Abstract

We apply terahertz time-domain spectroscopy for the quantitative non-invasive assessment of the water content in biological samples, such as Carpinus caroliniana tree leaves and pork muscles. The developed experimental terahertz time-domain spectroscopy system operates both in transmission and reflection modes. The Landau-Looyenga-Lifshitz-based model is used for the calculation of the water concentration within the samples. The results of the water concentration measurements are compared with the results of the gravimetric measurements. The obtained results show that the water content in biological samples can be measured non-invasively, with a high accuracy, utilizing terahertz waves in transmission and reflection modes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of water diffusion dynamics in corneal phantoms using terahertz time-domain spectroscopy

Andrew Chen, Omar B. Osman, Zachery B. Harris, Azin Abazri, Robert Honkanen, and M. Hassan Arbab
Biomed. Opt. Express 11(3) 1284-1297 (2020)

Time-domain transillumination of biological tissues with terahertz pulses

P. Y. Han, G. C. Cho, and X.-C. Zhang
Opt. Lett. 25(4) 242-244 (2000)

Non-invasive terahertz imaging of tissue water content for flap viability assessment

Neha Bajwa, Joshua Au, Reza Jarrahy, Shijun Sung, Michael C. Fishbein, David Riopelle, Daniel B. Ennis, Tara Aghaloo, Maie A. St. John, Warren S. Grundfest, and Zachary D. Taylor
Biomed. Opt. Express 8(1) 460-474 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
  2. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
  3. M. Kemp, P. Taday, B. Cole, J. Cluff, A. Fitzgerald, and W. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070(6), 44–52 (2003).
  4. K. Ishigaki, M. Shiraishi, S. Suzuki, M. Asada, N. Nishiyama, and S. Arai, “Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunnelling diodes,” Electron. Lett. 48(10), 582 (2012).
  5. V. Semenova, M. Kulya, and V. Bespalov, “Numerical simulation of broadband vortex terahertz beams propagation,” J. Phys. Conf. Ser. 735(1), 012064 (2016).
  6. J. Jackson, M. Mourou, J. Whitaker, I. Duling, S. Williamson, M. Menu, and G. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun. 281(4), 527–532 (2008).
  7. E. Abraham, A. Younus, J. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys., A Mater. Sci. Process. 100(3), 585–590 (2010).
  8. S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).
  9. O. Cherkasova, M. Nazarov, and A. Shkurinov, “Noninvasive blood glucose monitoring in the terahertz frequency range,” Opt. Quantum Electron. 48(3), 217 (2016).
  10. S. Gusev, M. Borovkova, M. Strepitov, and M. Khodzitsky, “Blood optical properties at various glucose level values in THz frequency range,” Proc. SPIE 9537, 95372A (2015).
  11. B. Karagoz, K. Kamburoglu, and H. Altan, “Terahertz pulsed imaging for the monitoring of dental caries: a comparison with x-ray imaging,” Proc. SPIE 10417, 104170P (2017).
  12. X. Zhang, Introduction To Thz Wave Photonics (Springer, 2014).
  13. A. Kolesnikov, E. Kolesnikova, A. Popov, M. Nazarov, A. Shkurinov, and V. Tuchin, “In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents,” Quantum Electron. 44(7), 633–640 (2014).
  14. A. Kolesnikov, E. Kolesnikova, K. Kolesnikova, D. Tuchina, A. Popov, A. Skaptsov, M. Nazarov, A. Shkurinov, A. Terentyuk, and V. Tuchin, “THz monitoring of the dehydration of biological tissues affected by hyperosmotic agents,” Phys. Wave Phenom. 22(3), 169–176 (2014).
  15. D. Hou, X. Li, J. Cai, Y. Ma, X. Kang, P. Huang, and G. Zhang, “Terahertz spectroscopic investigation of human gastric normal and tumor tissues,” Phys. Med. Biol. 59(18), 5423–5440 (2014).
  16. P. Doradla, C. Joseph, and R. H. Giles, “Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives,” World J. Gastrointest. Endosc. 9(8), 346–358 (2017).
  17. P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, “Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Opt. Express 17(15), 12444–12454 (2009).
  18. A. Goryachuk, A. Simonova, M. Khodzitsky, M. Borovkova, and A. Khamid, “Gastrointestinal cancer diagnostics by terahertz time domain spectroscopy,” in Proceedings of 2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA) (IEEE, 2017), 134–137.
  19. A. Goryachuk, M. Khodzitsky, M. Borovkova, A. Khamid, P. Dutkinskii, and D. Shishlo, “Development of the technique of terahertz pulse spectroscopy for diagnostic malignant tumors during gastrointestinal surgeries,” J. Phys. Conf. Ser. 741(1), 012072 (2016).
  20. A. I. Hernandez-Serrano, S. C. Corzo-Garcia, E. Garcia-Sanchez, M. Alfaro, and E. Castro-Camus, “Quality control of leather by terahertz time-domain spectroscopy,” Appl. Opt. 53(33), 7872–7876 (2014).
  21. N. Born, D. Behringer, S. Liepelt, S. Beyer, M. Schwerdtfeger, B. Ziegenhagen, and M. Koch, “Monitoring Plant Drought Stress Response Using Terahertz Time-Domain Spectroscopy,” Plant Physiol. 164(4), 1571–1577 (2014).
  22. R. Gente and M. Koch, “Monitoring leaf water content with THz and sub-THz waves,” Plant Methods 11(1), 15 (2015).
  23. R. Gente, N. Born, N. Voß, W. Sannemann, J. Léon, M. Koch, and E. Castro-Camus, “Determination of Leaf Water Content from Terahertz Time-Domain Spectroscopic Data,” J. Infrared Millim. Terahertz Waves 34(3–4), 316–323 (2013).
  24. R. H. Waring and B. D. Cleary, “Plant Moisture Stress: Evaluation by Pressure Bomb,” Science 155(3767), 1248–1254 (1967).
  25. R. Souza, E. Machado, J. Silva, A. Lagôa, and J. Silveira, “Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery,” Environ. Exp. Bot. 51(1), 45–56 (2004).
  26. B. Breitenstein, M. Scheller, M. K. Shakfa, T. Kinder, T. Müller-Wirts, M. Koch, and D. Selmar, “Introducing terahertz technology into plant biology: A novel method to monitor changes in leaf water status,” J. Appl. Bot. Food Qual. 84(2), 158–161 (2011).
  27. M. H. Arbab, T. C. Dickey, D. P. Winebrenner, A. Chen, M. B. Klein, and P. D. Mourad, “Terahertz reflectometry of burn wounds in a rat model,” Biomed. Opt. Express 2(8), 2339–2347 (2011).
  28. H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica 31(3), 401–406 (1965).
  29. C. Ronne, L. Thrane, P. Åstrand, A. Wallqvist, K. Mikkelsen, and S. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107(14), 5319–5331 (1997).
  30. P. Uhd, Jepsen, “Determining parameters of the dielectric function of a substance in aqueous solution by self-referenced reflection THz spectroscopy.” U.S. Patent 8374800. 12 Feb. 2013.
  31. S. G. Rabinovich, Measurement Errors and Uncertainties: Theory and Practice (Springer Science & Business Media, 2006), Chap.6.

2017 (2)

B. Karagoz, K. Kamburoglu, and H. Altan, “Terahertz pulsed imaging for the monitoring of dental caries: a comparison with x-ray imaging,” Proc. SPIE 10417, 104170P (2017).

P. Doradla, C. Joseph, and R. H. Giles, “Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives,” World J. Gastrointest. Endosc. 9(8), 346–358 (2017).

2016 (4)

A. Goryachuk, M. Khodzitsky, M. Borovkova, A. Khamid, P. Dutkinskii, and D. Shishlo, “Development of the technique of terahertz pulse spectroscopy for diagnostic malignant tumors during gastrointestinal surgeries,” J. Phys. Conf. Ser. 741(1), 012072 (2016).

V. Semenova, M. Kulya, and V. Bespalov, “Numerical simulation of broadband vortex terahertz beams propagation,” J. Phys. Conf. Ser. 735(1), 012064 (2016).

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).

O. Cherkasova, M. Nazarov, and A. Shkurinov, “Noninvasive blood glucose monitoring in the terahertz frequency range,” Opt. Quantum Electron. 48(3), 217 (2016).

2015 (2)

S. Gusev, M. Borovkova, M. Strepitov, and M. Khodzitsky, “Blood optical properties at various glucose level values in THz frequency range,” Proc. SPIE 9537, 95372A (2015).

R. Gente and M. Koch, “Monitoring leaf water content with THz and sub-THz waves,” Plant Methods 11(1), 15 (2015).

2014 (5)

A. I. Hernandez-Serrano, S. C. Corzo-Garcia, E. Garcia-Sanchez, M. Alfaro, and E. Castro-Camus, “Quality control of leather by terahertz time-domain spectroscopy,” Appl. Opt. 53(33), 7872–7876 (2014).

N. Born, D. Behringer, S. Liepelt, S. Beyer, M. Schwerdtfeger, B. Ziegenhagen, and M. Koch, “Monitoring Plant Drought Stress Response Using Terahertz Time-Domain Spectroscopy,” Plant Physiol. 164(4), 1571–1577 (2014).

A. Kolesnikov, E. Kolesnikova, A. Popov, M. Nazarov, A. Shkurinov, and V. Tuchin, “In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents,” Quantum Electron. 44(7), 633–640 (2014).

A. Kolesnikov, E. Kolesnikova, K. Kolesnikova, D. Tuchina, A. Popov, A. Skaptsov, M. Nazarov, A. Shkurinov, A. Terentyuk, and V. Tuchin, “THz monitoring of the dehydration of biological tissues affected by hyperosmotic agents,” Phys. Wave Phenom. 22(3), 169–176 (2014).

D. Hou, X. Li, J. Cai, Y. Ma, X. Kang, P. Huang, and G. Zhang, “Terahertz spectroscopic investigation of human gastric normal and tumor tissues,” Phys. Med. Biol. 59(18), 5423–5440 (2014).

2013 (1)

R. Gente, N. Born, N. Voß, W. Sannemann, J. Léon, M. Koch, and E. Castro-Camus, “Determination of Leaf Water Content from Terahertz Time-Domain Spectroscopic Data,” J. Infrared Millim. Terahertz Waves 34(3–4), 316–323 (2013).

2012 (1)

K. Ishigaki, M. Shiraishi, S. Suzuki, M. Asada, N. Nishiyama, and S. Arai, “Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunnelling diodes,” Electron. Lett. 48(10), 582 (2012).

2011 (2)

B. Breitenstein, M. Scheller, M. K. Shakfa, T. Kinder, T. Müller-Wirts, M. Koch, and D. Selmar, “Introducing terahertz technology into plant biology: A novel method to monitor changes in leaf water status,” J. Appl. Bot. Food Qual. 84(2), 158–161 (2011).

M. H. Arbab, T. C. Dickey, D. P. Winebrenner, A. Chen, M. B. Klein, and P. D. Mourad, “Terahertz reflectometry of burn wounds in a rat model,” Biomed. Opt. Express 2(8), 2339–2347 (2011).

2010 (1)

E. Abraham, A. Younus, J. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys., A Mater. Sci. Process. 100(3), 585–590 (2010).

2009 (1)

2008 (1)

J. Jackson, M. Mourou, J. Whitaker, I. Duling, S. Williamson, M. Menu, and G. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun. 281(4), 527–532 (2008).

2005 (1)

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).

2004 (1)

R. Souza, E. Machado, J. Silva, A. Lagôa, and J. Silveira, “Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery,” Environ. Exp. Bot. 51(1), 45–56 (2004).

2003 (2)

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).

M. Kemp, P. Taday, B. Cole, J. Cluff, A. Fitzgerald, and W. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070(6), 44–52 (2003).

1997 (1)

C. Ronne, L. Thrane, P. Åstrand, A. Wallqvist, K. Mikkelsen, and S. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107(14), 5319–5331 (1997).

1967 (1)

R. H. Waring and B. D. Cleary, “Plant Moisture Stress: Evaluation by Pressure Bomb,” Science 155(3767), 1248–1254 (1967).

1965 (1)

H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica 31(3), 401–406 (1965).

Abraham, E.

E. Abraham, A. Younus, J. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys., A Mater. Sci. Process. 100(3), 585–590 (2010).

Alfaro, M.

Altan, H.

B. Karagoz, K. Kamburoglu, and H. Altan, “Terahertz pulsed imaging for the monitoring of dental caries: a comparison with x-ray imaging,” Proc. SPIE 10417, 104170P (2017).

Arai, S.

K. Ishigaki, M. Shiraishi, S. Suzuki, M. Asada, N. Nishiyama, and S. Arai, “Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunnelling diodes,” Electron. Lett. 48(10), 582 (2012).

Arbab, M. H.

Asada, M.

K. Ishigaki, M. Shiraishi, S. Suzuki, M. Asada, N. Nishiyama, and S. Arai, “Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunnelling diodes,” Electron. Lett. 48(10), 582 (2012).

Ashworth, P. C.

Åstrand, P.

C. Ronne, L. Thrane, P. Åstrand, A. Wallqvist, K. Mikkelsen, and S. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107(14), 5319–5331 (1997).

Barat, R.

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).

Behringer, D.

N. Born, D. Behringer, S. Liepelt, S. Beyer, M. Schwerdtfeger, B. Ziegenhagen, and M. Koch, “Monitoring Plant Drought Stress Response Using Terahertz Time-Domain Spectroscopy,” Plant Physiol. 164(4), 1571–1577 (2014).

Beigang, R.

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).

Bespalov, V.

V. Semenova, M. Kulya, and V. Bespalov, “Numerical simulation of broadband vortex terahertz beams propagation,” J. Phys. Conf. Ser. 735(1), 012064 (2016).

Beyer, S.

N. Born, D. Behringer, S. Liepelt, S. Beyer, M. Schwerdtfeger, B. Ziegenhagen, and M. Koch, “Monitoring Plant Drought Stress Response Using Terahertz Time-Domain Spectroscopy,” Plant Physiol. 164(4), 1571–1577 (2014).

Born, N.

N. Born, D. Behringer, S. Liepelt, S. Beyer, M. Schwerdtfeger, B. Ziegenhagen, and M. Koch, “Monitoring Plant Drought Stress Response Using Terahertz Time-Domain Spectroscopy,” Plant Physiol. 164(4), 1571–1577 (2014).

R. Gente, N. Born, N. Voß, W. Sannemann, J. Léon, M. Koch, and E. Castro-Camus, “Determination of Leaf Water Content from Terahertz Time-Domain Spectroscopic Data,” J. Infrared Millim. Terahertz Waves 34(3–4), 316–323 (2013).

Borovkova, M.

A. Goryachuk, M. Khodzitsky, M. Borovkova, A. Khamid, P. Dutkinskii, and D. Shishlo, “Development of the technique of terahertz pulse spectroscopy for diagnostic malignant tumors during gastrointestinal surgeries,” J. Phys. Conf. Ser. 741(1), 012072 (2016).

S. Gusev, M. Borovkova, M. Strepitov, and M. Khodzitsky, “Blood optical properties at various glucose level values in THz frequency range,” Proc. SPIE 9537, 95372A (2015).

A. Goryachuk, A. Simonova, M. Khodzitsky, M. Borovkova, and A. Khamid, “Gastrointestinal cancer diagnostics by terahertz time domain spectroscopy,” in Proceedings of 2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA) (IEEE, 2017), 134–137.

Breitenstein, B.

B. Breitenstein, M. Scheller, M. K. Shakfa, T. Kinder, T. Müller-Wirts, M. Koch, and D. Selmar, “Introducing terahertz technology into plant biology: A novel method to monitor changes in leaf water status,” J. Appl. Bot. Food Qual. 84(2), 158–161 (2011).

Cai, J.

D. Hou, X. Li, J. Cai, Y. Ma, X. Kang, P. Huang, and G. Zhang, “Terahertz spectroscopic investigation of human gastric normal and tumor tissues,” Phys. Med. Biol. 59(18), 5423–5440 (2014).

Castro-Camus, E.

A. I. Hernandez-Serrano, S. C. Corzo-Garcia, E. Garcia-Sanchez, M. Alfaro, and E. Castro-Camus, “Quality control of leather by terahertz time-domain spectroscopy,” Appl. Opt. 53(33), 7872–7876 (2014).

R. Gente, N. Born, N. Voß, W. Sannemann, J. Léon, M. Koch, and E. Castro-Camus, “Determination of Leaf Water Content from Terahertz Time-Domain Spectroscopic Data,” J. Infrared Millim. Terahertz Waves 34(3–4), 316–323 (2013).

Chen, A.

Cherkasova, O.

O. Cherkasova, M. Nazarov, and A. Shkurinov, “Noninvasive blood glucose monitoring in the terahertz frequency range,” Opt. Quantum Electron. 48(3), 217 (2016).

Cleary, B. D.

R. H. Waring and B. D. Cleary, “Plant Moisture Stress: Evaluation by Pressure Bomb,” Science 155(3767), 1248–1254 (1967).

Cluff, J.

M. Kemp, P. Taday, B. Cole, J. Cluff, A. Fitzgerald, and W. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070(6), 44–52 (2003).

Cole, B.

M. Kemp, P. Taday, B. Cole, J. Cluff, A. Fitzgerald, and W. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070(6), 44–52 (2003).

Corzo-Garcia, S. C.

Delagnes, J.

E. Abraham, A. Younus, J. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys., A Mater. Sci. Process. 100(3), 585–590 (2010).

Dickey, T. C.

Doradla, P.

P. Doradla, C. Joseph, and R. H. Giles, “Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives,” World J. Gastrointest. Endosc. 9(8), 346–358 (2017).

Duling, I.

J. Jackson, M. Mourou, J. Whitaker, I. Duling, S. Williamson, M. Menu, and G. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun. 281(4), 527–532 (2008).

Dutkinskii, P.

A. Goryachuk, M. Khodzitsky, M. Borovkova, A. Khamid, P. Dutkinskii, and D. Shishlo, “Development of the technique of terahertz pulse spectroscopy for diagnostic malignant tumors during gastrointestinal surgeries,” J. Phys. Conf. Ser. 741(1), 012072 (2016).

Federici, J.

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).

Fitzgerald, A.

M. Kemp, P. Taday, B. Cole, J. Cluff, A. Fitzgerald, and W. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070(6), 44–52 (2003).

Garcia-Sanchez, E.

Gary, D.

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).

Gente, R.

R. Gente and M. Koch, “Monitoring leaf water content with THz and sub-THz waves,” Plant Methods 11(1), 15 (2015).

R. Gente, N. Born, N. Voß, W. Sannemann, J. Léon, M. Koch, and E. Castro-Camus, “Determination of Leaf Water Content from Terahertz Time-Domain Spectroscopic Data,” J. Infrared Millim. Terahertz Waves 34(3–4), 316–323 (2013).

Giles, R. H.

P. Doradla, C. Joseph, and R. H. Giles, “Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives,” World J. Gastrointest. Endosc. 9(8), 346–358 (2017).

Goryachuk, A.

A. Goryachuk, M. Khodzitsky, M. Borovkova, A. Khamid, P. Dutkinskii, and D. Shishlo, “Development of the technique of terahertz pulse spectroscopy for diagnostic malignant tumors during gastrointestinal surgeries,” J. Phys. Conf. Ser. 741(1), 012072 (2016).

A. Goryachuk, A. Simonova, M. Khodzitsky, M. Borovkova, and A. Khamid, “Gastrointestinal cancer diagnostics by terahertz time domain spectroscopy,” in Proceedings of 2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA) (IEEE, 2017), 134–137.

Gusev, S.

S. Gusev, M. Borovkova, M. Strepitov, and M. Khodzitsky, “Blood optical properties at various glucose level values in THz frequency range,” Proc. SPIE 9537, 95372A (2015).

Hernandez-Serrano, A. I.

Hou, D.

D. Hou, X. Li, J. Cai, Y. Ma, X. Kang, P. Huang, and G. Zhang, “Terahertz spectroscopic investigation of human gastric normal and tumor tissues,” Phys. Med. Biol. 59(18), 5423–5440 (2014).

Huang, F.

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).

Huang, P.

D. Hou, X. Li, J. Cai, Y. Ma, X. Kang, P. Huang, and G. Zhang, “Terahertz spectroscopic investigation of human gastric normal and tumor tissues,” Phys. Med. Biol. 59(18), 5423–5440 (2014).

Inoue, H.

Ishigaki, K.

K. Ishigaki, M. Shiraishi, S. Suzuki, M. Asada, N. Nishiyama, and S. Arai, “Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunnelling diodes,” Electron. Lett. 48(10), 582 (2012).

Jackson, J.

J. Jackson, M. Mourou, J. Whitaker, I. Duling, S. Williamson, M. Menu, and G. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun. 281(4), 527–532 (2008).

Jonuscheit, J.

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).

Joseph, C.

P. Doradla, C. Joseph, and R. H. Giles, “Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives,” World J. Gastrointest. Endosc. 9(8), 346–358 (2017).

Kamburoglu, K.

B. Karagoz, K. Kamburoglu, and H. Altan, “Terahertz pulsed imaging for the monitoring of dental caries: a comparison with x-ray imaging,” Proc. SPIE 10417, 104170P (2017).

Kang, X.

D. Hou, X. Li, J. Cai, Y. Ma, X. Kang, P. Huang, and G. Zhang, “Terahertz spectroscopic investigation of human gastric normal and tumor tissues,” Phys. Med. Biol. 59(18), 5423–5440 (2014).

Karagoz, B.

B. Karagoz, K. Kamburoglu, and H. Altan, “Terahertz pulsed imaging for the monitoring of dental caries: a comparison with x-ray imaging,” Proc. SPIE 10417, 104170P (2017).

Kawase, K.

Keiding, S.

C. Ronne, L. Thrane, P. Åstrand, A. Wallqvist, K. Mikkelsen, and S. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107(14), 5319–5331 (1997).

Kemp, M.

M. Kemp, P. Taday, B. Cole, J. Cluff, A. Fitzgerald, and W. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070(6), 44–52 (2003).

Khamid, A.

A. Goryachuk, M. Khodzitsky, M. Borovkova, A. Khamid, P. Dutkinskii, and D. Shishlo, “Development of the technique of terahertz pulse spectroscopy for diagnostic malignant tumors during gastrointestinal surgeries,” J. Phys. Conf. Ser. 741(1), 012072 (2016).

A. Goryachuk, A. Simonova, M. Khodzitsky, M. Borovkova, and A. Khamid, “Gastrointestinal cancer diagnostics by terahertz time domain spectroscopy,” in Proceedings of 2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA) (IEEE, 2017), 134–137.

Khodzitsky, M.

A. Goryachuk, M. Khodzitsky, M. Borovkova, A. Khamid, P. Dutkinskii, and D. Shishlo, “Development of the technique of terahertz pulse spectroscopy for diagnostic malignant tumors during gastrointestinal surgeries,” J. Phys. Conf. Ser. 741(1), 012072 (2016).

S. Gusev, M. Borovkova, M. Strepitov, and M. Khodzitsky, “Blood optical properties at various glucose level values in THz frequency range,” Proc. SPIE 9537, 95372A (2015).

A. Goryachuk, A. Simonova, M. Khodzitsky, M. Borovkova, and A. Khamid, “Gastrointestinal cancer diagnostics by terahertz time domain spectroscopy,” in Proceedings of 2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA) (IEEE, 2017), 134–137.

Kinder, T.

B. Breitenstein, M. Scheller, M. K. Shakfa, T. Kinder, T. Müller-Wirts, M. Koch, and D. Selmar, “Introducing terahertz technology into plant biology: A novel method to monitor changes in leaf water status,” J. Appl. Bot. Food Qual. 84(2), 158–161 (2011).

Klein, M. B.

Klier, J.

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).

Koch, M.

R. Gente and M. Koch, “Monitoring leaf water content with THz and sub-THz waves,” Plant Methods 11(1), 15 (2015).

N. Born, D. Behringer, S. Liepelt, S. Beyer, M. Schwerdtfeger, B. Ziegenhagen, and M. Koch, “Monitoring Plant Drought Stress Response Using Terahertz Time-Domain Spectroscopy,” Plant Physiol. 164(4), 1571–1577 (2014).

R. Gente, N. Born, N. Voß, W. Sannemann, J. Léon, M. Koch, and E. Castro-Camus, “Determination of Leaf Water Content from Terahertz Time-Domain Spectroscopic Data,” J. Infrared Millim. Terahertz Waves 34(3–4), 316–323 (2013).

B. Breitenstein, M. Scheller, M. K. Shakfa, T. Kinder, T. Müller-Wirts, M. Koch, and D. Selmar, “Introducing terahertz technology into plant biology: A novel method to monitor changes in leaf water status,” J. Appl. Bot. Food Qual. 84(2), 158–161 (2011).

Kolesnikov, A.

A. Kolesnikov, E. Kolesnikova, A. Popov, M. Nazarov, A. Shkurinov, and V. Tuchin, “In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents,” Quantum Electron. 44(7), 633–640 (2014).

A. Kolesnikov, E. Kolesnikova, K. Kolesnikova, D. Tuchina, A. Popov, A. Skaptsov, M. Nazarov, A. Shkurinov, A. Terentyuk, and V. Tuchin, “THz monitoring of the dehydration of biological tissues affected by hyperosmotic agents,” Phys. Wave Phenom. 22(3), 169–176 (2014).

Kolesnikova, E.

A. Kolesnikov, E. Kolesnikova, K. Kolesnikova, D. Tuchina, A. Popov, A. Skaptsov, M. Nazarov, A. Shkurinov, A. Terentyuk, and V. Tuchin, “THz monitoring of the dehydration of biological tissues affected by hyperosmotic agents,” Phys. Wave Phenom. 22(3), 169–176 (2014).

A. Kolesnikov, E. Kolesnikova, A. Popov, M. Nazarov, A. Shkurinov, and V. Tuchin, “In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents,” Quantum Electron. 44(7), 633–640 (2014).

Kolesnikova, K.

A. Kolesnikov, E. Kolesnikova, K. Kolesnikova, D. Tuchina, A. Popov, A. Skaptsov, M. Nazarov, A. Shkurinov, A. Terentyuk, and V. Tuchin, “THz monitoring of the dehydration of biological tissues affected by hyperosmotic agents,” Phys. Wave Phenom. 22(3), 169–176 (2014).

Krimi, S.

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).

Kulya, M.

V. Semenova, M. Kulya, and V. Bespalov, “Numerical simulation of broadband vortex terahertz beams propagation,” J. Phys. Conf. Ser. 735(1), 012064 (2016).

Lagôa, A.

R. Souza, E. Machado, J. Silva, A. Lagôa, and J. Silveira, “Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery,” Environ. Exp. Bot. 51(1), 45–56 (2004).

Léon, J.

R. Gente, N. Born, N. Voß, W. Sannemann, J. Léon, M. Koch, and E. Castro-Camus, “Determination of Leaf Water Content from Terahertz Time-Domain Spectroscopic Data,” J. Infrared Millim. Terahertz Waves 34(3–4), 316–323 (2013).

Li, X.

D. Hou, X. Li, J. Cai, Y. Ma, X. Kang, P. Huang, and G. Zhang, “Terahertz spectroscopic investigation of human gastric normal and tumor tissues,” Phys. Med. Biol. 59(18), 5423–5440 (2014).

Liepelt, S.

N. Born, D. Behringer, S. Liepelt, S. Beyer, M. Schwerdtfeger, B. Ziegenhagen, and M. Koch, “Monitoring Plant Drought Stress Response Using Terahertz Time-Domain Spectroscopy,” Plant Physiol. 164(4), 1571–1577 (2014).

Looyenga, H.

H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica 31(3), 401–406 (1965).

Ma, Y.

D. Hou, X. Li, J. Cai, Y. Ma, X. Kang, P. Huang, and G. Zhang, “Terahertz spectroscopic investigation of human gastric normal and tumor tissues,” Phys. Med. Biol. 59(18), 5423–5440 (2014).

Machado, E.

R. Souza, E. Machado, J. Silva, A. Lagôa, and J. Silveira, “Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery,” Environ. Exp. Bot. 51(1), 45–56 (2004).

Menu, M.

J. Jackson, M. Mourou, J. Whitaker, I. Duling, S. Williamson, M. Menu, and G. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun. 281(4), 527–532 (2008).

Mikkelsen, K.

C. Ronne, L. Thrane, P. Åstrand, A. Wallqvist, K. Mikkelsen, and S. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107(14), 5319–5331 (1997).

Mounaix, P.

E. Abraham, A. Younus, J. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys., A Mater. Sci. Process. 100(3), 585–590 (2010).

Mourad, P. D.

Mourou, G.

J. Jackson, M. Mourou, J. Whitaker, I. Duling, S. Williamson, M. Menu, and G. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun. 281(4), 527–532 (2008).

Mourou, M.

J. Jackson, M. Mourou, J. Whitaker, I. Duling, S. Williamson, M. Menu, and G. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun. 281(4), 527–532 (2008).

Müller-Wirts, T.

B. Breitenstein, M. Scheller, M. K. Shakfa, T. Kinder, T. Müller-Wirts, M. Koch, and D. Selmar, “Introducing terahertz technology into plant biology: A novel method to monitor changes in leaf water status,” J. Appl. Bot. Food Qual. 84(2), 158–161 (2011).

Nazarov, M.

O. Cherkasova, M. Nazarov, and A. Shkurinov, “Noninvasive blood glucose monitoring in the terahertz frequency range,” Opt. Quantum Electron. 48(3), 217 (2016).

A. Kolesnikov, E. Kolesnikova, K. Kolesnikova, D. Tuchina, A. Popov, A. Skaptsov, M. Nazarov, A. Shkurinov, A. Terentyuk, and V. Tuchin, “THz monitoring of the dehydration of biological tissues affected by hyperosmotic agents,” Phys. Wave Phenom. 22(3), 169–176 (2014).

A. Kolesnikov, E. Kolesnikova, A. Popov, M. Nazarov, A. Shkurinov, and V. Tuchin, “In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents,” Quantum Electron. 44(7), 633–640 (2014).

Nishiyama, N.

K. Ishigaki, M. Shiraishi, S. Suzuki, M. Asada, N. Nishiyama, and S. Arai, “Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunnelling diodes,” Electron. Lett. 48(10), 582 (2012).

Ogawa, Y.

Oliveira, F.

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).

Pepper, M.

Pickwell-MacPherson, E.

Pinder, S. E.

Popov, A.

A. Kolesnikov, E. Kolesnikova, K. Kolesnikova, D. Tuchina, A. Popov, A. Skaptsov, M. Nazarov, A. Shkurinov, A. Terentyuk, and V. Tuchin, “THz monitoring of the dehydration of biological tissues affected by hyperosmotic agents,” Phys. Wave Phenom. 22(3), 169–176 (2014).

A. Kolesnikov, E. Kolesnikova, A. Popov, M. Nazarov, A. Shkurinov, and V. Tuchin, “In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents,” Quantum Electron. 44(7), 633–640 (2014).

Provenzano, E.

Purushotham, A. D.

Ronne, C.

C. Ronne, L. Thrane, P. Åstrand, A. Wallqvist, K. Mikkelsen, and S. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107(14), 5319–5331 (1997).

Sannemann, W.

R. Gente, N. Born, N. Voß, W. Sannemann, J. Léon, M. Koch, and E. Castro-Camus, “Determination of Leaf Water Content from Terahertz Time-Domain Spectroscopic Data,” J. Infrared Millim. Terahertz Waves 34(3–4), 316–323 (2013).

Scheller, M.

B. Breitenstein, M. Scheller, M. K. Shakfa, T. Kinder, T. Müller-Wirts, M. Koch, and D. Selmar, “Introducing terahertz technology into plant biology: A novel method to monitor changes in leaf water status,” J. Appl. Bot. Food Qual. 84(2), 158–161 (2011).

Schulkin, B.

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).

Schwerdtfeger, M.

N. Born, D. Behringer, S. Liepelt, S. Beyer, M. Schwerdtfeger, B. Ziegenhagen, and M. Koch, “Monitoring Plant Drought Stress Response Using Terahertz Time-Domain Spectroscopy,” Plant Physiol. 164(4), 1571–1577 (2014).

Selmar, D.

B. Breitenstein, M. Scheller, M. K. Shakfa, T. Kinder, T. Müller-Wirts, M. Koch, and D. Selmar, “Introducing terahertz technology into plant biology: A novel method to monitor changes in leaf water status,” J. Appl. Bot. Food Qual. 84(2), 158–161 (2011).

Semenova, V.

V. Semenova, M. Kulya, and V. Bespalov, “Numerical simulation of broadband vortex terahertz beams propagation,” J. Phys. Conf. Ser. 735(1), 012064 (2016).

Shakfa, M. K.

B. Breitenstein, M. Scheller, M. K. Shakfa, T. Kinder, T. Müller-Wirts, M. Koch, and D. Selmar, “Introducing terahertz technology into plant biology: A novel method to monitor changes in leaf water status,” J. Appl. Bot. Food Qual. 84(2), 158–161 (2011).

Shiraishi, M.

K. Ishigaki, M. Shiraishi, S. Suzuki, M. Asada, N. Nishiyama, and S. Arai, “Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunnelling diodes,” Electron. Lett. 48(10), 582 (2012).

Shishlo, D.

A. Goryachuk, M. Khodzitsky, M. Borovkova, A. Khamid, P. Dutkinskii, and D. Shishlo, “Development of the technique of terahertz pulse spectroscopy for diagnostic malignant tumors during gastrointestinal surgeries,” J. Phys. Conf. Ser. 741(1), 012072 (2016).

Shkurinov, A.

O. Cherkasova, M. Nazarov, and A. Shkurinov, “Noninvasive blood glucose monitoring in the terahertz frequency range,” Opt. Quantum Electron. 48(3), 217 (2016).

A. Kolesnikov, E. Kolesnikova, K. Kolesnikova, D. Tuchina, A. Popov, A. Skaptsov, M. Nazarov, A. Shkurinov, A. Terentyuk, and V. Tuchin, “THz monitoring of the dehydration of biological tissues affected by hyperosmotic agents,” Phys. Wave Phenom. 22(3), 169–176 (2014).

A. Kolesnikov, E. Kolesnikova, A. Popov, M. Nazarov, A. Shkurinov, and V. Tuchin, “In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents,” Quantum Electron. 44(7), 633–640 (2014).

Silva, J.

R. Souza, E. Machado, J. Silva, A. Lagôa, and J. Silveira, “Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery,” Environ. Exp. Bot. 51(1), 45–56 (2004).

Silveira, J.

R. Souza, E. Machado, J. Silva, A. Lagôa, and J. Silveira, “Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery,” Environ. Exp. Bot. 51(1), 45–56 (2004).

Simonova, A.

A. Goryachuk, A. Simonova, M. Khodzitsky, M. Borovkova, and A. Khamid, “Gastrointestinal cancer diagnostics by terahertz time domain spectroscopy,” in Proceedings of 2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA) (IEEE, 2017), 134–137.

Skaptsov, A.

A. Kolesnikov, E. Kolesnikova, K. Kolesnikova, D. Tuchina, A. Popov, A. Skaptsov, M. Nazarov, A. Shkurinov, A. Terentyuk, and V. Tuchin, “THz monitoring of the dehydration of biological tissues affected by hyperosmotic agents,” Phys. Wave Phenom. 22(3), 169–176 (2014).

Souza, R.

R. Souza, E. Machado, J. Silva, A. Lagôa, and J. Silveira, “Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery,” Environ. Exp. Bot. 51(1), 45–56 (2004).

Strepitov, M.

S. Gusev, M. Borovkova, M. Strepitov, and M. Khodzitsky, “Blood optical properties at various glucose level values in THz frequency range,” Proc. SPIE 9537, 95372A (2015).

Suzuki, S.

K. Ishigaki, M. Shiraishi, S. Suzuki, M. Asada, N. Nishiyama, and S. Arai, “Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunnelling diodes,” Electron. Lett. 48(10), 582 (2012).

Taday, P.

M. Kemp, P. Taday, B. Cole, J. Cluff, A. Fitzgerald, and W. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070(6), 44–52 (2003).

Terentyuk, A.

A. Kolesnikov, E. Kolesnikova, K. Kolesnikova, D. Tuchina, A. Popov, A. Skaptsov, M. Nazarov, A. Shkurinov, A. Terentyuk, and V. Tuchin, “THz monitoring of the dehydration of biological tissues affected by hyperosmotic agents,” Phys. Wave Phenom. 22(3), 169–176 (2014).

Thrane, L.

C. Ronne, L. Thrane, P. Åstrand, A. Wallqvist, K. Mikkelsen, and S. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107(14), 5319–5331 (1997).

Tribe, W.

M. Kemp, P. Taday, B. Cole, J. Cluff, A. Fitzgerald, and W. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070(6), 44–52 (2003).

Tuchin, V.

A. Kolesnikov, E. Kolesnikova, K. Kolesnikova, D. Tuchina, A. Popov, A. Skaptsov, M. Nazarov, A. Shkurinov, A. Terentyuk, and V. Tuchin, “THz monitoring of the dehydration of biological tissues affected by hyperosmotic agents,” Phys. Wave Phenom. 22(3), 169–176 (2014).

A. Kolesnikov, E. Kolesnikova, A. Popov, M. Nazarov, A. Shkurinov, and V. Tuchin, “In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents,” Quantum Electron. 44(7), 633–640 (2014).

Tuchina, D.

A. Kolesnikov, E. Kolesnikova, K. Kolesnikova, D. Tuchina, A. Popov, A. Skaptsov, M. Nazarov, A. Shkurinov, A. Terentyuk, and V. Tuchin, “THz monitoring of the dehydration of biological tissues affected by hyperosmotic agents,” Phys. Wave Phenom. 22(3), 169–176 (2014).

Urbansky, R.

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).

von Freymann, G.

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).

Voß, N.

R. Gente, N. Born, N. Voß, W. Sannemann, J. Léon, M. Koch, and E. Castro-Camus, “Determination of Leaf Water Content from Terahertz Time-Domain Spectroscopic Data,” J. Infrared Millim. Terahertz Waves 34(3–4), 316–323 (2013).

Wallace, V. P.

Wallqvist, A.

C. Ronne, L. Thrane, P. Åstrand, A. Wallqvist, K. Mikkelsen, and S. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107(14), 5319–5331 (1997).

Waring, R. H.

R. H. Waring and B. D. Cleary, “Plant Moisture Stress: Evaluation by Pressure Bomb,” Science 155(3767), 1248–1254 (1967).

Watanabe, Y.

Whitaker, J.

J. Jackson, M. Mourou, J. Whitaker, I. Duling, S. Williamson, M. Menu, and G. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun. 281(4), 527–532 (2008).

Williamson, S.

J. Jackson, M. Mourou, J. Whitaker, I. Duling, S. Williamson, M. Menu, and G. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun. 281(4), 527–532 (2008).

Winebrenner, D. P.

Younus, A.

E. Abraham, A. Younus, J. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys., A Mater. Sci. Process. 100(3), 585–590 (2010).

Zhang, G.

D. Hou, X. Li, J. Cai, Y. Ma, X. Kang, P. Huang, and G. Zhang, “Terahertz spectroscopic investigation of human gastric normal and tumor tissues,” Phys. Med. Biol. 59(18), 5423–5440 (2014).

Ziegenhagen, B.

N. Born, D. Behringer, S. Liepelt, S. Beyer, M. Schwerdtfeger, B. Ziegenhagen, and M. Koch, “Monitoring Plant Drought Stress Response Using Terahertz Time-Domain Spectroscopy,” Plant Physiol. 164(4), 1571–1577 (2014).

Zimdars, D.

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).

Appl. Phys., A Mater. Sci. Process. (1)

E. Abraham, A. Younus, J. Delagnes, and P. Mounaix, “Non-invasive investigation of art paintings by terahertz imaging,” Appl. Phys., A Mater. Sci. Process. 100(3), 585–590 (2010).

Biomed. Opt. Express (1)

Electron. Lett. (1)

K. Ishigaki, M. Shiraishi, S. Suzuki, M. Asada, N. Nishiyama, and S. Arai, “Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunnelling diodes,” Electron. Lett. 48(10), 582 (2012).

Environ. Exp. Bot. (1)

R. Souza, E. Machado, J. Silva, A. Lagôa, and J. Silveira, “Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery,” Environ. Exp. Bot. 51(1), 45–56 (2004).

J. Appl. Bot. Food Qual. (1)

B. Breitenstein, M. Scheller, M. K. Shakfa, T. Kinder, T. Müller-Wirts, M. Koch, and D. Selmar, “Introducing terahertz technology into plant biology: A novel method to monitor changes in leaf water status,” J. Appl. Bot. Food Qual. 84(2), 158–161 (2011).

J. Chem. Phys. (1)

C. Ronne, L. Thrane, P. Åstrand, A. Wallqvist, K. Mikkelsen, and S. Keiding, “Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107(14), 5319–5331 (1997).

J. Infrared Millim. Terahertz Waves (1)

R. Gente, N. Born, N. Voß, W. Sannemann, J. Léon, M. Koch, and E. Castro-Camus, “Determination of Leaf Water Content from Terahertz Time-Domain Spectroscopic Data,” J. Infrared Millim. Terahertz Waves 34(3–4), 316–323 (2013).

J. Phys. Conf. Ser. (2)

V. Semenova, M. Kulya, and V. Bespalov, “Numerical simulation of broadband vortex terahertz beams propagation,” J. Phys. Conf. Ser. 735(1), 012064 (2016).

A. Goryachuk, M. Khodzitsky, M. Borovkova, A. Khamid, P. Dutkinskii, and D. Shishlo, “Development of the technique of terahertz pulse spectroscopy for diagnostic malignant tumors during gastrointestinal surgeries,” J. Phys. Conf. Ser. 741(1), 012072 (2016).

Opt. Commun. (1)

J. Jackson, M. Mourou, J. Whitaker, I. Duling, S. Williamson, M. Menu, and G. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun. 281(4), 527–532 (2008).

Opt. Express (2)

Opt. Quantum Electron. (1)

O. Cherkasova, M. Nazarov, and A. Shkurinov, “Noninvasive blood glucose monitoring in the terahertz frequency range,” Opt. Quantum Electron. 48(3), 217 (2016).

Phys. Med. Biol. (1)

D. Hou, X. Li, J. Cai, Y. Ma, X. Kang, P. Huang, and G. Zhang, “Terahertz spectroscopic investigation of human gastric normal and tumor tissues,” Phys. Med. Biol. 59(18), 5423–5440 (2014).

Phys. Wave Phenom. (1)

A. Kolesnikov, E. Kolesnikova, K. Kolesnikova, D. Tuchina, A. Popov, A. Skaptsov, M. Nazarov, A. Shkurinov, A. Terentyuk, and V. Tuchin, “THz monitoring of the dehydration of biological tissues affected by hyperosmotic agents,” Phys. Wave Phenom. 22(3), 169–176 (2014).

Physica (1)

H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica 31(3), 401–406 (1965).

Plant Methods (1)

R. Gente and M. Koch, “Monitoring leaf water content with THz and sub-THz waves,” Plant Methods 11(1), 15 (2015).

Plant Physiol. (1)

N. Born, D. Behringer, S. Liepelt, S. Beyer, M. Schwerdtfeger, B. Ziegenhagen, and M. Koch, “Monitoring Plant Drought Stress Response Using Terahertz Time-Domain Spectroscopy,” Plant Physiol. 164(4), 1571–1577 (2014).

Proc. SPIE (3)

S. Gusev, M. Borovkova, M. Strepitov, and M. Khodzitsky, “Blood optical properties at various glucose level values in THz frequency range,” Proc. SPIE 9537, 95372A (2015).

B. Karagoz, K. Kamburoglu, and H. Altan, “Terahertz pulsed imaging for the monitoring of dental caries: a comparison with x-ray imaging,” Proc. SPIE 10417, 104170P (2017).

M. Kemp, P. Taday, B. Cole, J. Cluff, A. Fitzgerald, and W. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070(6), 44–52 (2003).

Quantum Electron. (1)

A. Kolesnikov, E. Kolesnikova, A. Popov, M. Nazarov, A. Shkurinov, and V. Tuchin, “In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents,” Quantum Electron. 44(7), 633–640 (2014).

Science (1)

R. H. Waring and B. D. Cleary, “Plant Moisture Stress: Evaluation by Pressure Bomb,” Science 155(3767), 1248–1254 (1967).

Semicond. Sci. Technol. (1)

J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).

World J. Gastrointest. Endosc. (1)

P. Doradla, C. Joseph, and R. H. Giles, “Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives,” World J. Gastrointest. Endosc. 9(8), 346–358 (2017).

Other (4)

A. Goryachuk, A. Simonova, M. Khodzitsky, M. Borovkova, and A. Khamid, “Gastrointestinal cancer diagnostics by terahertz time domain spectroscopy,” in Proceedings of 2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA) (IEEE, 2017), 134–137.

X. Zhang, Introduction To Thz Wave Photonics (Springer, 2014).

P. Uhd, Jepsen, “Determining parameters of the dielectric function of a substance in aqueous solution by self-referenced reflection THz spectroscopy.” U.S. Patent 8374800. 12 Feb. 2013.

S. G. Rabinovich, Measurement Errors and Uncertainties: Theory and Practice (Springer Science & Business Media, 2006), Chap.6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Principal scheme of the THz TDS setup (reflection mode). Filter – set of teflon filters cutting IR frequencies, BS - beam splitter, M – mirror, L – lens, BD – balanced detector, PC – personal computer, PM – parabolic mirror, ADC – analog-to-digital converter, DAC – digital-to-analog converter.
Fig. 2
Fig. 2 Paths of the reference and sample beams for (a) transmission mode, (b) reflection mode.
Fig. 3
Fig. 3 Photos of the samples at 5 different stages of dryness: (a) the leaf sample (Carpinus caroliniana) measured in the transmission mode, (b) the sample of pork muscles measured in the reflection mode.
Fig. 4
Fig. 4 Dispersion of the complex refractive index of the leaf sample (Carpinus caroliniana) at 5 different stages of dryness in the transmission mode: black, red, green, indigo and blue lines represent the refractive index of the sample at the 1st, 2nd, 3rd, 4th, and 5th stages of dryness, respectively. Dark green lines show the refractive index of water obtained experimentally in the same frequency range. Solid lines show the real part of the refractive index, whereas dashed lines indicate the imaginary one.
Fig. 5
Fig. 5 Dispersion of the complex refractive index of the pork muscles sample at 5 different stages of dryness in the reflection mode: black, red, green, indigo and blue lines represent the refractive index of the sample at the 1st, 2nd, 3rd, 4th, and 5th stages of dryness, respectively. Dark green lines show the refractive index of water obtained experimentally in the same frequency range. Solid lines show the real part of the refractive index, whereas dashed lines indicate the imaginary one.
Fig. 6
Fig. 6 Water concentration values retrieved by THz TDS and gravimetric methods at 5 stages of dryness for (a) the leaf sample of Carpinus caroliniana obtained in the transmission mode, (b) the pork muscles sample obtained in the reflection mode.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ε ^ mix (f) 3 = a w ε ^ w (f) 3 + a 1 ε ^ 1 (f) 3 + a 2 ε ^ 2 (f) 3
C m,% =( m m dry m )×100%,
T ^ (ω)= t ^ AS t ^ SA e ω c (κ+ κ scatt )d e i ω c ( n ^ 1)d ,
κ scatt = c ωd [( ε mix 1) 4πτcosθ λ ] 2 ,
T ^ (f)= E ^ sam (f) E ^ ref (f) ,
R ^ (f)= E ^ sam (f) E ^ ref (f) .
R ^ (f)= t ASi (f) r ^ SiSam t SiA (f) r ASi (f) exp(i 4π n Si d Si f c ),
n ^ = n Si 2 (1 r ^ SiSam ) 2 +4 r ^ SiSam sin 2 θ 1+ r ^ SiSam ,
ΔC= i=1 N ( f i A i Δ A i ) 2 .

Metrics