chip 17(10), 1732–1739 (2017).
[Crossref] [PubMed]

Kunihiro, T.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

T. Hayakawa, T. Kunihiro, S. Dowaki, H. Uno, E. Matsui, M. Uchida, S. Kobayashi, A. Yasuda, T. Shimizu, and T. Okano, “Noninvasive Evaluation of Contractile Behavior of Cardiomyocyte Monolayers Based on Motion Vector Analysis,” Tissue Eng. Part C Methods 18(1), 21–32 (2012).
[Crossref] [PubMed]

Kurokawa, J.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Kurokawa, Y. K.

E. K. Lee, Y. K. Kurokawa, R. Tu, S. C. George, and M. Khine, “Machine learning plus optical flow: a simple and sensitive method to detect cardioactive drugs,” Sci. Rep. 5(1), 11817 (2015).
[Crossref] [PubMed]

Lan, F.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays,” Circulation 128(11), S3–S13 (2013).
[Crossref] [PubMed]

Larsson, K.

A. Ahola, A. L. Kiviaho, K. Larsson, M. Honkanen, K. Aalto-Setälä, and J. Hyttinen, “Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation,” Biomed. Eng. Online 13(1), 39 (2014).
[Crossref] [PubMed]

Lechleiter, J. D.

R. M. Paredes, J. C. Etzler, L. T. Watts, W. Zheng, and J. D. Lechleiter, “Chemical calcium indicators,” Methods 46(3), 143–151 (2008).
[Crossref] [PubMed]

Lee, A. S.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays,” Circulation 128(11), S3–S13 (2013).
[Crossref] [PubMed]

Lee, E. K.

E. K. Lee, Y. K. Kurokawa, R. Tu, S. C. George, and M. Khine, “Machine learning plus optical flow: a simple and sensitive method to detect cardioactive drugs,” Sci. Rep. 5(1), 11817 (2015).
[Crossref] [PubMed]

Lee, L. M.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

Lee, M.

Li, N.

B. Xi, T. Wang, N. Li, W. Ouyang, W. Zhang, J. Wu, X. Xu, X. Wang, and Y. A. Abassi, “Functional Cardiotoxicity Profiling and Screening Using the xCELLigence RTCA Cardio System,” J. Lab. Autom. 16(6), 415–421 (2011).
[Crossref] [PubMed]

Liang, P.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays,” Circulation 128(11), S3–S13 (2013).
[Crossref] [PubMed]

Liao, R.

F. Qian, C. Huang, Y.-D. Lin, A. N. Ivanovskaya, T. J. O’Hara, R. H. Booth, C. J. Creek, H. A. Enright, D. A. Soscia, A. M. Belle, R. Liao, F. C. Lightstone, K. S. Kulp, and E. K. Wheeler, “Simultaneous Electrical Recording of Cardiac Electrophysiology and Contraction on Chip,” Lab Chip 17(10), 1732–1739 (2017).
[Crossref] [PubMed]

Lightstone, F. C.

F. Qian, C. Huang, Y.-D. Lin, A. N. Ivanovskaya, T. J. O’Hara, R. H. Booth, C. J. Creek, H. A. Enright, D. A. Soscia, A. M. Belle, R. Liao, F. C. Lightstone, K. S. Kulp, and E. K. Wheeler, “Simultaneous Electrical Recording of Cardiac Electrophysiology and Contraction on Chip,” Lab Chip 17(10), 1732–1739 (2017).
[Crossref] [PubMed]

Lin, Y.-D.

F. Qian, C. Huang, Y.-D. Lin, A. N. Ivanovskaya, T. J. O’Hara, R. H. Booth, C. J. Creek, H. A. Enright, D. A. Soscia, A. M. Belle, R. Liao, F. C. Lightstone, K. S. Kulp, and E. K. Wheeler, “Simultaneous Electrical Recording of Cardiac Electrophysiology and Contraction on Chip,” Lab Chip 17(10), 1732–1739 (2017).
[Crossref] [PubMed]

Lissens, J.

P. J. Guns, D. M. Johnson, E. Weltens, and J. Lissens, “Negative electro-mechanical windows are required for drug-induced Torsades de Pointes in the anesthetized guinea pig,” J. Pharmacol. Toxicol. Methods 66(2), 125–134 (2012).
[Crossref] [PubMed]

Loo, J.

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

Lu, H. R.

H. R. Lu, E. Vlaminckx, A. N. Hermans, J. Rohrbacher, K. Van Ammel, R. Towart, M. Pugsley, and D. J. Gallacher, “Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in the ICHS7B Guidelines,” Br. J. Pharmacol. 154(7), 1427–1438 (2008).
[Crossref] [PubMed]

Lu, S. N.

E. Entcheva, S. N. Lu, R. H. Troppman, V. Sharma, and L. Tung, “Contact fluorescence imaging of reentry in monolayers of cultured neonatal rat ventricular myocytes,” J. Cardiovasc. Electrophysiol. 11(6), 665–676 (2000).
[Crossref] [PubMed]

Luckhart, S.

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

Luo, Z.

M. Welkenhuysen, L. Hoffman, Z. Luo, A. De Proft, C. Van den Haute, V. Baekelandt, Z. Debyser, G. Gielen, R. Puers, and D. Braeken, “An integrated multi-electrode-optrode array for in vitro optogenetics,” Sci. Rep. 6(1), 20353 (2016).
[Crossref] [PubMed]

Maizels, L.

R. Shinnawi, I. Huber, L. Maizels, N. Shaheen, A. Gepstein, G. Arbel, A. J. Tijsen, and L. Gepstein, “Monitoring human-induced pluripotent stem cell-derived cardiomyocytes with genetically encoded calcium and voltage fluorescent reporters,” Stem Cell Reports 5(4), 582–596 (2015).
[Crossref] [PubMed]

Marquet, P.

Matsui, E.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

T. Hayakawa, T. Kunihiro, S. Dowaki, H. Uno, E. Matsui, M. Uchida, S. Kobayashi, A. Yasuda, T. Shimizu, and T. Okano, “Noninvasive Evaluation of Contractile Behavior of Cardiomyocyte Monolayers Based on Motion Vector Analysis,” Tissue Eng. Part C Methods 18(1), 21–32 (2012).
[Crossref] [PubMed]

McCombs, J. E.

J. E. McCombs and A. E. Palmer, “Measuring calcium dynamics in living cells with genetically encodable calcium indicators,” Methods 46(3), 152–159 (2008).
[Crossref] [PubMed]

Miao, J.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999).
[Crossref]

Minami, I.

H. Zhu, K. S. Scharnhorst, A. Z. Stieg, J. K. Gimzewski, I. Minami, N. Nakatsuji, H. Nakano, and A. Nakano, “Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system,” Sci. Rep. 7, 43210 (2017).
[Crossref] [PubMed]

Möller, C.

T. Danker and C. Möller, “Early identification of hERG liability in drug discovery programs by automated patch clamp,” Front. Pharmacol. 5(AUG), 203 (2014).
[PubMed]

Moon, S. J.

S. B. Kim, H. Bae, J. M. Cha, S. J. Moon, M. R. Dokmeci, D. M. Cropek, and A. Khademhosseini, “A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging,” Lab Chip 11(10), 1801–1807 (2011).
[Crossref] [PubMed]

Morton, M. J.

A. R. Harmer, N. Abi-Gerges, M. J. Morton, G. F. Pullen, J. P. Valentin, and C. E. Pollard, “Validation of an in vitro contractility assay using canine ventricular myocytes,” Toxicol. Appl. Pharmacol. 260(2), 162–172 (2012).
[Crossref] [PubMed]

Mudanyali, O.

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Nakano, A.

H. Zhu, K. S. Scharnhorst, A. Z. Stieg, J. K. Gimzewski, I. Minami, N. Nakatsuji, H. Nakano, and A. Nakano, “Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system,” Sci. Rep. 7, 43210 (2017).
[Crossref] [PubMed]

Nakano, H.

H. Zhu, K. S. Scharnhorst, A. Z. Stieg, J. K. Gimzewski, I. Minami, N. Nakatsuji, H. Nakano, and A. Nakano, “Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system,” Sci. Rep. 7, 43210 (2017).
[Crossref] [PubMed]

Nakatsuji, N.

H. Zhu, K. S. Scharnhorst, A. Z. Stieg, J. K. Gimzewski, I. Minami, N. Nakatsuji, H. Nakano, and A. Nakano, “Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system,” Sci. Rep. 7, 43210 (2017).
[Crossref] [PubMed]

Navarrete, E. G.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays,” Circulation 128(11), S3–S13 (2013).
[Crossref] [PubMed]

O’Hara, T. J.

F. Qian, C. Huang, Y.-D. Lin, A. N. Ivanovskaya, T. J. O’Hara, R. H. Booth, C. J. Creek, H. A. Enright, D. A. Soscia, A. M. Belle, R. Liao, F. C. Lightstone, K. S. Kulp, and E. K. Wheeler, “Simultaneous Electrical Recording of Cardiac Electrophysiology and Contraction on Chip,” Lab Chip 17(10), 1732–1739 (2017).
[Crossref] [PubMed]

Oh, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Okano, T.

T. Hayakawa, T. Kunihiro, S. Dowaki, H. Uno, E. Matsui, M. Uchida, S. Kobayashi, A. Yasuda, T. Shimizu, and T. Okano, “Noninvasive Evaluation of Contractile Behavior of Cardiomyocyte Monolayers Based on Motion Vector Analysis,” Tissue Eng. Part C Methods 18(1), 21–32 (2012).
[Crossref] [PubMed]

Ouyang, W.

B. Xi, T. Wang, N. Li, W. Ouyang, W. Zhang, J. Wu, X. Xu, X. Wang, and Y. A. Abassi, “Functional Cardiotoxicity Profiling and Screening Using the xCELLigence RTCA Cardio System,” J. Lab. Autom. 16(6), 415–421 (2011).
[Crossref] [PubMed]

Ozcan, A.

S. B. Kim, H. Bae, K.-I. Koo, M. R. Dokmeci, A. Ozcan, and A. Khademhosseini, “Lens-free imaging for biological applications,” J. Lab. Autom. 17(1), 43–49 (2012).
[Crossref] [PubMed]

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

M. Lee, O. Yaglidere, and A. Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. Express 2(9), 2721–2730 (2011).
[Crossref] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Oztoprak, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Palanker, D.

Palmer, A. E.

J. E. McCombs and A. E. Palmer, “Measuring calcium dynamics in living cells with genetically encodable calcium indicators,” Methods 46(3), 152–159 (2008).
[Crossref] [PubMed]

Paredes, R. M.

R. M. Paredes, J. C. Etzler, L. T. Watts, W. Zheng, and J. D. Lechleiter, “Chemical calcium indicators,” Methods 46(3), 143–151 (2008).
[Crossref] [PubMed]

Patlolla, B.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays,” Circulation 128(11), S3–S13 (2013).
[Crossref] [PubMed]

Perriard, E.

F. Heer, S. Hafizovic, T. Ugniwenko, U. Frey, W. Franks, E. Perriard, J.-C. Perriard, A. Blau, C. Ziegler, and A. Hierlemann, “Single-chip microelectronic system to interface with living cells,” Biosens. Bioelectron. 22(11), 2546–2553 (2007).
[Crossref] [PubMed]

Perriard, J.-C.

F. Heer, S. Hafizovic, T. Ugniwenko, U. Frey, W. Franks, E. Perriard, J.-C. Perriard, A. Blau, C. Ziegler, and A. Hierlemann, “Single-chip microelectronic system to interface with living cells,” Biosens. Bioelectron. 22(11), 2546–2553 (2007).
[Crossref] [PubMed]

Peumans, P.

D. Braeken, D. Jans, R. Huys, A. Stassen, N. Collaert, L. Hoffman, W. Eberle, P. Peumans, and G. Callewaert, “Open-cell recording of action potentials using active electrode arrays,” Lab Chip 12(21), 4397–4402 (2012).
[Crossref] [PubMed]

Picone, J. B.

W. C. Cole, J. B. Picone, and N. Sperelakis, “Gap junction uncoupling and discontinuous propagation in the heart. A comparison of experimental data with computer simulations,” Biophys. J. 53(5), 809–818 (1988).
[Crossref] [PubMed]

Pollard, C. E.

A. R. Harmer, N. Abi-Gerges, M. J. Morton, G. F. Pullen, J. P. Valentin, and C. E. Pollard, “Validation of an in vitro contractility assay using canine ventricular myocytes,” Toxicol. Appl. Pharmacol. 260(2), 162–172 (2012).
[Crossref] [PubMed]

Post, J. N.

A. Valero, J. N. Post, J. W. van Nieuwkasteele, P. M. Ter Braak, W. Kruijer, and A. van den Berg, “Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device,” Lab Chip 8(1), 62–67 (2008).
[Crossref] [PubMed]

Psaltis, D.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

Puers, R.

M. Welkenhuysen, L. Hoffman, Z. Luo, A. De Proft, C. Van den Haute, V. Baekelandt, Z. Debyser, G. Gielen, R. Puers, and D. Braeken, “An integrated multi-electrode-optrode array for in vitro optogenetics,” Sci. Rep. 6(1), 20353 (2016).
[Crossref] [PubMed]

Pugsley, M.

H. R. Lu, E. Vlaminckx, A. N. Hermans, J. Rohrbacher, K. Van Ammel, R. Towart, M. Pugsley, and D. J. Gallacher, “Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in the ICHS7B Guidelines,” Br. J. Pharmacol. 154(7), 1427–1438 (2008).
[Crossref] [PubMed]

Pullen, G. F.

A. R. Harmer, N. Abi-Gerges, M. J. Morton, G. F. Pullen, J. P. Valentin, and C. E. Pollard, “Validation of an in vitro contractility assay using canine ventricular myocytes,” Toxicol. Appl. Pharmacol. 260(2), 162–172 (2012).
[Crossref] [PubMed]

Qian, F.

F. Qian, C. Huang, Y.-D. Lin, A. N. Ivanovskaya, T. J. O’Hara, R. H. Booth, C. J. Creek, H. A. Enright, D. A. Soscia, A. M. Belle, R. Liao, F. C. Lightstone, K. S. Kulp, and E. K. Wheeler, “Simultaneous Electrical Recording of Cardiac Electrophysiology and Contraction on Chip,” Lab Chip 17(10), 1732–1739 (2017).
[Crossref] [PubMed]

Rao, S. R.

M. M. Hossain, E. Shimizu, M. Saito, S. R. Rao, Y. Yamaguchi, and E. Tamiya, “Non-invasive characterization of mouse embryonic stem cell derived cardiomyocytes based on the intensity variation in digital beating video,” Analyst (Lond.) 135(7), 1624–1630 (2010).
[Crossref] [PubMed]

Robbins, R. C.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays,” Circulation 128(11), S3–S13 (2013).
[Crossref] [PubMed]

Roden, D. M.

D. M. Roden, “Predicting drug-induced QT prolongation and torsades de Pointes,” J. Physiol. 594(9), 2459–2468 (2016).
[Crossref] [PubMed]

Rohr, S.

S. Rohr, D. M. Schölly, and A. G. Kléber, “Patterned growth of neonatal rat heart cells in culture. Morphological and electrophysiological characterization,” Circ. Res. 68(1), 114–130 (1991).
[Crossref] [PubMed]

Rohrbacher, J.

H. R. Lu, E. Vlaminckx, A. N. Hermans, J. Rohrbacher, K. Van Ammel, R. Towart, M. Pugsley, and D. J. Gallacher, “Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in the ICHS7B Guidelines,” Br. J. Pharmacol. 154(7), 1427–1438 (2008).
[Crossref] [PubMed]

Rusyn, I.

O. Sirenko, E. F. Cromwell, C. Crittenden, J. A. Wignall, F. A. Wright, and I. Rusyn, “Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity,” Toxicol. Appl. Pharmacol. 273(3), 500–507 (2013).
[Crossref] [PubMed]

O. Sirenko, E. F. Cromwell, C. Crittenden, J. A. Wignall, F. A. Wright, and I. Rusyn, “Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity,” Toxicol. Appl. Pharmacol. 273(3), 500–507 (2013).
[Crossref] [PubMed]

Sager, P. T.

G. Gintant, P. T. Sager, and N. Stockbridge, “Evolution of strategies to improve preclinical cardiac safety testing,” Nat. Rev. Drug Discov. 15(7), 457–471 (2016).
[Crossref] [PubMed]

Saito, M.

M. M. Hossain, E. Shimizu, M. Saito, S. R. Rao, Y. Yamaguchi, and E. Tamiya, “Non-invasive characterization of mouse embryonic stem cell derived cardiomyocytes based on the intensity variation in digital beating video,” Analyst (Lond.) 135(7), 1624–1630 (2010).
[Crossref] [PubMed]

Sanchez-Freire, V.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays,” Circulation 128(11), S3–S13 (2013).
[Crossref] [PubMed]

Satterwhite, L. L.

Sayre, D.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999).
[Crossref]

Scharnhorst, K. S.

H. Zhu, K. S. Scharnhorst, A. Z. Stieg, J. K. Gimzewski, I. Minami, N. Nakatsuji, H. Nakano, and A. Nakano, “Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system,” Sci. Rep. 7, 43210 (2017).
[Crossref] [PubMed]

Schölly, D. M.

S. Rohr, D. M. Schölly, and A. G. Kléber, “Patterned growth of neonatal rat heart cells in culture. Morphological and electrophysiological characterization,” Circ. Res. 68(1), 114–130 (1991).
[Crossref] [PubMed]

Sencan, I.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Seo, S.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Severi, S.

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

Shaheen, N.

R. Shinnawi, I. Huber, L. Maizels, N. Shaheen, A. Gepstein, G. Arbel, A. J. Tijsen, and L. Gepstein, “Monitoring human-induced pluripotent stem cell-derived cardiomyocytes with genetically encoded calcium and voltage fluorescent reporters,” Stem Cell Reports 5(4), 582–596 (2015).
[Crossref] [PubMed]

Shaked, N. T.

Sharma, A.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays,” Circulation 128(11), S3–S13 (2013).
[Crossref] [PubMed]

Sharma, V.

E. Entcheva, S. N. Lu, R. H. Troppman, V. Sharma, and L. Tung, “Contact fluorescence imaging of reentry in monolayers of cultured neonatal rat ventricular myocytes,” J. Cardiovasc. Electrophysiol. 11(6), 665–676 (2000).
[Crossref] [PubMed]

Shimizu, E.

M. M. Hossain, E. Shimizu, M. Saito, S. R. Rao, Y. Yamaguchi, and E. Tamiya, “Non-invasive characterization of mouse embryonic stem cell derived cardiomyocytes based on the intensity variation in digital beating video,” Analyst (Lond.) 135(7), 1624–1630 (2010).
[Crossref] [PubMed]

Shimizu, T.

T. Hayakawa, T. Kunihiro, S. Dowaki, H. Uno, E. Matsui, M. Uchida, S. Kobayashi, A. Yasuda, T. Shimizu, and T. Okano, “Noninvasive Evaluation of Contractile Behavior of Cardiomyocyte Monolayers Based on Motion Vector Analysis,” Tissue Eng. Part C Methods 18(1), 21–32 (2012).
[Crossref] [PubMed]

Shinnawi, R.

R. Shinnawi, I. Huber, L. Maizels, N. Shaheen, A. Gepstein, G. Arbel, A. J. Tijsen, and L. Gepstein, “Monitoring human-induced pluripotent stem cell-derived cardiomyocytes with genetically encoded calcium and voltage fluorescent reporters,” Stem Cell Reports 5(4), 582–596 (2015).
[Crossref] [PubMed]

Sikora, U.

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

Simmons, C.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays,” Circulation 128(11), S3–S13 (2013).
[Crossref] [PubMed]

Sirenko, O.

O. Sirenko, E. F. Cromwell, C. Crittenden, J. A. Wignall, F. A. Wright, and I. Rusyn, “Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity,” Toxicol. Appl. Pharmacol. 273(3), 500–507 (2013).
[Crossref] [PubMed]

O. Sirenko, E. F. Cromwell, C. Crittenden, J. A. Wignall, F. A. Wright, and I. Rusyn, “Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity,” Toxicol. Appl. Pharmacol. 273(3), 500–507 (2013).
[Crossref] [PubMed]

Solgaard, O.

Soscia, D. A.

F. Qian, C. Huang, Y.-D. Lin, A. N. Ivanovskaya, T. J. O’Hara, R. H. Booth, C. J. Creek, H. A. Enright, D. A. Soscia, A. M. Belle, R. Liao, F. C. Lightstone, K. S. Kulp, and E. K. Wheeler, “Simultaneous Electrical Recording of Cardiac Electrophysiology and Contraction on Chip,” Lab Chip 17(10), 1732–1739 (2017).
[Crossref] [PubMed]

Sperelakis, N.

W. C. Cole, J. B. Picone, and N. Sperelakis, “Gap junction uncoupling and discontinuous propagation in the heart. A comparison of experimental data with computer simulations,” Biophys. J. 53(5), 809–818 (1988).
[Crossref] [PubMed]

Spira, M. E.

A. Fendyur and M. E. Spira, “Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes,” Front. Neuroeng. 5, 21 (2012).
[Crossref] [PubMed]

Stassen, A.

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

D. Braeken, D. Jans, R. Huys, A. Stassen, N. Collaert, L. Hoffman, W. Eberle, P. Peumans, and G. Callewaert, “Open-cell recording of action potentials using active electrode arrays,” Lab Chip 12(21), 4397–4402 (2012).
[Crossref] [PubMed]

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

Sternberg, P. W.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

Stieg, A. Z.

H. Zhu, K. S. Scharnhorst, A. Z. Stieg, J. K. Gimzewski, I. Minami, N. Nakatsuji, H. Nakano, and A. Nakano, “Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system,” Sci. Rep. 7, 43210 (2017).
[Crossref] [PubMed]

Stockbridge, N.

G. Gintant, P. T. Sager, and N. Stockbridge, “Evolution of strategies to improve preclinical cardiac safety testing,” Nat. Rev. Drug Discov. 15(7), 457–471 (2016).
[Crossref] [PubMed]

Su, T.-W.

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

Susloparova, A.

A. Susloparova, D. Koppenhöfer, X. T. Vu, M. Weil, and S. Ingebrandt, “Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells,” Biosens. Bioelectron. 40(1), 50–56 (2013).
[Crossref] [PubMed]

Tamiya, E.

M. M. Hossain, E. Shimizu, M. Saito, S. R. Rao, Y. Yamaguchi, and E. Tamiya, “Non-invasive characterization of mouse embryonic stem cell derived cardiomyocytes based on the intensity variation in digital beating video,” Analyst (Lond.) 135(7), 1624–1630 (2010).
[Crossref] [PubMed]

Ter Braak, P. M.

A. Valero, J. N. Post, J. W. van Nieuwkasteele, P. M. Ter Braak, W. Kruijer, and A. van den Berg, “Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device,” Lab Chip 8(1), 62–67 (2008).
[Crossref] [PubMed]

Tijsen, A. J.

R. Shinnawi, I. Huber, L. Maizels, N. Shaheen, A. Gepstein, G. Arbel, A. J. Tijsen, and L. Gepstein, “Monitoring human-induced pluripotent stem cell-derived cardiomyocytes with genetically encoded calcium and voltage fluorescent reporters,” Stem Cell Reports 5(4), 582–596 (2015).
[Crossref] [PubMed]

Towart, R.

H. R. Lu, E. Vlaminckx, A. N. Hermans, J. Rohrbacher, K. Van Ammel, R. Towart, M. Pugsley, and D. J. Gallacher, “Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in the ICHS7B Guidelines,” Br. J. Pharmacol. 154(7), 1427–1438 (2008).
[Crossref] [PubMed]

Troppman, R. H.

E. Entcheva, S. N. Lu, R. H. Troppman, V. Sharma, and L. Tung, “Contact fluorescence imaging of reentry in monolayers of cultured neonatal rat ventricular myocytes,” J. Cardiovasc. Electrophysiol. 11(6), 665–676 (2000).
[Crossref] [PubMed]

Tseng, D.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Tu, R.

E. K. Lee, Y. K. Kurokawa, R. Tu, S. C. George, and M. Khine, “Machine learning plus optical flow: a simple and sensitive method to detect cardioactive drugs,” Sci. Rep. 5(1), 11817 (2015).
[Crossref] [PubMed]

Tung, L.

E. Entcheva, S. N. Lu, R. H. Troppman, V. Sharma, and L. Tung, “Contact fluorescence imaging of reentry in monolayers of cultured neonatal rat ventricular myocytes,” J. Cardiovasc. Electrophysiol. 11(6), 665–676 (2000).
[Crossref] [PubMed]

Uchida, M.

T. Hayakawa, T. Kunihiro, S. Dowaki, H. Uno, E. Matsui, M. Uchida, S. Kobayashi, A. Yasuda, T. Shimizu, and T. Okano, “Noninvasive Evaluation of Contractile Behavior of Cardiomyocyte Monolayers Based on Motion Vector Analysis,” Tissue Eng. Part C Methods 18(1), 21–32 (2012).
[Crossref] [PubMed]

Ugniwenko, T.

F. Heer, S. Hafizovic, T. Ugniwenko, U. Frey, W. Franks, E. Perriard, J.-C. Perriard, A. Blau, C. Ziegler, and A. Hierlemann, “Single-chip microelectronic system to interface with living cells,” Biosens. Bioelectron. 22(11), 2546–2553 (2007).
[Crossref] [PubMed]

Uno, H.

T. Hayakawa, T. Kunihiro, S. Dowaki, H. Uno, E. Matsui, M. Uchida, S. Kobayashi, A. Yasuda, T. Shimizu, and T. Okano, “Noninvasive Evaluation of Contractile Behavior of Cardiomyocyte Monolayers Based on Motion Vector Analysis,” Tissue Eng. Part C Methods 18(1), 21–32 (2012).
[Crossref] [PubMed]

Valentin, J. P.

A. R. Harmer, N. Abi-Gerges, M. J. Morton, G. F. Pullen, J. P. Valentin, and C. E. Pollard, “Validation of an in vitro contractility assay using canine ventricular myocytes,” Toxicol. Appl. Pharmacol. 260(2), 162–172 (2012).
[Crossref] [PubMed]

Valero, A.

A. Valero, J. N. Post, J. W. van Nieuwkasteele, P. M. Ter Braak, W. Kruijer, and A. van den Berg, “Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device,” Lab Chip 8(1), 62–67 (2008).
[Crossref] [PubMed]

Van Ammel, K.

H. R. Lu, E. Vlaminckx, A. N. Hermans, J. Rohrbacher, K. Van Ammel, R. Towart, M. Pugsley, and D. J. Gallacher, “Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in the ICHS7B Guidelines,” Br. J. Pharmacol. 154(7), 1427–1438 (2008).
[Crossref] [PubMed]

van den Berg, A.

A. Valero, J. N. Post, J. W. van Nieuwkasteele, P. M. Ter Braak, W. Kruijer, and A. van den Berg, “Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device,” Lab Chip 8(1), 62–67 (2008).
[Crossref] [PubMed]

Van den Haute, C.

M. Welkenhuysen, L. Hoffman, Z. Luo, A. De Proft, C. Van den Haute, V. Baekelandt, Z. Debyser, G. Gielen, R. Puers, and D. Braeken, “An integrated multi-electrode-optrode array for in vitro optogenetics,” Sci. Rep. 6(1), 20353 (2016).
[Crossref] [PubMed]

van Nieuwkasteele, J. W.

A. Valero, J. N. Post, J. W. van Nieuwkasteele, P. M. Ter Braak, W. Kruijer, and A. van den Berg, “Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device,” Lab Chip 8(1), 62–67 (2008).
[Crossref] [PubMed]

van Rijen, H. V. M.

H. V. M. van Rijen, T. A. B. van Veen, D. Gros, R. Wilders, and J. M. T. de Bakker, “Connexins and cardiac arrhythmias,” Adv. Cardiol. 42, 150–160 (2006).
[Crossref] [PubMed]

van Veen, T. A. B.

H. V. M. van Rijen, T. A. B. van Veen, D. Gros, R. Wilders, and J. M. T. de Bakker, “Connexins and cardiac arrhythmias,” Adv. Cardiol. 42, 150–160 (2006).
[Crossref] [PubMed]

Verstreken, K.

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

Vlaminckx, E.

H. R. Lu, E. Vlaminckx, A. N. Hermans, J. Rohrbacher, K. Van Ammel, R. Towart, M. Pugsley, and D. J. Gallacher, “Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in the ICHS7B Guidelines,” Br. J. Pharmacol. 154(7), 1427–1438 (2008).
[Crossref] [PubMed]

Vleugels, F.

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

Vu, X. T.

A. Susloparova, D. Koppenhöfer, X. T. Vu, M. Weil, and S. Ingebrandt, “Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells,” Biosens. Bioelectron. 40(1), 50–56 (2013).
[Crossref] [PubMed]

Wang, T.

B. Xi, T. Wang, N. Li, W. Ouyang, W. Zhang, J. Wu, X. Xu, X. Wang, and Y. A. Abassi, “Functional Cardiotoxicity Profiling and Screening Using the xCELLigence RTCA Cardio System,” J. Lab. Autom. 16(6), 415–421 (2011).
[Crossref] [PubMed]

Wang, X.

B. Xi, T. Wang, N. Li, W. Ouyang, W. Zhang, J. Wu, X. Xu, X. Wang, and Y. A. Abassi, “Functional Cardiotoxicity Profiling and Screening Using the xCELLigence RTCA Cardio System,” J. Lab. Autom. 16(6), 415–421 (2011).
[Crossref] [PubMed]

Watts, L. T.

R. M. Paredes, J. C. Etzler, L. T. Watts, W. Zheng, and J. D. Lechleiter, “Chemical calcium indicators,” Methods 46(3), 143–151 (2008).
[Crossref] [PubMed]

Wax, A.

Weil, M.

A. Susloparova, D. Koppenhöfer, X. T. Vu, M. Weil, and S. Ingebrandt, “Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells,” Biosens. Bioelectron. 40(1), 50–56 (2013).
[Crossref] [PubMed]

Welkenhuysen, M.

M. Welkenhuysen, L. Hoffman, Z. Luo, A. De Proft, C. Van den Haute, V. Baekelandt, Z. Debyser, G. Gielen, R. Puers, and D. Braeken, “An integrated multi-electrode-optrode array for in vitro optogenetics,” Sci. Rep. 6(1), 20353 (2016).
[Crossref] [PubMed]

Weltens, E.

P. J. Guns, D. M. Johnson, E. Weltens, and J. Lissens, “Negative electro-mechanical windows are required for drug-induced Torsades de Pointes in the anesthetized guinea pig,” J. Pharmacol. Toxicol. Methods 66(2), 125–134 (2012).
[Crossref] [PubMed]

Wheeler, E. K.

F. Qian, C. Huang, Y.-D. Lin, A. N. Ivanovskaya, T. J. O’Hara, R. H. Booth, C. J. Creek, H. A. Enright, D. A. Soscia, A. M. Belle, R. Liao, F. C. Lightstone, K. S. Kulp, and E. K. Wheeler, “Simultaneous Electrical Recording of Cardiac Electrophysiology and Contraction on Chip,” Lab Chip 17(10), 1732–1739 (2017).
[Crossref] [PubMed]

Wignall, J. A.

O. Sirenko, E. F. Cromwell, C. Crittenden, J. A. Wignall, F. A. Wright, and I. Rusyn, “Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity,” Toxicol. Appl. Pharmacol. 273(3), 500–507 (2013).
[Crossref] [PubMed]

O. Sirenko, E. F. Cromwell, C. Crittenden, J. A. Wignall, F. A. Wright, and I. Rusyn, “Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity,” Toxicol. Appl. Pharmacol. 273(3), 500–507 (2013).
[Crossref] [PubMed]

Wilders, R.

H. V. M. van Rijen, T. A. B. van Veen, D. Gros, R. Wilders, and J. M. T. de Bakker, “Connexins and cardiac arrhythmias,” Adv. Cardiol. 42, 150–160 (2006).
[Crossref] [PubMed]

Will, Y.

J. A. Dykens and Y. Will, “The significance of mitochondrial toxicity testing in drug development,” Drug Discov. Today 12(17-18), 777–785 (2007).
[Crossref] [PubMed]

Wouters, J.

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

Wright, F. A.

O. Sirenko, E. F. Cromwell, C. Crittenden, J. A. Wignall, F. A. Wright, and I. Rusyn, “Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity,” Toxicol. Appl. Pharmacol. 273(3), 500–507 (2013).
[Crossref] [PubMed]

O. Sirenko, E. F. Cromwell, C. Crittenden, J. A. Wignall, F. A. Wright, and I. Rusyn, “Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity,” Toxicol. Appl. Pharmacol. 273(3), 500–507 (2013).
[Crossref] [PubMed]

Wu, H.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays,” Circulation 128(11), S3–S13 (2013).
[Crossref] [PubMed]

Wu, J.

B. Xi, T. Wang, N. Li, W. Ouyang, W. Zhang, J. Wu, X. Xu, X. Wang, and Y. A. Abassi, “Functional Cardiotoxicity Profiling and Screening Using the xCELLigence RTCA Cardio System,” J. Lab. Autom. 16(6), 415–421 (2011).
[Crossref] [PubMed]

Wu, J. C.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays,” Circulation 128(11), S3–S13 (2013).
[Crossref] [PubMed]

Wu, S. M.

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays,” Circulation 128(11), S3–S13 (2013).
[Crossref] [PubMed]

Xi, B.

B. Xi, T. Wang, N. Li, W. Ouyang, W. Zhang, J. Wu, X. Xu, X. Wang, and Y. A. Abassi, “Functional Cardiotoxicity Profiling and Screening Using the xCELLigence RTCA Cardio System,” J. Lab. Autom. 16(6), 415–421 (2011).
[Crossref] [PubMed]

Xu, X.

B. Xi, T. Wang, N. Li, W. Ouyang, W. Zhang, J. Wu, X. Xu, X. Wang, and Y. A. Abassi, “Functional Cardiotoxicity Profiling and Screening Using the xCELLigence RTCA Cardio System,” J. Lab. Autom. 16(6), 415–421 (2011).
[Crossref] [PubMed]

Yada, H.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

Yaglidere, O.

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

M. Lee, O. Yaglidere, and A. Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. Express 2(9), 2721–2730 (2011).
[Crossref] [PubMed]

Yamaguchi, Y.

M. M. Hossain, E. Shimizu, M. Saito, S. R. Rao, Y. Yamaguchi, and E. Tamiya, “Non-invasive characterization of mouse embryonic stem cell derived cardiomyocytes based on the intensity variation in digital beating video,” Analyst (Lond.) 135(7), 1624–1630 (2010).
[Crossref] [PubMed]

Yang, C.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

Yasuda, A.

T. Hayakawa, T. Kunihiro, S. Dowaki, H. Uno, E. Matsui, M. Uchida, S. Kobayashi, A. Yasuda, T. Shimizu, and T. Okano, “Noninvasive Evaluation of Contractile Behavior of Cardiomyocyte Monolayers Based on Motion Vector Analysis,” Tissue Eng. Part C Methods 18(1), 21–32 (2012).
[Crossref] [PubMed]

Zhang, W.

B. Xi, T. Wang, N. Li, W. Ouyang, W. Zhang, J. Wu, X. Xu, X. Wang, and Y. A. Abassi, “Functional Cardiotoxicity Profiling and Screening Using the xCELLigence RTCA Cardio System,” J. Lab. Autom. 16(6), 415–421 (2011).
[Crossref] [PubMed]

Zheng, W.

R. M. Paredes, J. C. Etzler, L. T. Watts, W. Zheng, and J. D. Lechleiter, “Chemical calcium indicators,” Methods 46(3), 143–151 (2008).
[Crossref] [PubMed]

Zhong, W.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

Zhu, H.

H. Zhu, K. S. Scharnhorst, A. Z. Stieg, J. K. Gimzewski, I. Minami, N. Nakatsuji, H. Nakano, and A. Nakano, “Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system,” Sci. Rep. 7, 43210 (2017).
[Crossref] [PubMed]

Zhuge, Y.

Ziegler, C.

F. Heer, S. Hafizovic, T. Ugniwenko, U. Frey, W. Franks, E. Perriard, J.-C. Perriard, A. Blau, C. Ziegler, and A. Hierlemann, “Single-chip microelectronic system to interface with living cells,” Biosens. Bioelectron. 22(11), 2546–2553 (2007).
[Crossref] [PubMed]

Adv. Cardiol. (1)

H. V. M. van Rijen, T. A. B. van Veen, D. Gros, R. Wilders, and J. M. T. de Bakker, “Connexins and cardiac arrhythmias,” Adv. Cardiol. 42, 150–160 (2006).
[Crossref] [PubMed]

Analyst (Lond.) (1)

M. M. Hossain, E. Shimizu, M. Saito, S. R. Rao, Y. Yamaguchi, and E. Tamiya, “Non-invasive characterization of mouse embryonic stem cell derived cardiomyocytes based on the intensity variation in digital beating video,” Analyst (Lond.) 135(7), 1624–1630 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Eng. Online (1)

A. Ahola, A. L. Kiviaho, K. Larsson, M. Honkanen, K. Aalto-Setälä, and J. Hyttinen, “Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation,” Biomed. Eng. Online 13(1), 39 (2014).
[Crossref] [PubMed]

Biomed. Opt. Express (3)

Biophys. J. (1)

W. C. Cole, J. B. Picone, and N. Sperelakis, “Gap junction uncoupling and discontinuous propagation in the heart. A comparison of experimental data with computer simulations,” Biophys. J. 53(5), 809–818 (1988).
[Crossref] [PubMed]

Biosens. Bioelectron. (3)

A. Susloparova, D. Koppenhöfer, X. T. Vu, M. Weil, and S. Ingebrandt, “Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells,” Biosens. Bioelectron. 40(1), 50–56 (2013).
[Crossref] [PubMed]

F. Heer, S. Hafizovic, T. Ugniwenko, U. Frey, W. Franks, E. Perriard, J.-C. Perriard, A. Blau, C. Ziegler, and A. Hierlemann, “Single-chip microelectronic system to interface with living cells,” Biosens. Bioelectron. 22(11), 2546–2553 (2007).
[Crossref] [PubMed]

U. Frey, U. Egert, F. Heer, S. Hafizovic, and A. Hierlemann, “Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices,” Biosens. Bioelectron. 24(7), 2191–2198 (2009).
[Crossref] [PubMed]

Br. J. Pharmacol. (1)

H. R. Lu, E. Vlaminckx, A. N. Hermans, J. Rohrbacher, K. Van Ammel, R. Towart, M. Pugsley, and D. J. Gallacher, “Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in the ICHS7B Guidelines,” Br. J. Pharmacol. 154(7), 1427–1438 (2008).
[Crossref] [PubMed]

Circ. Res. (2)

D. M. Bers, “Calcium fluxes involved in control of cardiac myocyte contraction,” Circ. Res. 87(4), 275–281 (2000).
[Crossref] [PubMed]

S. Rohr, D. M. Schölly, and A. G. Kléber, “Patterned growth of neonatal rat heart cells in culture. Morphological and electrophysiological characterization,” Circ. Res. 68(1), 114–130 (1991).
[Crossref] [PubMed]

Circulation (1)

E. G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu, “Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays,” Circulation 128(11), S3–S13 (2013).
[Crossref] [PubMed]

Drug Discov. Today (1)

J. A. Dykens and Y. Will, “The significance of mitochondrial toxicity testing in drug development,” Drug Discov. Today 12(17-18), 777–785 (2007).
[Crossref] [PubMed]

Front. Neuroeng. (1)

A. Fendyur and M. E. Spira, “Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes,” Front. Neuroeng. 5, 21 (2012).
[Crossref] [PubMed]

Front. Pharmacol. (1)

T. Danker and C. Möller, “Early identification of hERG liability in drug discovery programs by automated patch clamp,” Front. Pharmacol. 5(AUG), 203 (2014).
[PubMed]

J. Cardiovasc. Electrophysiol. (1)

E. Entcheva, S. N. Lu, R. H. Troppman, V. Sharma, and L. Tung, “Contact fluorescence imaging of reentry in monolayers of cultured neonatal rat ventricular myocytes,” J. Cardiovasc. Electrophysiol. 11(6), 665–676 (2000).
[Crossref] [PubMed]

J. Lab. Autom. (2)

B. Xi, T. Wang, N. Li, W. Ouyang, W. Zhang, J. Wu, X. Xu, X. Wang, and Y. A. Abassi, “Functional Cardiotoxicity Profiling and Screening Using the xCELLigence RTCA Cardio System,” J. Lab. Autom. 16(6), 415–421 (2011).
[Crossref] [PubMed]

S. B. Kim, H. Bae, K.-I. Koo, M. R. Dokmeci, A. Ozcan, and A. Khademhosseini, “Lens-free imaging for biological applications,” J. Lab. Autom. 17(1), 43–49 (2012).
[Crossref] [PubMed]

J. Mol. Cell. Cardiol. (1)

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa, “Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology,” J. Mol. Cell. Cardiol. 77, 178–191 (2014).
[Crossref] [PubMed]

J. Pharmacol. Toxicol. Methods (1)

P. J. Guns, D. M. Johnson, E. Weltens, and J. Lissens, “Negative electro-mechanical windows are required for drug-induced Torsades de Pointes in the anesthetized guinea pig,” J. Pharmacol. Toxicol. Methods 66(2), 125–134 (2012).
[Crossref] [PubMed]

J. Physiol. (1)

D. M. Roden, “Predicting drug-induced QT prolongation and torsades de Pointes,” J. Physiol. 594(9), 2459–2468 (2016).
[Crossref] [PubMed]

Lab Chip (8)

D. Braeken, D. Jans, R. Huys, A. Stassen, N. Collaert, L. Hoffman, W. Eberle, P. Peumans, and G. Callewaert, “Open-cell recording of action potentials using active electrode arrays,” Lab Chip 12(21), 4397–4402 (2012).
[Crossref] [PubMed]

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011).
[Crossref] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

S. B. Kim, H. Bae, J. M. Cha, S. J. Moon, M. R. Dokmeci, D. M. Cropek, and A. Khademhosseini, “A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging,” Lab Chip 11(10), 1801–1807 (2011).
[Crossref] [PubMed]

F. Qian, C. Huang, Y.-D. Lin, A. N. Ivanovskaya, T. J. O’Hara, R. H. Booth, C. J. Creek, H. A. Enright, D. A. Soscia, A. M. Belle, R. Liao, F. C. Lightstone, K. S. Kulp, and E. K. Wheeler, “Simultaneous Electrical Recording of Cardiac Electrophysiology and Contraction on Chip,” Lab Chip 17(10), 1732–1739 (2017).
[Crossref] [PubMed]

R. Huys, D. Braeken, D. Jans, A. Stassen, N. Collaert, J. Wouters, J. Loo, S. Severi, F. Vleugels, G. Callewaert, K. Verstreken, C. Bartic, and W. Eberle, “Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip,” Lab Chip 12(7), 1274–1280 (2012).
[Crossref] [PubMed]

A. Valero, J. N. Post, J. W. van Nieuwkasteele, P. M. Ter Braak, W. Kruijer, and A. van den Berg, “Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device,” Lab Chip 8(1), 62–67 (2008).
[Crossref] [PubMed]

Methods (2)

R. M. Paredes, J. C. Etzler, L. T. Watts, W. Zheng, and J. D. Lechleiter, “Chemical calcium indicators,” Methods 46(3), 143–151 (2008).
[Crossref] [PubMed]

J. E. McCombs and A. E. Palmer, “Measuring calcium dynamics in living cells with genetically encodable calcium indicators,” Methods 46(3), 152–159 (2008).
[Crossref] [PubMed]

Nat. Rev. Drug Discov. (1)

G. Gintant, P. T. Sager, and N. Stockbridge, “Evolution of strategies to improve preclinical cardiac safety testing,” Nat. Rev. Drug Discov. 15(7), 457–471 (2016).
[Crossref] [PubMed]

Nature (2)

D. Gabor, “A New Microscopic Principle,” Nature 161(4098), 777–778 (1948).
[Crossref] [PubMed]

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature 400(6742), 342–344 (1999).
[Crossref]

Proc. IEEE (1)

A. Hierlemann, U. Frey, S. Hafizovic, and F. Heer, “Growing cells atop microelectronic chips: Interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays,” Proc. IEEE 99(2), 252–284 (2011).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008).
[Crossref] [PubMed]

Sci. Rep. (3)

E. K. Lee, Y. K. Kurokawa, R. Tu, S. C. George, and M. Khine, “Machine learning plus optical flow: a simple and sensitive method to detect cardioactive drugs,” Sci. Rep. 5(1), 11817 (2015).
[Crossref] [PubMed]

H. Zhu, K. S. Scharnhorst, A. Z. Stieg, J. K. Gimzewski, I. Minami, N. Nakatsuji, H. Nakano, and A. Nakano, “Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system,” Sci. Rep. 7, 43210 (2017).
[Crossref] [PubMed]

M. Welkenhuysen, L. Hoffman, Z. Luo, A. De Proft, C. Van den Haute, V. Baekelandt, Z. Debyser, G. Gielen, R. Puers, and D. Braeken, “An integrated multi-electrode-optrode array for in vitro optogenetics,” Sci. Rep. 6(1), 20353 (2016).
[Crossref] [PubMed]

Stem Cell Reports (1)

R. Shinnawi, I. Huber, L. Maizels, N. Shaheen, A. Gepstein, G. Arbel, A. J. Tijsen, and L. Gepstein, “Monitoring human-induced pluripotent stem cell-derived cardiomyocytes with genetically encoded calcium and voltage fluorescent reporters,” Stem Cell Reports 5(4), 582–596 (2015).
[Crossref] [PubMed]

Tissue Eng. Part C Methods (1)

T. Hayakawa, T. Kunihiro, S. Dowaki, H. Uno, E. Matsui, M. Uchida, S. Kobayashi, A. Yasuda, T. Shimizu, and T. Okano, “Noninvasive Evaluation of Contractile Behavior of Cardiomyocyte Monolayers Based on Motion Vector Analysis,” Tissue Eng. Part C Methods 18(1), 21–32 (2012).
[Crossref] [PubMed]

Toxicol. Appl. Pharmacol. (3)

A. R. Harmer, N. Abi-Gerges, M. J. Morton, G. F. Pullen, J. P. Valentin, and C. E. Pollard, “Validation of an in vitro contractility assay using canine ventricular myocytes,” Toxicol. Appl. Pharmacol. 260(2), 162–172 (2012).
[Crossref] [PubMed]

O. Sirenko, E. F. Cromwell, C. Crittenden, J. A. Wignall, F. A. Wright, and I. Rusyn, “Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity,” Toxicol. Appl. Pharmacol. 273(3), 500–507 (2013).
[Crossref] [PubMed]

O. Sirenko, E. F. Cromwell, C. Crittenden, J. A. Wignall, F. A. Wright, and I. Rusyn, “Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity,” Toxicol. Appl. Pharmacol. 273(3), 500–507 (2013).
[Crossref] [PubMed]

Other (3)

Z. C. Lin, A. F. Mcguire, P. W. Burridge, E. Matsa, H.-Y. Lou, J. C. Wu, and B. Cui, “Accurate Nanoelectrode Recording of Human Pluripotent Stem Cell-Derived Cardiomyocytes for Assaying Drugs and Modeling Disease,” Microsystems Nanoeng. 1–8 (2017).
[Crossref]

D. Rajamohan, S. Kalra, M. D. Hoang, V. George, A. Staniforth, H. Russell, X. Yang, and C. Denning, “Automated Electrophysiological and Pharmacological Evaluation of Human Pluripotent Stem Cell-Derived Cardiomyocytes,” Stem Cells Dev. 25, scd.2015.0253 (2016).
[Crossref]

T. Pauwelyn, V. Reumers, G. Vanmeerbeeck, R. Stahl, S. Janssens, L. Lagae, D. Braeken, and A. Lambrechts, “Label-free cardiac contractility monitoring for drug screening applications based on compact high-speed lens-free imaging,” in SPIE BiOS (2015), Vol. 9328, p. 932818.

Supplementary Material (7)

NameDescription
» Visualization 1       Dense interference fringes of primary ventricular cardiomyocytes grown on blank silicon surfaces. Sequences of interference fringes were recorded at 169 fps over an area of 57.0 mm2 and the periodic contractions of cardiac cells resulted in oscillati
» Visualization 2       Simultaneous monitoring of cardiac contraction through calcium imaging (green box, 0.11 mm2) and reflective lens-free imaging (RLFI, grayscale box, 0.3 mm2) in a combined RLFI-fluorescence microscope setup. The full sequences of images were processed
» Visualization 3       Simultaneous electrophysiological and contractile monitoring through a combined CMOS-based microelectrode array (MEA) and reflective lens-free imaging (RLFI) setup. Interference patterns were recorded by RLFI over the full MEA surface (15.7mm2) and f
» Visualization 4       Detection of conduction disturbances in excitation wave propagation by increased concentration of 1-octanol (A: 0 µM; B: 1 µM; 10 µM and 100 µM not shown; C: 400 µM; and D: 1 mM; 0.1x actual velocity; scale bar: 2 mm). To visualize the flow of the ex
» Visualization 5       Detection of conduction disturbances in excitation wave propagation by increased concentration of 1-octanol (A: 0 µM; B: 1 µM; 10 µM and 100 µM not shown; C: 400 µM; and D: 1 mM; 0.1x actual velocity; scale bar: 2 mm). To visualize the flow of the ex
» Visualization 6       Detection of conduction disturbances in excitation wave propagation by increased concentration of 1-octanol (A: 0 µM; B: 1 µM; 10 µM and 100 µM not shown; C: 400 µM; and D: 1 mM; 0.1x actual velocity; scale bar: 2 mm). To visualize the flow of the ex
» Visualization 7       Detection of conduction disturbances in excitation wave propagation by increased concentration of 1-octanol (A: 0 µM; B: 1 µM; 10 µM and 100 µM not shown; C: 400 µM; and D: 1 mM; 0.1x actual velocity; scale bar: 2 mm). To visualize the flow of the ex

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Principle behind the reflective lens-free imaging based on digital in-line holography. The sample is illuminated by coherent light which consists of parallel wave fronts, and the light is reflected off the sample surface. The image sensor records the interference pattern created by the light scattered from the sample and the un-scattered reference beam. (b) Photograph of the RLFI system (c) the glass well on a blank SiO2 wafer placed directly under the camera.
Fig. 2
Fig. 2 (a) Schematic representation of reflective lens-free imaging setup where the reflection of the laser from the coverslip (purple arrows) is physically separated from the reflection of the silicon surface (red arrows). Interference patterns of (b) sparsely seeded and (c) confluent monolayer of cardiac cells (scale bar: 1 mm).
Fig. 3
Fig. 3 (a) Full image series of interference fringes were divided into 448 regions of 0.124 mm2 and further processed by optical flow algorithms. (b) Typical trace of relative cellular deformation (top trace) and rate of cellular deformation (bottom trace) of cardiac cells resulted from the image series in C. Beating rate was 47.9 ± 2.9 bpm. These traces were further processed to extract (c) averaged relative deformation, relative deformation amplitude and duration at 20% peak height and (d) averaged relative cellular deformation rate, maximal relative contraction rate and relative relaxation rate.
Fig. 4
Fig. 4 (a) Schematic of reflective lens free imaging in combination with a fluorescent microscope for synchronous measurements of the relative cellular deformation and relative intracellular Ca2+ concentration. (b) Averaged relative cellular deformation (blue trace, area of 0.3 mm2) of cardiomyocytes calculated over 9 contractions show simultaneous relative intracellular Ca2+ concentration (DF/F0; yellow trace; area of 0.11 mm2) and (c) no significant variations in beat-to-beat duration (p = 0.55, Wilcoxon matched-pairs signed rank test, n = 8 contractions).
Fig. 5
Fig. 5 Reduction of amplitude and duration of (a) averaged relative cellular deformation curves and (b) averaged rates of relative cellular deformation upon increasing concentrations of blebbistatin. (c) Relative cellular deformation amplitude in function of blebbistatin concentrations (averaged over 12 regions). An IC50 value of 451 nM was obtained by sigmoidal dose-response curve fitting. (d) Rate of relative cellular deformation during contraction (full line) and relaxation (dashed line) in function of blebbistatin concentration (averaged over 12 regions). A lower IC50 value was obtained for the contraction rate amplitude than the relaxation rate amplitude (381 nM vs 612 nM).
Fig. 6
Fig. 6 (a) Schematic of reflective lens free imaging system combined with the CMOS-based microelectrode array. (b) Simultaneous detection of intracellular action potentials by MEA (red trace) and relative cellular deformation by RLFI (blue trace; area of 0.124 mm2). (c) Averaged MEA and RLFI signals measured by the same electrode under conditions of (I) cell medium (n = 10 contractions), (II) cell medium containing 0.015% DMSO (n = 12), and (III) 5 µM blebbistatin (n = 6).
Fig. 7
Fig. 7 (a) Color coded map of excitation wave propagation over a chip area of 31.8 mm2 measured by reflective lens-free imaging (velocity: 351 ± 7 mm/s; n = 11 contractions). Black dots represent the location of 12 electrodes of the MEA chip spread over a length of 4.4 mm. (b) Extracellular field potentials (red trace) overlapped with relative cellular deformation (0.124 mm2, blue trace) of a single contraction/field potential recorded on three different electrodes (E1, E6, E12 see (a)). (c) Signal propagation over the chip surface plotted as the delay of the field potentials (red box plots) and cellular deformation (blue box plots) (n = 11). The velocity of signal propagation between electrodes E1 and E12 was calculated both from the delays measured in field potential and relative cellular deformation and no significant difference was detected (370 ± 1 mm/s and 345 ± 32 mm/s respectively, p = 0.266, Wilcoxon rank sum test).
Fig. 8
Fig. 8 (a) Color coded map of excitation wave propagation delay in the cardiac monolayer under following conditions: cell medium (I, n = 14 contractions), 1 µM octanol (II, n = 14) and 400 µM octanol (III, n = 6). (b) Propagation velocity reduction in the presence of increasing concentrations of 1-octanol (IC50 was 45 µM).
Fig. 9
Fig. 9 Confocal images of cardiac cells monolayers. (a) The contractile apparatus was well developed and sarcomeres were clearly visible (nucleus: Hoechst, blue, α-actinin: anti-sarcomeric primary -α-actinin antibody (Ab) and Alexa Fluor goat anti-mouse Ab, cyan). (b) Cardiac cells were electrically coupled over the monolayer (nucleus: Hoechst, blue, gap junction: anti-Cx43 Ab, Alexa Fluor goat anti-rabbit Ab, red). Scale bar: 50 µm.
Fig. 10
Fig. 10 Simultaneous monitoring of cardiac contraction through calcium imaging (green box, 0.11 mm2) and RLFI (grayscale box, 0.3 mm2) in a combined RLFI-fluorescence microscope setup (see Visualization 2). The full sequence of images was processed to obtain the relative intracellular calcium concentration ([Ca2+]i, green trace) and relative cellular deformation (RCD, blue trace). Higher [Ca2+]i and RCD values were obtained during contraction compared to in between beats. Video stills are shown at (a) 2.89 s and at (b) 6.70s, and video recordings are shown at actual frame rate.
Fig. 11
Fig. 11 Simultaneous electrophysiological and contractile monitoring through a combined CMOS-based MEA and RLFI setup (see Visualization 3). Interference patterns were recorded by RLFI over the full MEA surface (15.7mm2) and further processed. Intracellular action potential (AP) of single cells were synchronized with the relative cellular deformation (RCD) of a cluster of cells located in a region around the electrode of interest (white square, 0.3 mm2). Video stills are shown at (a) 2.02 s and at (b) 3.04 s, and video recordings are shown at 0.5x actual frame rate.
Fig. 12
Fig. 12 Detection of conduction disturbances in excitation wave propagation by increased concentration of 1-octanol ((a): 0 µM, Visualization 4; (b): 1 µM, Visualization 5; 10 µM and 100 µM not shown; (c): 400 µM, Visualization 6; and (d): 1 mM, Visualization 7; 0.1x actual velocity; scale bar: 2 mm). To visualize the excitation wave propagation, sequences of interference fringes obtained by RLFI were processed pixel intensity variation scripts. Briefly, pixel intensity variations were smoothened and locally normalized over regions of 0.05 mm2. (a) The propagation of the excitation wave over the cellular monolayer was recorded in cardiac medium and (1) cells were initially relaxed. (II) Contraction is first detected in the left side of the monolayer and (III) the excitation wave propagated to the right over the monolayer leading to over a large area of the monolayer. Then, (IV) contraction is detected over the full monolayer until (V) the cells relax. (VI) Cells were again fully relaxed between contractions. From RCD analysis, an excitation propagation velocity (EPV) of 238 ± 8 mm/s and a constant directionality were detected (white arrow). (b) At 1 µM, the directionality of the excitation wave remained unchanged, while EPV reduced to 219 ± 16 mm/s. (c) At 400 µM, EPV reduced to 83.8 ± 1.7 mm/s, while the direction of the excitation wave remained similar. (d) At 1 mM, prominent conductions disturbances became apparent. The excitation wave broke off into multiple slower branches (white arrows in panels II, III, and IV), while the EPV of the main branch slowed to 14 ± 2 mm/s.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I var ( t ) = i = x o x f ( j = y o y f | I ( i , j , t ) I a v e ( i , j ) | )
R C D ( t ) = i = x o x f ( j = y 0 y f v x ( i , j , t ) 2 + v y ( i , j , t ) 2 )

Metrics