Abstract

We report a lens-free fluorescence imaging device using a composite filter composed of an interference filter and an absorption filter, each applied to one side of a fiber optic plate (FOP). The transmission of angled excitation light through the interference filter is absorbed by the absorption filter. The auto-fluorescence of the absorption filter is reduced by the reflection from the interference filter of normally incident excitation light. As a result, high-performance rejection of excitation light is achieved in a lens-free device. The FOP provides a flat, hard imaging device surface that does not degrade the spatial resolution. We demonstrate excitation rejection of approximately 108:1 at a wavelength of 450 nm in a fabricated lens-free device. The resolution of fluorescence imaging is approximately 12 µm. Time-lapse imaging of cells containing green fluorescent protein was performed in a 5-µm thin-film chamber. The small dimensions of the device allow observation of cell culturing in a CO2 incubator. We also demonstrate that the proposed lens-free filter is compatible with super-resolution bright-field imaging techniques. These features open a way to develop a high-performance, dual-mode, lens-free imaging device that is expected to be a powerful tool for many applications, such as imaging of labeled cells and point-of-care assay.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Chip-scale fluorescence microscope based on a silo-filter complementary metal-oxide semiconductor image sensor

Seung Ah Lee, Xiaoze Ou, J. Eugene Lee, and Changhuei Yang
Opt. Lett. 38(11) 1817-1819 (2013)

Incubator embedded cell culture imaging system (EmSight) based on Fourier ptychographic microscopy

Jinho Kim, Beverley M. Henley, Charlene H. Kim, Henry A. Lester, and Changhuei Yang
Biomed. Opt. Express 7(8) 3097-3110 (2016)

Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope

Zeyi Guan, Juhyun Lee, Hao Jiang, Siyan Dong, Nelson Jen, Tzung Hsiai, Chih-Ming Ho, and Peng Fei
Biomed. Opt. Express 7(1) 194-208 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Ozcan and E. McLeod, “Lensless imaging and sensing,” Annu. Review Biomedical Engineering 18, 77–102 (2016).
    [Crossref]
  2. S. Seo, T.-W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab on a Chip 9, 777–787 (2009).
    [Crossref] [PubMed]
  3. O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417–1428 (2010).
    [Crossref] [PubMed]
  4. U. A. Gurkan, S. Moon, H. Geckil, F. Xu, S. Wang, T. J. Lu, and U. Demirci, “Miniaturized lensless imaging systems for cell and microorganism visualization in point-of-care testing,” Biotechnol. J. 6, 138–149 (2011).
    [Crossref]
  5. G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The epetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (spsm),” Proc. Natl. Acad. Sci. 108, 16889–16894 (2011).
    [Crossref] [PubMed]
  6. O. Mudanyali, W. Bishara, and A. Ozcan, “Lensfree super-resolution holographic microscopy using wetting films on a chip,” Opt. Express 19, 17378–17389 (2011).
    [Crossref] [PubMed]
  7. Z. Göröcs and A. Ozcan, “On-chip biomedical imaging,” IEEE Reviews Biomedical Engineering 6, 29–46 (2013).
    [Crossref]
  8. R. Stahl, G. Vanmeerbeeck, G. Lafruit, R. Huys, V. Reumers, A. Lambrechts, C.-K. Liao, C.-C. Hsiao, M. Yashiro, M. Takemoto, T. Nagata, S. Gomi, K. Hatabayashi, Y. Ohshima, S. Ozaki, N. Nishishita, and S. Kawamata, “Lens-free digital in-line holographic imaging for wide field-of-view, high-resolution and real-time monitoring of complex microscopic objects,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII, vol. 8947 (International Society for Optics and Photonics, 2014), p. 89471F.
  9. D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab on a Chip 15, 1123–1132 (2015).
    [Crossref]
  10. C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem. 85, 2356–2360 (2013).
    [Crossref]
  11. D. Jin, D. Wong, J. Li, Z. Luo, Y. Guo, B. Liu, Q. Wu, C.-M. Ho, and P. Fei, “Compact wireless microscope for in-situ time course study of large scale cell dynamics within an incubator,” Sci. Rep. 5, 18483 (2015).
    [Crossref]
  12. M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802–805 (1994).
    [Crossref] [PubMed]
  13. D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, and et al., “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechn. 28, 595 (2010).
    [Crossref]
  14. S. H. Kim, S. Iwai, S. Araki, S. Sakakihara, R. Iino, and H. Noji, “Large-scale femtoliter droplet array for digital counting of single biomolecules,” Lab on a Chip 12, 4986–4991 (2012).
    [Crossref] [PubMed]
  15. H. Eltoukhy, K. Salama, and A. E. Gamal, “A 0.18-/spl mu/m cmos bioluminescence detection lab-on-chip,” IEEE J. Solid-State Circuits 41, 651–662 (2006).
    [Crossref]
  16. A. Roda and M. Guardigli, “Analytical chemiluminescence and bioluminescence: latest achievements and new horizons,” Anal. Bioanalytical Chem. 402, 69–76 (2012).
    [Crossref]
  17. A. Roda, M. Mirasoli, E. Michelini, M. Di Fusco, M. Zangheri, L. Cevenini, B. Roda, and P. Simoni, “Progress in chemical luminescence-based biosensors: a critical review,” Biosens. Bioelectron. 76, 164–179 (2016).
    [Crossref]
  18. K. Sasagawa, K. Ando, T. Kobayashi, T. Noda, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “Complementary metal–oxide–semiconductor image sensor with microchamber array for fluorescent bead counting,” Jpn. J. Appl. Phys. 51, 02BL01 (2012).
    [Crossref]
  19. H. Takehara, K. Miyazawa, T. Noda, K. Sasagawa, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “A cmos image sensor with stacked photodiodes for lensless observation system of digital enzyme-linked immunosorbent assay,” Jpn. J. Appl. Phys. 53, 04EL02 (2014).
    [Crossref]
  20. H. Takehara, M. Nagasaki, K. Sasagawa, H. Takehara, T. Noda, T. Tokuda, and J. Ohta, “Micro-light-pipe array with an excitation attenuation filter for lensless digital enzyme-linked immunosorbent assay,” Jpn. J. Appl. Phys. 55, 03DF03 (2016).
    [Crossref]
  21. A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9, 889 (2012).
    [Crossref] [PubMed]
  22. R. R. Singh, D. Ho, A. Nilchi, G. Gulak, P. Yau, and R. Genov, “A cmos/thin-film fluorescence contact imaging microsystem for dna analysis,” IEEE Transactions on Circuits Syst. I: Regul. Pap. 57, 1029–1038 (2010).
    [Crossref]
  23. D. Ho, M. O. Noor, U. J. Krull, G. Gulak, and R. Genov, “Cmos spectrally-multiplexed fret-on-a-chip for dna analysis,” IEEE Transactions on Biomedical Circuits Systems 7, 643–654 (2013).
    [Crossref] [PubMed]
  24. A. Hassibi, R. Singh, A. Manickam, R. Sinha, B. Kuimelis, S. Bolouki, P. Naraghi-Arani, K. Johnson, M. McDermott, N. Wood, and et al., “4.2 a fully integrated cmos fluorescence biochip for multiplex polymerase chain-reaction (PCR) processes,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), (IEEE, 2017), pp. 68–69.
  25. K. Imai, M. Nishigaki, Y. Onozuka, Y. Akimoto, M. Nagai, S. Matsumoto, and S. Kousai, “A lens-free single-shot fluorescent imaging system using CMOS image sensors with dielectric multi-layer filter,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (IEEE, 2017), pp. 139–142.
  26. S. Pang, C. Han, J. Erath, A. Rodriguez, and C. Yang, “Wide field-of-view Talbot grid-based microscopy for multicolor fluorescence imaging,” Opt. express 21, 14555–14565 (2013).
    [Crossref] [PubMed]
  27. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. photonics 7, 739 (2013).
    [Crossref]
  28. J. Kim, B. M. Henley, C. H. Kim, H. A. Lester, and C. Yang, “Incubator embedded cell culture imaging system (emsight) based on Fourier ptychographic microscopy,” Biomed. optics express 7, 3097–3110 (2016).
    [Crossref]
  29. M. Beiderman, T. Tam, A. Fish, G. A. Jullien, and O. Yadid-Pecht, “A low-light CMOS contact imager with an emission filter for biosensing applications,” IEEE transactions on biomedical circuits systems 2, 193–203 (2008).
    [Crossref] [PubMed]
  30. Y. Dattner and O. Yadid-Pecht, “Low light cmos contact imager with an integrated poly-acrylic emission filter for fluorescence detection,” Sensors 10, 5014–5027 (2010).
    [Crossref] [PubMed]
  31. L. Blockstein, C. C. Luk, A. K. Mudraboyina, N. I. Syed, and O. Yadid-Pecht, “A pvac-based benzophenone-8 filter as an alternative to commercially available dichroic filters for monitoring calcium activity in live neurons via fura-2 am,” IEEE Photonics J. 4, 1004–1012 (2012).
    [Crossref]
  32. S. Pang, C. Han, L. M. Lee, and C. Yang, “Fluorescence microscopy imaging with a fresnel zone plate array based optofluidic microscope,” Lab on a Chip 11, 3698–3702 (2011).
    [Crossref] [PubMed]
  33. K. Sasagawa, S. H. Kim, K. Miyazawa, H. Takehara, T. Noda, T. Tokuda, R. Iino, H. Noji, and J. Ohta, “Dual-mode lensless imaging device for digital enzyme linked immunosorbent assay,” in Frontiers in Biological Detection: From Nanosensors to Systems VI, vol. 8933 (International Society for Optics and Photonics, 2014), p. 89330N.
  34. A. K. Mudraboyina, L. Blockstein, C. C. Luk, N. I. Syed, and O. Yadid-Pecht, “A novel lensless miniature contact imaging system for monitoring calcium changes in live neurons,” IEEE Photonics J. 6, 1–15 (2014).
    [Crossref]
  35. L. Blockstein and O. Yadid-Pecht, “Lensless miniature portable fluorometer for measurement of chlorophyll and CDOM in water using fluorescence contact imaging,” IEEE Photonics J. 6, 1–16 (2014).
  36. M. Kim, M. Pan, Y. Gai, S. Pang, C. Han, C. Yang, and S. K. Tang, “Optofluidic ultrahigh-throughput detection of fluorescent drops,” Lab on a Chip 15, 1417–1423 (2015).
    [Crossref] [PubMed]
  37. H. Takehara, O. Kazutaka, M. Haruta, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “On-chip cell analysis platform: Implementation of contact fluorescence microscopy in microfluidic chips,” AIP Adv. 7, 095213 (2017).
    [Crossref]
  38. H. Takehara, Y. Nakamoto, N. Ikeda, K. Sasagawa, M. Haruta, T. Noda, T. Tokuda, and J. Ohta, “Compact lensless fluorescence counting system for single molecular assay,” submitted (2018).
  39. A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip,” Analyst 136, 3512–3518 (2011).
    [Crossref] [PubMed]
  40. A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express 18, 10510–10523 (2010).
    [Crossref] [PubMed]
  41. A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Lensfree fluorescent on-chip imaging of transgenic caenorhabditis elegans over an ultra-wide field-of-view,” PloS one 6, e15955 (2011).
    [Crossref] [PubMed]
  42. I. Sencan, A. F. Coskun, U. Sikora, and A. Ozcan, “Spectral demultiplexing in holographic and fluorescent on-chip microscopy,” Sci. Rep. 4, 3760 (2014).
    [Crossref]
  43. S. Pang, C. Han, M. Kato, P. W. Sternberg, and C. Yang, “Wide and scalable field-of-view Talbot-grid-based fluorescence microscopy,” Opt. Lett. 37, 5018–5020 (2012).
    [Crossref]
  44. J. Ohta, T. Tokuda, K. Sasagawa, and T. Noda, “Implantable CMOS biomedical devices,” Sensors 9, 9073–9093 (2009).
    [Crossref] [PubMed]
  45. M. Haruta, C. Kitsumoto, Y. Sunaga, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “An implantable CMOS device for blood-flow imaging during experiments on freely moving rats,” Jpn. J. Appl. Phys. 53, 04EL05 (2014).
    [Crossref]
  46. Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and et al., “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55, 03DF02 (2016).
    [Crossref]

2017 (1)

H. Takehara, O. Kazutaka, M. Haruta, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “On-chip cell analysis platform: Implementation of contact fluorescence microscopy in microfluidic chips,” AIP Adv. 7, 095213 (2017).
[Crossref]

2016 (5)

A. Ozcan and E. McLeod, “Lensless imaging and sensing,” Annu. Review Biomedical Engineering 18, 77–102 (2016).
[Crossref]

J. Kim, B. M. Henley, C. H. Kim, H. A. Lester, and C. Yang, “Incubator embedded cell culture imaging system (emsight) based on Fourier ptychographic microscopy,” Biomed. optics express 7, 3097–3110 (2016).
[Crossref]

A. Roda, M. Mirasoli, E. Michelini, M. Di Fusco, M. Zangheri, L. Cevenini, B. Roda, and P. Simoni, “Progress in chemical luminescence-based biosensors: a critical review,” Biosens. Bioelectron. 76, 164–179 (2016).
[Crossref]

H. Takehara, M. Nagasaki, K. Sasagawa, H. Takehara, T. Noda, T. Tokuda, and J. Ohta, “Micro-light-pipe array with an excitation attenuation filter for lensless digital enzyme-linked immunosorbent assay,” Jpn. J. Appl. Phys. 55, 03DF03 (2016).
[Crossref]

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and et al., “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55, 03DF02 (2016).
[Crossref]

2015 (3)

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab on a Chip 15, 1123–1132 (2015).
[Crossref]

D. Jin, D. Wong, J. Li, Z. Luo, Y. Guo, B. Liu, Q. Wu, C.-M. Ho, and P. Fei, “Compact wireless microscope for in-situ time course study of large scale cell dynamics within an incubator,” Sci. Rep. 5, 18483 (2015).
[Crossref]

M. Kim, M. Pan, Y. Gai, S. Pang, C. Han, C. Yang, and S. K. Tang, “Optofluidic ultrahigh-throughput detection of fluorescent drops,” Lab on a Chip 15, 1417–1423 (2015).
[Crossref] [PubMed]

2014 (5)

A. K. Mudraboyina, L. Blockstein, C. C. Luk, N. I. Syed, and O. Yadid-Pecht, “A novel lensless miniature contact imaging system for monitoring calcium changes in live neurons,” IEEE Photonics J. 6, 1–15 (2014).
[Crossref]

L. Blockstein and O. Yadid-Pecht, “Lensless miniature portable fluorometer for measurement of chlorophyll and CDOM in water using fluorescence contact imaging,” IEEE Photonics J. 6, 1–16 (2014).

I. Sencan, A. F. Coskun, U. Sikora, and A. Ozcan, “Spectral demultiplexing in holographic and fluorescent on-chip microscopy,” Sci. Rep. 4, 3760 (2014).
[Crossref]

H. Takehara, K. Miyazawa, T. Noda, K. Sasagawa, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “A cmos image sensor with stacked photodiodes for lensless observation system of digital enzyme-linked immunosorbent assay,” Jpn. J. Appl. Phys. 53, 04EL02 (2014).
[Crossref]

M. Haruta, C. Kitsumoto, Y. Sunaga, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “An implantable CMOS device for blood-flow imaging during experiments on freely moving rats,” Jpn. J. Appl. Phys. 53, 04EL05 (2014).
[Crossref]

2013 (5)

S. Pang, C. Han, J. Erath, A. Rodriguez, and C. Yang, “Wide field-of-view Talbot grid-based microscopy for multicolor fluorescence imaging,” Opt. express 21, 14555–14565 (2013).
[Crossref] [PubMed]

D. Ho, M. O. Noor, U. J. Krull, G. Gulak, and R. Genov, “Cmos spectrally-multiplexed fret-on-a-chip for dna analysis,” IEEE Transactions on Biomedical Circuits Systems 7, 643–654 (2013).
[Crossref] [PubMed]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. photonics 7, 739 (2013).
[Crossref]

C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem. 85, 2356–2360 (2013).
[Crossref]

Z. Göröcs and A. Ozcan, “On-chip biomedical imaging,” IEEE Reviews Biomedical Engineering 6, 29–46 (2013).
[Crossref]

2012 (6)

S. H. Kim, S. Iwai, S. Araki, S. Sakakihara, R. Iino, and H. Noji, “Large-scale femtoliter droplet array for digital counting of single biomolecules,” Lab on a Chip 12, 4986–4991 (2012).
[Crossref] [PubMed]

A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9, 889 (2012).
[Crossref] [PubMed]

A. Roda and M. Guardigli, “Analytical chemiluminescence and bioluminescence: latest achievements and new horizons,” Anal. Bioanalytical Chem. 402, 69–76 (2012).
[Crossref]

K. Sasagawa, K. Ando, T. Kobayashi, T. Noda, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “Complementary metal–oxide–semiconductor image sensor with microchamber array for fluorescent bead counting,” Jpn. J. Appl. Phys. 51, 02BL01 (2012).
[Crossref]

L. Blockstein, C. C. Luk, A. K. Mudraboyina, N. I. Syed, and O. Yadid-Pecht, “A pvac-based benzophenone-8 filter as an alternative to commercially available dichroic filters for monitoring calcium activity in live neurons via fura-2 am,” IEEE Photonics J. 4, 1004–1012 (2012).
[Crossref]

S. Pang, C. Han, M. Kato, P. W. Sternberg, and C. Yang, “Wide and scalable field-of-view Talbot-grid-based fluorescence microscopy,” Opt. Lett. 37, 5018–5020 (2012).
[Crossref]

2011 (6)

O. Mudanyali, W. Bishara, and A. Ozcan, “Lensfree super-resolution holographic microscopy using wetting films on a chip,” Opt. Express 19, 17378–17389 (2011).
[Crossref] [PubMed]

S. Pang, C. Han, L. M. Lee, and C. Yang, “Fluorescence microscopy imaging with a fresnel zone plate array based optofluidic microscope,” Lab on a Chip 11, 3698–3702 (2011).
[Crossref] [PubMed]

U. A. Gurkan, S. Moon, H. Geckil, F. Xu, S. Wang, T. J. Lu, and U. Demirci, “Miniaturized lensless imaging systems for cell and microorganism visualization in point-of-care testing,” Biotechnol. J. 6, 138–149 (2011).
[Crossref]

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The epetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (spsm),” Proc. Natl. Acad. Sci. 108, 16889–16894 (2011).
[Crossref] [PubMed]

A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Lensfree fluorescent on-chip imaging of transgenic caenorhabditis elegans over an ultra-wide field-of-view,” PloS one 6, e15955 (2011).
[Crossref] [PubMed]

A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip,” Analyst 136, 3512–3518 (2011).
[Crossref] [PubMed]

2010 (5)

Y. Dattner and O. Yadid-Pecht, “Low light cmos contact imager with an integrated poly-acrylic emission filter for fluorescence detection,” Sensors 10, 5014–5027 (2010).
[Crossref] [PubMed]

R. R. Singh, D. Ho, A. Nilchi, G. Gulak, P. Yau, and R. Genov, “A cmos/thin-film fluorescence contact imaging microsystem for dna analysis,” IEEE Transactions on Circuits Syst. I: Regul. Pap. 57, 1029–1038 (2010).
[Crossref]

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, and et al., “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechn. 28, 595 (2010).
[Crossref]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express 18, 10510–10523 (2010).
[Crossref] [PubMed]

2009 (2)

S. Seo, T.-W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab on a Chip 9, 777–787 (2009).
[Crossref] [PubMed]

J. Ohta, T. Tokuda, K. Sasagawa, and T. Noda, “Implantable CMOS biomedical devices,” Sensors 9, 9073–9093 (2009).
[Crossref] [PubMed]

2008 (1)

M. Beiderman, T. Tam, A. Fish, G. A. Jullien, and O. Yadid-Pecht, “A low-light CMOS contact imager with an emission filter for biosensing applications,” IEEE transactions on biomedical circuits systems 2, 193–203 (2008).
[Crossref] [PubMed]

2006 (1)

H. Eltoukhy, K. Salama, and A. E. Gamal, “A 0.18-/spl mu/m cmos bioluminescence detection lab-on-chip,” IEEE J. Solid-State Circuits 41, 651–662 (2006).
[Crossref]

1994 (1)

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802–805 (1994).
[Crossref] [PubMed]

Akimoto, Y.

K. Imai, M. Nishigaki, Y. Onozuka, Y. Akimoto, M. Nagai, S. Matsumoto, and S. Kousai, “A lens-free single-shot fluorescent imaging system using CMOS image sensors with dielectric multi-layer filter,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (IEEE, 2017), pp. 139–142.

Ando, K.

K. Sasagawa, K. Ando, T. Kobayashi, T. Noda, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “Complementary metal–oxide–semiconductor image sensor with microchamber array for fluorescent bead counting,” Jpn. J. Appl. Phys. 51, 02BL01 (2012).
[Crossref]

Antebi, Y.

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The epetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (spsm),” Proc. Natl. Acad. Sci. 108, 16889–16894 (2011).
[Crossref] [PubMed]

Araki, S.

S. H. Kim, S. Iwai, S. Araki, S. Sakakihara, R. Iino, and H. Noji, “Large-scale femtoliter droplet array for digital counting of single biomolecules,” Lab on a Chip 12, 4986–4991 (2012).
[Crossref] [PubMed]

Beiderman, M.

M. Beiderman, T. Tam, A. Fish, G. A. Jullien, and O. Yadid-Pecht, “A low-light CMOS contact imager with an emission filter for biosensing applications,” IEEE transactions on biomedical circuits systems 2, 193–203 (2008).
[Crossref] [PubMed]

Bishara, W.

O. Mudanyali, W. Bishara, and A. Ozcan, “Lensfree super-resolution holographic microscopy using wetting films on a chip,” Opt. Express 19, 17378–17389 (2011).
[Crossref] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Blockstein, L.

A. K. Mudraboyina, L. Blockstein, C. C. Luk, N. I. Syed, and O. Yadid-Pecht, “A novel lensless miniature contact imaging system for monitoring calcium changes in live neurons,” IEEE Photonics J. 6, 1–15 (2014).
[Crossref]

L. Blockstein and O. Yadid-Pecht, “Lensless miniature portable fluorometer for measurement of chlorophyll and CDOM in water using fluorescence contact imaging,” IEEE Photonics J. 6, 1–16 (2014).

L. Blockstein, C. C. Luk, A. K. Mudraboyina, N. I. Syed, and O. Yadid-Pecht, “A pvac-based benzophenone-8 filter as an alternative to commercially available dichroic filters for monitoring calcium activity in live neurons via fura-2 am,” IEEE Photonics J. 4, 1004–1012 (2012).
[Crossref]

Bolouki, S.

A. Hassibi, R. Singh, A. Manickam, R. Sinha, B. Kuimelis, S. Bolouki, P. Naraghi-Arani, K. Johnson, M. McDermott, N. Wood, and et al., “4.2 a fully integrated cmos fluorescence biochip for multiplex polymerase chain-reaction (PCR) processes,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), (IEEE, 2017), pp. 68–69.

Bower, D. V.

C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem. 85, 2356–2360 (2013).
[Crossref]

Campbell, T. G.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, and et al., “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechn. 28, 595 (2010).
[Crossref]

Cevenini, L.

A. Roda, M. Mirasoli, E. Michelini, M. Di Fusco, M. Zangheri, L. Cevenini, B. Roda, and P. Simoni, “Progress in chemical luminescence-based biosensors: a critical review,” Biosens. Bioelectron. 76, 164–179 (2016).
[Crossref]

Chalfie, M.

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802–805 (1994).
[Crossref] [PubMed]

Chang, L.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, and et al., “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechn. 28, 595 (2010).
[Crossref]

Coskun, A. F.

I. Sencan, A. F. Coskun, U. Sikora, and A. Ozcan, “Spectral demultiplexing in holographic and fluorescent on-chip microscopy,” Sci. Rep. 4, 3760 (2014).
[Crossref]

A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9, 889 (2012).
[Crossref] [PubMed]

A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Lensfree fluorescent on-chip imaging of transgenic caenorhabditis elegans over an ultra-wide field-of-view,” PloS one 6, e15955 (2011).
[Crossref] [PubMed]

A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip,” Analyst 136, 3512–3518 (2011).
[Crossref] [PubMed]

A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express 18, 10510–10523 (2010).
[Crossref] [PubMed]

Dattner, Y.

Y. Dattner and O. Yadid-Pecht, “Low light cmos contact imager with an integrated poly-acrylic emission filter for fluorescence detection,” Sensors 10, 5014–5027 (2010).
[Crossref] [PubMed]

de Wijs, K.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab on a Chip 15, 1123–1132 (2015).
[Crossref]

Demirci, U.

U. A. Gurkan, S. Moon, H. Geckil, F. Xu, S. Wang, T. J. Lu, and U. Demirci, “Miniaturized lensless imaging systems for cell and microorganism visualization in point-of-care testing,” Biotechnol. J. 6, 138–149 (2011).
[Crossref]

Dusa, A.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab on a Chip 15, 1123–1132 (2015).
[Crossref]

Elowitz, M. B.

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The epetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (spsm),” Proc. Natl. Acad. Sci. 108, 16889–16894 (2011).
[Crossref] [PubMed]

Eltoukhy, H.

H. Eltoukhy, K. Salama, and A. E. Gamal, “A 0.18-/spl mu/m cmos bioluminescence detection lab-on-chip,” IEEE J. Solid-State Circuits 41, 651–662 (2006).
[Crossref]

Erath, J.

Erlinger, A.

S. Seo, T.-W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab on a Chip 9, 777–787 (2009).
[Crossref] [PubMed]

Euskirchen, G.

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802–805 (1994).
[Crossref] [PubMed]

Fei, P.

D. Jin, D. Wong, J. Li, Z. Luo, Y. Guo, B. Liu, Q. Wu, C.-M. Ho, and P. Fei, “Compact wireless microscope for in-situ time course study of large scale cell dynamics within an incubator,” Sci. Rep. 5, 18483 (2015).
[Crossref]

Fish, A.

M. Beiderman, T. Tam, A. Fish, G. A. Jullien, and O. Yadid-Pecht, “A low-light CMOS contact imager with an emission filter for biosensing applications,” IEEE transactions on biomedical circuits systems 2, 193–203 (2008).
[Crossref] [PubMed]

Fournier, D. R.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, and et al., “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechn. 28, 595 (2010).
[Crossref]

Fusco, M. Di

A. Roda, M. Mirasoli, E. Michelini, M. Di Fusco, M. Zangheri, L. Cevenini, B. Roda, and P. Simoni, “Progress in chemical luminescence-based biosensors: a critical review,” Biosens. Bioelectron. 76, 164–179 (2016).
[Crossref]

Gai, Y.

M. Kim, M. Pan, Y. Gai, S. Pang, C. Han, C. Yang, and S. K. Tang, “Optofluidic ultrahigh-throughput detection of fluorescent drops,” Lab on a Chip 15, 1417–1423 (2015).
[Crossref] [PubMed]

Gamal, A. E.

H. Eltoukhy, K. Salama, and A. E. Gamal, “A 0.18-/spl mu/m cmos bioluminescence detection lab-on-chip,” IEEE J. Solid-State Circuits 41, 651–662 (2006).
[Crossref]

Geckil, H.

U. A. Gurkan, S. Moon, H. Geckil, F. Xu, S. Wang, T. J. Lu, and U. Demirci, “Miniaturized lensless imaging systems for cell and microorganism visualization in point-of-care testing,” Biotechnol. J. 6, 138–149 (2011).
[Crossref]

Genov, R.

D. Ho, M. O. Noor, U. J. Krull, G. Gulak, and R. Genov, “Cmos spectrally-multiplexed fret-on-a-chip for dna analysis,” IEEE Transactions on Biomedical Circuits Systems 7, 643–654 (2013).
[Crossref] [PubMed]

R. R. Singh, D. Ho, A. Nilchi, G. Gulak, P. Yau, and R. Genov, “A cmos/thin-film fluorescence contact imaging microsystem for dna analysis,” IEEE Transactions on Circuits Syst. I: Regul. Pap. 57, 1029–1038 (2010).
[Crossref]

Gomi, S.

R. Stahl, G. Vanmeerbeeck, G. Lafruit, R. Huys, V. Reumers, A. Lambrechts, C.-K. Liao, C.-C. Hsiao, M. Yashiro, M. Takemoto, T. Nagata, S. Gomi, K. Hatabayashi, Y. Ohshima, S. Ozaki, N. Nishishita, and S. Kawamata, “Lens-free digital in-line holographic imaging for wide field-of-view, high-resolution and real-time monitoring of complex microscopic objects,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII, vol. 8947 (International Society for Optics and Photonics, 2014), p. 89471F.

Göröcs, Z.

Z. Göröcs and A. Ozcan, “On-chip biomedical imaging,” IEEE Reviews Biomedical Engineering 6, 29–46 (2013).
[Crossref]

A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9, 889 (2012).
[Crossref] [PubMed]

Greenbaum, A.

A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9, 889 (2012).
[Crossref] [PubMed]

Guardigli, M.

A. Roda and M. Guardigli, “Analytical chemiluminescence and bioluminescence: latest achievements and new horizons,” Anal. Bioanalytical Chem. 402, 69–76 (2012).
[Crossref]

Gulak, G.

D. Ho, M. O. Noor, U. J. Krull, G. Gulak, and R. Genov, “Cmos spectrally-multiplexed fret-on-a-chip for dna analysis,” IEEE Transactions on Biomedical Circuits Systems 7, 643–654 (2013).
[Crossref] [PubMed]

R. R. Singh, D. Ho, A. Nilchi, G. Gulak, P. Yau, and R. Genov, “A cmos/thin-film fluorescence contact imaging microsystem for dna analysis,” IEEE Transactions on Circuits Syst. I: Regul. Pap. 57, 1029–1038 (2010).
[Crossref]

Guo, Y.

D. Jin, D. Wong, J. Li, Z. Luo, Y. Guo, B. Liu, Q. Wu, C.-M. Ho, and P. Fei, “Compact wireless microscope for in-situ time course study of large scale cell dynamics within an incubator,” Sci. Rep. 5, 18483 (2015).
[Crossref]

Gurkan, U. A.

U. A. Gurkan, S. Moon, H. Geckil, F. Xu, S. Wang, T. J. Lu, and U. Demirci, “Miniaturized lensless imaging systems for cell and microorganism visualization in point-of-care testing,” Biotechnol. J. 6, 138–149 (2011).
[Crossref]

Han, C.

M. Kim, M. Pan, Y. Gai, S. Pang, C. Han, C. Yang, and S. K. Tang, “Optofluidic ultrahigh-throughput detection of fluorescent drops,” Lab on a Chip 15, 1417–1423 (2015).
[Crossref] [PubMed]

S. Pang, C. Han, J. Erath, A. Rodriguez, and C. Yang, “Wide field-of-view Talbot grid-based microscopy for multicolor fluorescence imaging,” Opt. express 21, 14555–14565 (2013).
[Crossref] [PubMed]

C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem. 85, 2356–2360 (2013).
[Crossref]

S. Pang, C. Han, M. Kato, P. W. Sternberg, and C. Yang, “Wide and scalable field-of-view Talbot-grid-based fluorescence microscopy,” Opt. Lett. 37, 5018–5020 (2012).
[Crossref]

S. Pang, C. Han, L. M. Lee, and C. Yang, “Fluorescence microscopy imaging with a fresnel zone plate array based optofluidic microscope,” Lab on a Chip 11, 3698–3702 (2011).
[Crossref] [PubMed]

Haruta, M.

H. Takehara, O. Kazutaka, M. Haruta, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “On-chip cell analysis platform: Implementation of contact fluorescence microscopy in microfluidic chips,” AIP Adv. 7, 095213 (2017).
[Crossref]

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and et al., “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55, 03DF02 (2016).
[Crossref]

M. Haruta, C. Kitsumoto, Y. Sunaga, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “An implantable CMOS device for blood-flow imaging during experiments on freely moving rats,” Jpn. J. Appl. Phys. 53, 04EL05 (2014).
[Crossref]

H. Takehara, Y. Nakamoto, N. Ikeda, K. Sasagawa, M. Haruta, T. Noda, T. Tokuda, and J. Ohta, “Compact lensless fluorescence counting system for single molecular assay,” submitted (2018).

Hassibi, A.

A. Hassibi, R. Singh, A. Manickam, R. Sinha, B. Kuimelis, S. Bolouki, P. Naraghi-Arani, K. Johnson, M. McDermott, N. Wood, and et al., “4.2 a fully integrated cmos fluorescence biochip for multiplex polymerase chain-reaction (PCR) processes,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), (IEEE, 2017), pp. 68–69.

Hatabayashi, K.

R. Stahl, G. Vanmeerbeeck, G. Lafruit, R. Huys, V. Reumers, A. Lambrechts, C.-K. Liao, C.-C. Hsiao, M. Yashiro, M. Takemoto, T. Nagata, S. Gomi, K. Hatabayashi, Y. Ohshima, S. Ozaki, N. Nishishita, and S. Kawamata, “Lens-free digital in-line holographic imaging for wide field-of-view, high-resolution and real-time monitoring of complex microscopic objects,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII, vol. 8947 (International Society for Optics and Photonics, 2014), p. 89471F.

Henley, B. M.

J. Kim, B. M. Henley, C. H. Kim, H. A. Lester, and C. Yang, “Incubator embedded cell culture imaging system (emsight) based on Fourier ptychographic microscopy,” Biomed. optics express 7, 3097–3110 (2016).
[Crossref]

Ho, C.-M.

D. Jin, D. Wong, J. Li, Z. Luo, Y. Guo, B. Liu, Q. Wu, C.-M. Ho, and P. Fei, “Compact wireless microscope for in-situ time course study of large scale cell dynamics within an incubator,” Sci. Rep. 5, 18483 (2015).
[Crossref]

Ho, D.

D. Ho, M. O. Noor, U. J. Krull, G. Gulak, and R. Genov, “Cmos spectrally-multiplexed fret-on-a-chip for dna analysis,” IEEE Transactions on Biomedical Circuits Systems 7, 643–654 (2013).
[Crossref] [PubMed]

R. R. Singh, D. Ho, A. Nilchi, G. Gulak, P. Yau, and R. Genov, “A cmos/thin-film fluorescence contact imaging microsystem for dna analysis,” IEEE Transactions on Circuits Syst. I: Regul. Pap. 57, 1029–1038 (2010).
[Crossref]

Horstmeyer, R.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. photonics 7, 739 (2013).
[Crossref]

Howes, S. C.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, and et al., “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechn. 28, 595 (2010).
[Crossref]

Hsiao, C.-C.

R. Stahl, G. Vanmeerbeeck, G. Lafruit, R. Huys, V. Reumers, A. Lambrechts, C.-K. Liao, C.-C. Hsiao, M. Yashiro, M. Takemoto, T. Nagata, S. Gomi, K. Hatabayashi, Y. Ohshima, S. Ozaki, N. Nishishita, and S. Kawamata, “Lens-free digital in-line holographic imaging for wide field-of-view, high-resolution and real-time monitoring of complex microscopic objects,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII, vol. 8947 (International Society for Optics and Photonics, 2014), p. 89471F.

Huys, R.

R. Stahl, G. Vanmeerbeeck, G. Lafruit, R. Huys, V. Reumers, A. Lambrechts, C.-K. Liao, C.-C. Hsiao, M. Yashiro, M. Takemoto, T. Nagata, S. Gomi, K. Hatabayashi, Y. Ohshima, S. Ozaki, N. Nishishita, and S. Kawamata, “Lens-free digital in-line holographic imaging for wide field-of-view, high-resolution and real-time monitoring of complex microscopic objects,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII, vol. 8947 (International Society for Optics and Photonics, 2014), p. 89471F.

Iino, R.

H. Takehara, K. Miyazawa, T. Noda, K. Sasagawa, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “A cmos image sensor with stacked photodiodes for lensless observation system of digital enzyme-linked immunosorbent assay,” Jpn. J. Appl. Phys. 53, 04EL02 (2014).
[Crossref]

K. Sasagawa, K. Ando, T. Kobayashi, T. Noda, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “Complementary metal–oxide–semiconductor image sensor with microchamber array for fluorescent bead counting,” Jpn. J. Appl. Phys. 51, 02BL01 (2012).
[Crossref]

S. H. Kim, S. Iwai, S. Araki, S. Sakakihara, R. Iino, and H. Noji, “Large-scale femtoliter droplet array for digital counting of single biomolecules,” Lab on a Chip 12, 4986–4991 (2012).
[Crossref] [PubMed]

K. Sasagawa, S. H. Kim, K. Miyazawa, H. Takehara, T. Noda, T. Tokuda, R. Iino, H. Noji, and J. Ohta, “Dual-mode lensless imaging device for digital enzyme linked immunosorbent assay,” in Frontiers in Biological Detection: From Nanosensors to Systems VI, vol. 8933 (International Society for Optics and Photonics, 2014), p. 89330N.

Ikeda, N.

H. Takehara, Y. Nakamoto, N. Ikeda, K. Sasagawa, M. Haruta, T. Noda, T. Tokuda, and J. Ohta, “Compact lensless fluorescence counting system for single molecular assay,” submitted (2018).

Imai, K.

K. Imai, M. Nishigaki, Y. Onozuka, Y. Akimoto, M. Nagai, S. Matsumoto, and S. Kousai, “A lens-free single-shot fluorescent imaging system using CMOS image sensors with dielectric multi-layer filter,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (IEEE, 2017), pp. 139–142.

Isikman, S. O.

A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9, 889 (2012).
[Crossref] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Iwai, S.

S. H. Kim, S. Iwai, S. Araki, S. Sakakihara, R. Iino, and H. Noji, “Large-scale femtoliter droplet array for digital counting of single biomolecules,” Lab on a Chip 12, 4986–4991 (2012).
[Crossref] [PubMed]

Jin, D.

D. Jin, D. Wong, J. Li, Z. Luo, Y. Guo, B. Liu, Q. Wu, C.-M. Ho, and P. Fei, “Compact wireless microscope for in-situ time course study of large scale cell dynamics within an incubator,” Sci. Rep. 5, 18483 (2015).
[Crossref]

Johnson, K.

A. Hassibi, R. Singh, A. Manickam, R. Sinha, B. Kuimelis, S. Bolouki, P. Naraghi-Arani, K. Johnson, M. McDermott, N. Wood, and et al., “4.2 a fully integrated cmos fluorescence biochip for multiplex polymerase chain-reaction (PCR) processes,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), (IEEE, 2017), pp. 68–69.

Jullien, G. A.

M. Beiderman, T. Tam, A. Fish, G. A. Jullien, and O. Yadid-Pecht, “A low-light CMOS contact imager with an emission filter for biosensing applications,” IEEE transactions on biomedical circuits systems 2, 193–203 (2008).
[Crossref] [PubMed]

Kan, C. W.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, and et al., “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechn. 28, 595 (2010).
[Crossref]

Kato, M.

Kawamata, S.

R. Stahl, G. Vanmeerbeeck, G. Lafruit, R. Huys, V. Reumers, A. Lambrechts, C.-K. Liao, C.-C. Hsiao, M. Yashiro, M. Takemoto, T. Nagata, S. Gomi, K. Hatabayashi, Y. Ohshima, S. Ozaki, N. Nishishita, and S. Kawamata, “Lens-free digital in-line holographic imaging for wide field-of-view, high-resolution and real-time monitoring of complex microscopic objects,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII, vol. 8947 (International Society for Optics and Photonics, 2014), p. 89471F.

Kazutaka, O.

H. Takehara, O. Kazutaka, M. Haruta, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “On-chip cell analysis platform: Implementation of contact fluorescence microscopy in microfluidic chips,” AIP Adv. 7, 095213 (2017).
[Crossref]

Khademhosseini, B.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Kim, C. H.

J. Kim, B. M. Henley, C. H. Kim, H. A. Lester, and C. Yang, “Incubator embedded cell culture imaging system (emsight) based on Fourier ptychographic microscopy,” Biomed. optics express 7, 3097–3110 (2016).
[Crossref]

Kim, J.

J. Kim, B. M. Henley, C. H. Kim, H. A. Lester, and C. Yang, “Incubator embedded cell culture imaging system (emsight) based on Fourier ptychographic microscopy,” Biomed. optics express 7, 3097–3110 (2016).
[Crossref]

Kim, M.

M. Kim, M. Pan, Y. Gai, S. Pang, C. Han, C. Yang, and S. K. Tang, “Optofluidic ultrahigh-throughput detection of fluorescent drops,” Lab on a Chip 15, 1417–1423 (2015).
[Crossref] [PubMed]

Kim, S. H.

H. Takehara, K. Miyazawa, T. Noda, K. Sasagawa, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “A cmos image sensor with stacked photodiodes for lensless observation system of digital enzyme-linked immunosorbent assay,” Jpn. J. Appl. Phys. 53, 04EL02 (2014).
[Crossref]

K. Sasagawa, K. Ando, T. Kobayashi, T. Noda, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “Complementary metal–oxide–semiconductor image sensor with microchamber array for fluorescent bead counting,” Jpn. J. Appl. Phys. 51, 02BL01 (2012).
[Crossref]

S. H. Kim, S. Iwai, S. Araki, S. Sakakihara, R. Iino, and H. Noji, “Large-scale femtoliter droplet array for digital counting of single biomolecules,” Lab on a Chip 12, 4986–4991 (2012).
[Crossref] [PubMed]

K. Sasagawa, S. H. Kim, K. Miyazawa, H. Takehara, T. Noda, T. Tokuda, R. Iino, H. Noji, and J. Ohta, “Dual-mode lensless imaging device for digital enzyme linked immunosorbent assay,” in Frontiers in Biological Detection: From Nanosensors to Systems VI, vol. 8933 (International Society for Optics and Photonics, 2014), p. 89330N.

Kitsumoto, C.

M. Haruta, C. Kitsumoto, Y. Sunaga, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “An implantable CMOS device for blood-flow imaging during experiments on freely moving rats,” Jpn. J. Appl. Phys. 53, 04EL05 (2014).
[Crossref]

Kobayashi, T.

K. Sasagawa, K. Ando, T. Kobayashi, T. Noda, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “Complementary metal–oxide–semiconductor image sensor with microchamber array for fluorescent bead counting,” Jpn. J. Appl. Phys. 51, 02BL01 (2012).
[Crossref]

Kousai, S.

K. Imai, M. Nishigaki, Y. Onozuka, Y. Akimoto, M. Nagai, S. Matsumoto, and S. Kousai, “A lens-free single-shot fluorescent imaging system using CMOS image sensors with dielectric multi-layer filter,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (IEEE, 2017), pp. 139–142.

Krull, U. J.

D. Ho, M. O. Noor, U. J. Krull, G. Gulak, and R. Genov, “Cmos spectrally-multiplexed fret-on-a-chip for dna analysis,” IEEE Transactions on Biomedical Circuits Systems 7, 643–654 (2013).
[Crossref] [PubMed]

Kuimelis, B.

A. Hassibi, R. Singh, A. Manickam, R. Sinha, B. Kuimelis, S. Bolouki, P. Naraghi-Arani, K. Johnson, M. McDermott, N. Wood, and et al., “4.2 a fully integrated cmos fluorescence biochip for multiplex polymerase chain-reaction (PCR) processes,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), (IEEE, 2017), pp. 68–69.

Lafruit, G.

R. Stahl, G. Vanmeerbeeck, G. Lafruit, R. Huys, V. Reumers, A. Lambrechts, C.-K. Liao, C.-C. Hsiao, M. Yashiro, M. Takemoto, T. Nagata, S. Gomi, K. Hatabayashi, Y. Ohshima, S. Ozaki, N. Nishishita, and S. Kawamata, “Lens-free digital in-line holographic imaging for wide field-of-view, high-resolution and real-time monitoring of complex microscopic objects,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII, vol. 8947 (International Society for Optics and Photonics, 2014), p. 89471F.

Lagae, L.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab on a Chip 15, 1123–1132 (2015).
[Crossref]

Lambrechts, A.

R. Stahl, G. Vanmeerbeeck, G. Lafruit, R. Huys, V. Reumers, A. Lambrechts, C.-K. Liao, C.-C. Hsiao, M. Yashiro, M. Takemoto, T. Nagata, S. Gomi, K. Hatabayashi, Y. Ohshima, S. Ozaki, N. Nishishita, and S. Kawamata, “Lens-free digital in-line holographic imaging for wide field-of-view, high-resolution and real-time monitoring of complex microscopic objects,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII, vol. 8947 (International Society for Optics and Photonics, 2014), p. 89471F.

Lee, L. M.

S. Pang, C. Han, L. M. Lee, and C. Yang, “Fluorescence microscopy imaging with a fresnel zone plate array based optofluidic microscope,” Lab on a Chip 11, 3698–3702 (2011).
[Crossref] [PubMed]

Lee, S. A.

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The epetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (spsm),” Proc. Natl. Acad. Sci. 108, 16889–16894 (2011).
[Crossref] [PubMed]

Lester, H. A.

J. Kim, B. M. Henley, C. H. Kim, H. A. Lester, and C. Yang, “Incubator embedded cell culture imaging system (emsight) based on Fourier ptychographic microscopy,” Biomed. optics express 7, 3097–3110 (2016).
[Crossref]

Li, J.

D. Jin, D. Wong, J. Li, Z. Luo, Y. Guo, B. Liu, Q. Wu, C.-M. Ho, and P. Fei, “Compact wireless microscope for in-situ time course study of large scale cell dynamics within an incubator,” Sci. Rep. 5, 18483 (2015).
[Crossref]

Liao, C.-K.

R. Stahl, G. Vanmeerbeeck, G. Lafruit, R. Huys, V. Reumers, A. Lambrechts, C.-K. Liao, C.-C. Hsiao, M. Yashiro, M. Takemoto, T. Nagata, S. Gomi, K. Hatabayashi, Y. Ohshima, S. Ozaki, N. Nishishita, and S. Kawamata, “Lens-free digital in-line holographic imaging for wide field-of-view, high-resolution and real-time monitoring of complex microscopic objects,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII, vol. 8947 (International Society for Optics and Photonics, 2014), p. 89471F.

Liu, B.

D. Jin, D. Wong, J. Li, Z. Luo, Y. Guo, B. Liu, Q. Wu, C.-M. Ho, and P. Fei, “Compact wireless microscope for in-situ time course study of large scale cell dynamics within an incubator,” Sci. Rep. 5, 18483 (2015).
[Crossref]

Liu, C.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab on a Chip 15, 1123–1132 (2015).
[Crossref]

Lu, T. J.

U. A. Gurkan, S. Moon, H. Geckil, F. Xu, S. Wang, T. J. Lu, and U. Demirci, “Miniaturized lensless imaging systems for cell and microorganism visualization in point-of-care testing,” Biotechnol. J. 6, 138–149 (2011).
[Crossref]

Luk, C. C.

A. K. Mudraboyina, L. Blockstein, C. C. Luk, N. I. Syed, and O. Yadid-Pecht, “A novel lensless miniature contact imaging system for monitoring calcium changes in live neurons,” IEEE Photonics J. 6, 1–15 (2014).
[Crossref]

L. Blockstein, C. C. Luk, A. K. Mudraboyina, N. I. Syed, and O. Yadid-Pecht, “A pvac-based benzophenone-8 filter as an alternative to commercially available dichroic filters for monitoring calcium activity in live neurons via fura-2 am,” IEEE Photonics J. 4, 1004–1012 (2012).
[Crossref]

Luo, W.

A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9, 889 (2012).
[Crossref] [PubMed]

Luo, Z.

D. Jin, D. Wong, J. Li, Z. Luo, Y. Guo, B. Liu, Q. Wu, C.-M. Ho, and P. Fei, “Compact wireless microscope for in-situ time course study of large scale cell dynamics within an incubator,” Sci. Rep. 5, 18483 (2015).
[Crossref]

Manickam, A.

A. Hassibi, R. Singh, A. Manickam, R. Sinha, B. Kuimelis, S. Bolouki, P. Naraghi-Arani, K. Johnson, M. McDermott, N. Wood, and et al., “4.2 a fully integrated cmos fluorescence biochip for multiplex polymerase chain-reaction (PCR) processes,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), (IEEE, 2017), pp. 68–69.

Matsumoto, S.

K. Imai, M. Nishigaki, Y. Onozuka, Y. Akimoto, M. Nagai, S. Matsumoto, and S. Kousai, “A lens-free single-shot fluorescent imaging system using CMOS image sensors with dielectric multi-layer filter,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (IEEE, 2017), pp. 139–142.

McDermott, M.

A. Hassibi, R. Singh, A. Manickam, R. Sinha, B. Kuimelis, S. Bolouki, P. Naraghi-Arani, K. Johnson, M. McDermott, N. Wood, and et al., “4.2 a fully integrated cmos fluorescence biochip for multiplex polymerase chain-reaction (PCR) processes,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), (IEEE, 2017), pp. 68–69.

McLeod, E.

A. Ozcan and E. McLeod, “Lensless imaging and sensing,” Annu. Review Biomedical Engineering 18, 77–102 (2016).
[Crossref]

Michelini, E.

A. Roda, M. Mirasoli, E. Michelini, M. Di Fusco, M. Zangheri, L. Cevenini, B. Roda, and P. Simoni, “Progress in chemical luminescence-based biosensors: a critical review,” Biosens. Bioelectron. 76, 164–179 (2016).
[Crossref]

Mirasoli, M.

A. Roda, M. Mirasoli, E. Michelini, M. Di Fusco, M. Zangheri, L. Cevenini, B. Roda, and P. Simoni, “Progress in chemical luminescence-based biosensors: a critical review,” Biosens. Bioelectron. 76, 164–179 (2016).
[Crossref]

Miyazawa, K.

H. Takehara, K. Miyazawa, T. Noda, K. Sasagawa, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “A cmos image sensor with stacked photodiodes for lensless observation system of digital enzyme-linked immunosorbent assay,” Jpn. J. Appl. Phys. 53, 04EL02 (2014).
[Crossref]

K. Sasagawa, S. H. Kim, K. Miyazawa, H. Takehara, T. Noda, T. Tokuda, R. Iino, H. Noji, and J. Ohta, “Dual-mode lensless imaging device for digital enzyme linked immunosorbent assay,” in Frontiers in Biological Detection: From Nanosensors to Systems VI, vol. 8933 (International Society for Optics and Photonics, 2014), p. 89330N.

Moon, S.

U. A. Gurkan, S. Moon, H. Geckil, F. Xu, S. Wang, T. J. Lu, and U. Demirci, “Miniaturized lensless imaging systems for cell and microorganism visualization in point-of-care testing,” Biotechnol. J. 6, 138–149 (2011).
[Crossref]

Motoyama, M.

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and et al., “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55, 03DF02 (2016).
[Crossref]

Mudanyali, O.

A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9, 889 (2012).
[Crossref] [PubMed]

O. Mudanyali, W. Bishara, and A. Ozcan, “Lensfree super-resolution holographic microscopy using wetting films on a chip,” Opt. Express 19, 17378–17389 (2011).
[Crossref] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Mudraboyina, A. K.

A. K. Mudraboyina, L. Blockstein, C. C. Luk, N. I. Syed, and O. Yadid-Pecht, “A novel lensless miniature contact imaging system for monitoring calcium changes in live neurons,” IEEE Photonics J. 6, 1–15 (2014).
[Crossref]

L. Blockstein, C. C. Luk, A. K. Mudraboyina, N. I. Syed, and O. Yadid-Pecht, “A pvac-based benzophenone-8 filter as an alternative to commercially available dichroic filters for monitoring calcium activity in live neurons via fura-2 am,” IEEE Photonics J. 4, 1004–1012 (2012).
[Crossref]

Nagai, M.

K. Imai, M. Nishigaki, Y. Onozuka, Y. Akimoto, M. Nagai, S. Matsumoto, and S. Kousai, “A lens-free single-shot fluorescent imaging system using CMOS image sensors with dielectric multi-layer filter,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (IEEE, 2017), pp. 139–142.

Nagasaki, M.

H. Takehara, M. Nagasaki, K. Sasagawa, H. Takehara, T. Noda, T. Tokuda, and J. Ohta, “Micro-light-pipe array with an excitation attenuation filter for lensless digital enzyme-linked immunosorbent assay,” Jpn. J. Appl. Phys. 55, 03DF03 (2016).
[Crossref]

Nagata, T.

R. Stahl, G. Vanmeerbeeck, G. Lafruit, R. Huys, V. Reumers, A. Lambrechts, C.-K. Liao, C.-C. Hsiao, M. Yashiro, M. Takemoto, T. Nagata, S. Gomi, K. Hatabayashi, Y. Ohshima, S. Ozaki, N. Nishishita, and S. Kawamata, “Lens-free digital in-line holographic imaging for wide field-of-view, high-resolution and real-time monitoring of complex microscopic objects,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII, vol. 8947 (International Society for Optics and Photonics, 2014), p. 89471F.

Nakamoto, Y.

H. Takehara, Y. Nakamoto, N. Ikeda, K. Sasagawa, M. Haruta, T. Noda, T. Tokuda, and J. Ohta, “Compact lensless fluorescence counting system for single molecular assay,” submitted (2018).

Naraghi-Arani, P.

A. Hassibi, R. Singh, A. Manickam, R. Sinha, B. Kuimelis, S. Bolouki, P. Naraghi-Arani, K. Johnson, M. McDermott, N. Wood, and et al., “4.2 a fully integrated cmos fluorescence biochip for multiplex polymerase chain-reaction (PCR) processes,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), (IEEE, 2017), pp. 68–69.

Nilchi, A.

R. R. Singh, D. Ho, A. Nilchi, G. Gulak, P. Yau, and R. Genov, “A cmos/thin-film fluorescence contact imaging microsystem for dna analysis,” IEEE Transactions on Circuits Syst. I: Regul. Pap. 57, 1029–1038 (2010).
[Crossref]

Nishigaki, M.

K. Imai, M. Nishigaki, Y. Onozuka, Y. Akimoto, M. Nagai, S. Matsumoto, and S. Kousai, “A lens-free single-shot fluorescent imaging system using CMOS image sensors with dielectric multi-layer filter,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (IEEE, 2017), pp. 139–142.

Nishishita, N.

R. Stahl, G. Vanmeerbeeck, G. Lafruit, R. Huys, V. Reumers, A. Lambrechts, C.-K. Liao, C.-C. Hsiao, M. Yashiro, M. Takemoto, T. Nagata, S. Gomi, K. Hatabayashi, Y. Ohshima, S. Ozaki, N. Nishishita, and S. Kawamata, “Lens-free digital in-line holographic imaging for wide field-of-view, high-resolution and real-time monitoring of complex microscopic objects,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII, vol. 8947 (International Society for Optics and Photonics, 2014), p. 89471F.

Noda, T.

H. Takehara, O. Kazutaka, M. Haruta, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “On-chip cell analysis platform: Implementation of contact fluorescence microscopy in microfluidic chips,” AIP Adv. 7, 095213 (2017).
[Crossref]

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and et al., “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55, 03DF02 (2016).
[Crossref]

H. Takehara, M. Nagasaki, K. Sasagawa, H. Takehara, T. Noda, T. Tokuda, and J. Ohta, “Micro-light-pipe array with an excitation attenuation filter for lensless digital enzyme-linked immunosorbent assay,” Jpn. J. Appl. Phys. 55, 03DF03 (2016).
[Crossref]

H. Takehara, K. Miyazawa, T. Noda, K. Sasagawa, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “A cmos image sensor with stacked photodiodes for lensless observation system of digital enzyme-linked immunosorbent assay,” Jpn. J. Appl. Phys. 53, 04EL02 (2014).
[Crossref]

M. Haruta, C. Kitsumoto, Y. Sunaga, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “An implantable CMOS device for blood-flow imaging during experiments on freely moving rats,” Jpn. J. Appl. Phys. 53, 04EL05 (2014).
[Crossref]

K. Sasagawa, K. Ando, T. Kobayashi, T. Noda, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “Complementary metal–oxide–semiconductor image sensor with microchamber array for fluorescent bead counting,” Jpn. J. Appl. Phys. 51, 02BL01 (2012).
[Crossref]

J. Ohta, T. Tokuda, K. Sasagawa, and T. Noda, “Implantable CMOS biomedical devices,” Sensors 9, 9073–9093 (2009).
[Crossref] [PubMed]

H. Takehara, Y. Nakamoto, N. Ikeda, K. Sasagawa, M. Haruta, T. Noda, T. Tokuda, and J. Ohta, “Compact lensless fluorescence counting system for single molecular assay,” submitted (2018).

K. Sasagawa, S. H. Kim, K. Miyazawa, H. Takehara, T. Noda, T. Tokuda, R. Iino, H. Noji, and J. Ohta, “Dual-mode lensless imaging device for digital enzyme linked immunosorbent assay,” in Frontiers in Biological Detection: From Nanosensors to Systems VI, vol. 8933 (International Society for Optics and Photonics, 2014), p. 89330N.

Noji, H.

H. Takehara, K. Miyazawa, T. Noda, K. Sasagawa, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “A cmos image sensor with stacked photodiodes for lensless observation system of digital enzyme-linked immunosorbent assay,” Jpn. J. Appl. Phys. 53, 04EL02 (2014).
[Crossref]

K. Sasagawa, K. Ando, T. Kobayashi, T. Noda, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “Complementary metal–oxide–semiconductor image sensor with microchamber array for fluorescent bead counting,” Jpn. J. Appl. Phys. 51, 02BL01 (2012).
[Crossref]

S. H. Kim, S. Iwai, S. Araki, S. Sakakihara, R. Iino, and H. Noji, “Large-scale femtoliter droplet array for digital counting of single biomolecules,” Lab on a Chip 12, 4986–4991 (2012).
[Crossref] [PubMed]

K. Sasagawa, S. H. Kim, K. Miyazawa, H. Takehara, T. Noda, T. Tokuda, R. Iino, H. Noji, and J. Ohta, “Dual-mode lensless imaging device for digital enzyme linked immunosorbent assay,” in Frontiers in Biological Detection: From Nanosensors to Systems VI, vol. 8933 (International Society for Optics and Photonics, 2014), p. 89330N.

Noor, M. O.

D. Ho, M. O. Noor, U. J. Krull, G. Gulak, and R. Genov, “Cmos spectrally-multiplexed fret-on-a-chip for dna analysis,” IEEE Transactions on Biomedical Circuits Systems 7, 643–654 (2013).
[Crossref] [PubMed]

Oh, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Ohshima, Y.

R. Stahl, G. Vanmeerbeeck, G. Lafruit, R. Huys, V. Reumers, A. Lambrechts, C.-K. Liao, C.-C. Hsiao, M. Yashiro, M. Takemoto, T. Nagata, S. Gomi, K. Hatabayashi, Y. Ohshima, S. Ozaki, N. Nishishita, and S. Kawamata, “Lens-free digital in-line holographic imaging for wide field-of-view, high-resolution and real-time monitoring of complex microscopic objects,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII, vol. 8947 (International Society for Optics and Photonics, 2014), p. 89471F.

Ohta, J.

H. Takehara, O. Kazutaka, M. Haruta, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “On-chip cell analysis platform: Implementation of contact fluorescence microscopy in microfluidic chips,” AIP Adv. 7, 095213 (2017).
[Crossref]

H. Takehara, M. Nagasaki, K. Sasagawa, H. Takehara, T. Noda, T. Tokuda, and J. Ohta, “Micro-light-pipe array with an excitation attenuation filter for lensless digital enzyme-linked immunosorbent assay,” Jpn. J. Appl. Phys. 55, 03DF03 (2016).
[Crossref]

H. Takehara, K. Miyazawa, T. Noda, K. Sasagawa, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “A cmos image sensor with stacked photodiodes for lensless observation system of digital enzyme-linked immunosorbent assay,” Jpn. J. Appl. Phys. 53, 04EL02 (2014).
[Crossref]

M. Haruta, C. Kitsumoto, Y. Sunaga, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “An implantable CMOS device for blood-flow imaging during experiments on freely moving rats,” Jpn. J. Appl. Phys. 53, 04EL05 (2014).
[Crossref]

K. Sasagawa, K. Ando, T. Kobayashi, T. Noda, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “Complementary metal–oxide–semiconductor image sensor with microchamber array for fluorescent bead counting,” Jpn. J. Appl. Phys. 51, 02BL01 (2012).
[Crossref]

J. Ohta, T. Tokuda, K. Sasagawa, and T. Noda, “Implantable CMOS biomedical devices,” Sensors 9, 9073–9093 (2009).
[Crossref] [PubMed]

H. Takehara, Y. Nakamoto, N. Ikeda, K. Sasagawa, M. Haruta, T. Noda, T. Tokuda, and J. Ohta, “Compact lensless fluorescence counting system for single molecular assay,” submitted (2018).

K. Sasagawa, S. H. Kim, K. Miyazawa, H. Takehara, T. Noda, T. Tokuda, R. Iino, H. Noji, and J. Ohta, “Dual-mode lensless imaging device for digital enzyme linked immunosorbent assay,” in Frontiers in Biological Detection: From Nanosensors to Systems VI, vol. 8933 (International Society for Optics and Photonics, 2014), p. 89330N.

Ohta, Y.

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and et al., “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55, 03DF02 (2016).
[Crossref]

Onozuka, Y.

K. Imai, M. Nishigaki, Y. Onozuka, Y. Akimoto, M. Nagai, S. Matsumoto, and S. Kousai, “A lens-free single-shot fluorescent imaging system using CMOS image sensors with dielectric multi-layer filter,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (IEEE, 2017), pp. 139–142.

Ozaki, S.

R. Stahl, G. Vanmeerbeeck, G. Lafruit, R. Huys, V. Reumers, A. Lambrechts, C.-K. Liao, C.-C. Hsiao, M. Yashiro, M. Takemoto, T. Nagata, S. Gomi, K. Hatabayashi, Y. Ohshima, S. Ozaki, N. Nishishita, and S. Kawamata, “Lens-free digital in-line holographic imaging for wide field-of-view, high-resolution and real-time monitoring of complex microscopic objects,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII, vol. 8947 (International Society for Optics and Photonics, 2014), p. 89471F.

Ozcan, A.

A. Ozcan and E. McLeod, “Lensless imaging and sensing,” Annu. Review Biomedical Engineering 18, 77–102 (2016).
[Crossref]

I. Sencan, A. F. Coskun, U. Sikora, and A. Ozcan, “Spectral demultiplexing in holographic and fluorescent on-chip microscopy,” Sci. Rep. 4, 3760 (2014).
[Crossref]

Z. Göröcs and A. Ozcan, “On-chip biomedical imaging,” IEEE Reviews Biomedical Engineering 6, 29–46 (2013).
[Crossref]

A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9, 889 (2012).
[Crossref] [PubMed]

O. Mudanyali, W. Bishara, and A. Ozcan, “Lensfree super-resolution holographic microscopy using wetting films on a chip,” Opt. Express 19, 17378–17389 (2011).
[Crossref] [PubMed]

A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Lensfree fluorescent on-chip imaging of transgenic caenorhabditis elegans over an ultra-wide field-of-view,” PloS one 6, e15955 (2011).
[Crossref] [PubMed]

A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip,” Analyst 136, 3512–3518 (2011).
[Crossref] [PubMed]

A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express 18, 10510–10523 (2010).
[Crossref] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

S. Seo, T.-W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab on a Chip 9, 777–787 (2009).
[Crossref] [PubMed]

Oztoprak, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Pan, M.

M. Kim, M. Pan, Y. Gai, S. Pang, C. Han, C. Yang, and S. K. Tang, “Optofluidic ultrahigh-throughput detection of fluorescent drops,” Lab on a Chip 15, 1417–1423 (2015).
[Crossref] [PubMed]

Pang, S.

M. Kim, M. Pan, Y. Gai, S. Pang, C. Han, C. Yang, and S. K. Tang, “Optofluidic ultrahigh-throughput detection of fluorescent drops,” Lab on a Chip 15, 1417–1423 (2015).
[Crossref] [PubMed]

S. Pang, C. Han, J. Erath, A. Rodriguez, and C. Yang, “Wide field-of-view Talbot grid-based microscopy for multicolor fluorescence imaging,” Opt. express 21, 14555–14565 (2013).
[Crossref] [PubMed]

C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem. 85, 2356–2360 (2013).
[Crossref]

S. Pang, C. Han, M. Kato, P. W. Sternberg, and C. Yang, “Wide and scalable field-of-view Talbot-grid-based fluorescence microscopy,” Opt. Lett. 37, 5018–5020 (2012).
[Crossref]

S. Pang, C. Han, L. M. Lee, and C. Yang, “Fluorescence microscopy imaging with a fresnel zone plate array based optofluidic microscope,” Lab on a Chip 11, 3698–3702 (2011).
[Crossref] [PubMed]

Patel, P. P.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, and et al., “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechn. 28, 595 (2010).
[Crossref]

Peumans, P.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab on a Chip 15, 1123–1132 (2015).
[Crossref]

Piech, T.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, and et al., “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechn. 28, 595 (2010).
[Crossref]

Prasher, D. C.

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802–805 (1994).
[Crossref] [PubMed]

Prodanov, D.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab on a Chip 15, 1123–1132 (2015).
[Crossref]

Reumers, V.

R. Stahl, G. Vanmeerbeeck, G. Lafruit, R. Huys, V. Reumers, A. Lambrechts, C.-K. Liao, C.-C. Hsiao, M. Yashiro, M. Takemoto, T. Nagata, S. Gomi, K. Hatabayashi, Y. Ohshima, S. Ozaki, N. Nishishita, and S. Kawamata, “Lens-free digital in-line holographic imaging for wide field-of-view, high-resolution and real-time monitoring of complex microscopic objects,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII, vol. 8947 (International Society for Optics and Photonics, 2014), p. 89471F.

Rissin, D. M.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, and et al., “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechn. 28, 595 (2010).
[Crossref]

Rivnak, A. J.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, and et al., “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechn. 28, 595 (2010).
[Crossref]

Roda, A.

A. Roda, M. Mirasoli, E. Michelini, M. Di Fusco, M. Zangheri, L. Cevenini, B. Roda, and P. Simoni, “Progress in chemical luminescence-based biosensors: a critical review,” Biosens. Bioelectron. 76, 164–179 (2016).
[Crossref]

A. Roda and M. Guardigli, “Analytical chemiluminescence and bioluminescence: latest achievements and new horizons,” Anal. Bioanalytical Chem. 402, 69–76 (2012).
[Crossref]

Roda, B.

A. Roda, M. Mirasoli, E. Michelini, M. Di Fusco, M. Zangheri, L. Cevenini, B. Roda, and P. Simoni, “Progress in chemical luminescence-based biosensors: a critical review,” Biosens. Bioelectron. 76, 164–179 (2016).
[Crossref]

Rodriguez, A.

Sakakihara, S.

S. H. Kim, S. Iwai, S. Araki, S. Sakakihara, R. Iino, and H. Noji, “Large-scale femtoliter droplet array for digital counting of single biomolecules,” Lab on a Chip 12, 4986–4991 (2012).
[Crossref] [PubMed]

Salama, K.

H. Eltoukhy, K. Salama, and A. E. Gamal, “A 0.18-/spl mu/m cmos bioluminescence detection lab-on-chip,” IEEE J. Solid-State Circuits 41, 651–662 (2006).
[Crossref]

Sasagawa, K.

H. Takehara, O. Kazutaka, M. Haruta, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “On-chip cell analysis platform: Implementation of contact fluorescence microscopy in microfluidic chips,” AIP Adv. 7, 095213 (2017).
[Crossref]

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and et al., “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55, 03DF02 (2016).
[Crossref]

H. Takehara, M. Nagasaki, K. Sasagawa, H. Takehara, T. Noda, T. Tokuda, and J. Ohta, “Micro-light-pipe array with an excitation attenuation filter for lensless digital enzyme-linked immunosorbent assay,” Jpn. J. Appl. Phys. 55, 03DF03 (2016).
[Crossref]

H. Takehara, K. Miyazawa, T. Noda, K. Sasagawa, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “A cmos image sensor with stacked photodiodes for lensless observation system of digital enzyme-linked immunosorbent assay,” Jpn. J. Appl. Phys. 53, 04EL02 (2014).
[Crossref]

M. Haruta, C. Kitsumoto, Y. Sunaga, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “An implantable CMOS device for blood-flow imaging during experiments on freely moving rats,” Jpn. J. Appl. Phys. 53, 04EL05 (2014).
[Crossref]

K. Sasagawa, K. Ando, T. Kobayashi, T. Noda, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “Complementary metal–oxide–semiconductor image sensor with microchamber array for fluorescent bead counting,” Jpn. J. Appl. Phys. 51, 02BL01 (2012).
[Crossref]

J. Ohta, T. Tokuda, K. Sasagawa, and T. Noda, “Implantable CMOS biomedical devices,” Sensors 9, 9073–9093 (2009).
[Crossref] [PubMed]

H. Takehara, Y. Nakamoto, N. Ikeda, K. Sasagawa, M. Haruta, T. Noda, T. Tokuda, and J. Ohta, “Compact lensless fluorescence counting system for single molecular assay,” submitted (2018).

K. Sasagawa, S. H. Kim, K. Miyazawa, H. Takehara, T. Noda, T. Tokuda, R. Iino, H. Noji, and J. Ohta, “Dual-mode lensless imaging device for digital enzyme linked immunosorbent assay,” in Frontiers in Biological Detection: From Nanosensors to Systems VI, vol. 8933 (International Society for Optics and Photonics, 2014), p. 89330N.

Sencan, I.

I. Sencan, A. F. Coskun, U. Sikora, and A. Ozcan, “Spectral demultiplexing in holographic and fluorescent on-chip microscopy,” Sci. Rep. 4, 3760 (2014).
[Crossref]

A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Lensfree fluorescent on-chip imaging of transgenic caenorhabditis elegans over an ultra-wide field-of-view,” PloS one 6, e15955 (2011).
[Crossref] [PubMed]

A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip,” Analyst 136, 3512–3518 (2011).
[Crossref] [PubMed]

A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express 18, 10510–10523 (2010).
[Crossref] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Seo, S.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

S. Seo, T.-W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab on a Chip 9, 777–787 (2009).
[Crossref] [PubMed]

Sikora, U.

I. Sencan, A. F. Coskun, U. Sikora, and A. Ozcan, “Spectral demultiplexing in holographic and fluorescent on-chip microscopy,” Sci. Rep. 4, 3760 (2014).
[Crossref]

Simoni, P.

A. Roda, M. Mirasoli, E. Michelini, M. Di Fusco, M. Zangheri, L. Cevenini, B. Roda, and P. Simoni, “Progress in chemical luminescence-based biosensors: a critical review,” Biosens. Bioelectron. 76, 164–179 (2016).
[Crossref]

Singh, R.

A. Hassibi, R. Singh, A. Manickam, R. Sinha, B. Kuimelis, S. Bolouki, P. Naraghi-Arani, K. Johnson, M. McDermott, N. Wood, and et al., “4.2 a fully integrated cmos fluorescence biochip for multiplex polymerase chain-reaction (PCR) processes,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), (IEEE, 2017), pp. 68–69.

Singh, R. R.

R. R. Singh, D. Ho, A. Nilchi, G. Gulak, P. Yau, and R. Genov, “A cmos/thin-film fluorescence contact imaging microsystem for dna analysis,” IEEE Transactions on Circuits Syst. I: Regul. Pap. 57, 1029–1038 (2010).
[Crossref]

Sinha, R.

A. Hassibi, R. Singh, A. Manickam, R. Sinha, B. Kuimelis, S. Bolouki, P. Naraghi-Arani, K. Johnson, M. McDermott, N. Wood, and et al., “4.2 a fully integrated cmos fluorescence biochip for multiplex polymerase chain-reaction (PCR) processes,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), (IEEE, 2017), pp. 68–69.

Song, L.

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, and et al., “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechn. 28, 595 (2010).
[Crossref]

Stahl, R.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab on a Chip 15, 1123–1132 (2015).
[Crossref]

R. Stahl, G. Vanmeerbeeck, G. Lafruit, R. Huys, V. Reumers, A. Lambrechts, C.-K. Liao, C.-C. Hsiao, M. Yashiro, M. Takemoto, T. Nagata, S. Gomi, K. Hatabayashi, Y. Ohshima, S. Ozaki, N. Nishishita, and S. Kawamata, “Lens-free digital in-line holographic imaging for wide field-of-view, high-resolution and real-time monitoring of complex microscopic objects,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII, vol. 8947 (International Society for Optics and Photonics, 2014), p. 89471F.

Sternberg, P. W.

Su, T.-W.

A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9, 889 (2012).
[Crossref] [PubMed]

A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Lensfree fluorescent on-chip imaging of transgenic caenorhabditis elegans over an ultra-wide field-of-view,” PloS one 6, e15955 (2011).
[Crossref] [PubMed]

A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip,” Analyst 136, 3512–3518 (2011).
[Crossref] [PubMed]

A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express 18, 10510–10523 (2010).
[Crossref] [PubMed]

S. Seo, T.-W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab on a Chip 9, 777–787 (2009).
[Crossref] [PubMed]

Sunaga, Y.

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and et al., “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55, 03DF02 (2016).
[Crossref]

M. Haruta, C. Kitsumoto, Y. Sunaga, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “An implantable CMOS device for blood-flow imaging during experiments on freely moving rats,” Jpn. J. Appl. Phys. 53, 04EL05 (2014).
[Crossref]

Syed, N. I.

A. K. Mudraboyina, L. Blockstein, C. C. Luk, N. I. Syed, and O. Yadid-Pecht, “A novel lensless miniature contact imaging system for monitoring calcium changes in live neurons,” IEEE Photonics J. 6, 1–15 (2014).
[Crossref]

L. Blockstein, C. C. Luk, A. K. Mudraboyina, N. I. Syed, and O. Yadid-Pecht, “A pvac-based benzophenone-8 filter as an alternative to commercially available dichroic filters for monitoring calcium activity in live neurons via fura-2 am,” IEEE Photonics J. 4, 1004–1012 (2012).
[Crossref]

Takehara, H.

H. Takehara, O. Kazutaka, M. Haruta, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “On-chip cell analysis platform: Implementation of contact fluorescence microscopy in microfluidic chips,” AIP Adv. 7, 095213 (2017).
[Crossref]

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and et al., “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55, 03DF02 (2016).
[Crossref]

H. Takehara, M. Nagasaki, K. Sasagawa, H. Takehara, T. Noda, T. Tokuda, and J. Ohta, “Micro-light-pipe array with an excitation attenuation filter for lensless digital enzyme-linked immunosorbent assay,” Jpn. J. Appl. Phys. 55, 03DF03 (2016).
[Crossref]

H. Takehara, M. Nagasaki, K. Sasagawa, H. Takehara, T. Noda, T. Tokuda, and J. Ohta, “Micro-light-pipe array with an excitation attenuation filter for lensless digital enzyme-linked immunosorbent assay,” Jpn. J. Appl. Phys. 55, 03DF03 (2016).
[Crossref]

H. Takehara, K. Miyazawa, T. Noda, K. Sasagawa, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “A cmos image sensor with stacked photodiodes for lensless observation system of digital enzyme-linked immunosorbent assay,” Jpn. J. Appl. Phys. 53, 04EL02 (2014).
[Crossref]

M. Haruta, C. Kitsumoto, Y. Sunaga, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “An implantable CMOS device for blood-flow imaging during experiments on freely moving rats,” Jpn. J. Appl. Phys. 53, 04EL05 (2014).
[Crossref]

H. Takehara, Y. Nakamoto, N. Ikeda, K. Sasagawa, M. Haruta, T. Noda, T. Tokuda, and J. Ohta, “Compact lensless fluorescence counting system for single molecular assay,” submitted (2018).

K. Sasagawa, S. H. Kim, K. Miyazawa, H. Takehara, T. Noda, T. Tokuda, R. Iino, H. Noji, and J. Ohta, “Dual-mode lensless imaging device for digital enzyme linked immunosorbent assay,” in Frontiers in Biological Detection: From Nanosensors to Systems VI, vol. 8933 (International Society for Optics and Photonics, 2014), p. 89330N.

Takemoto, M.

R. Stahl, G. Vanmeerbeeck, G. Lafruit, R. Huys, V. Reumers, A. Lambrechts, C.-K. Liao, C.-C. Hsiao, M. Yashiro, M. Takemoto, T. Nagata, S. Gomi, K. Hatabayashi, Y. Ohshima, S. Ozaki, N. Nishishita, and S. Kawamata, “Lens-free digital in-line holographic imaging for wide field-of-view, high-resolution and real-time monitoring of complex microscopic objects,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII, vol. 8947 (International Society for Optics and Photonics, 2014), p. 89471F.

Tam, T.

M. Beiderman, T. Tam, A. Fish, G. A. Jullien, and O. Yadid-Pecht, “A low-light CMOS contact imager with an emission filter for biosensing applications,” IEEE transactions on biomedical circuits systems 2, 193–203 (2008).
[Crossref] [PubMed]

Tang, S. K.

M. Kim, M. Pan, Y. Gai, S. Pang, C. Han, C. Yang, and S. K. Tang, “Optofluidic ultrahigh-throughput detection of fluorescent drops,” Lab on a Chip 15, 1417–1423 (2015).
[Crossref] [PubMed]

Tokuda, T.

H. Takehara, O. Kazutaka, M. Haruta, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “On-chip cell analysis platform: Implementation of contact fluorescence microscopy in microfluidic chips,” AIP Adv. 7, 095213 (2017).
[Crossref]

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and et al., “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55, 03DF02 (2016).
[Crossref]

H. Takehara, M. Nagasaki, K. Sasagawa, H. Takehara, T. Noda, T. Tokuda, and J. Ohta, “Micro-light-pipe array with an excitation attenuation filter for lensless digital enzyme-linked immunosorbent assay,” Jpn. J. Appl. Phys. 55, 03DF03 (2016).
[Crossref]

H. Takehara, K. Miyazawa, T. Noda, K. Sasagawa, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “A cmos image sensor with stacked photodiodes for lensless observation system of digital enzyme-linked immunosorbent assay,” Jpn. J. Appl. Phys. 53, 04EL02 (2014).
[Crossref]

M. Haruta, C. Kitsumoto, Y. Sunaga, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “An implantable CMOS device for blood-flow imaging during experiments on freely moving rats,” Jpn. J. Appl. Phys. 53, 04EL05 (2014).
[Crossref]

K. Sasagawa, K. Ando, T. Kobayashi, T. Noda, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “Complementary metal–oxide–semiconductor image sensor with microchamber array for fluorescent bead counting,” Jpn. J. Appl. Phys. 51, 02BL01 (2012).
[Crossref]

J. Ohta, T. Tokuda, K. Sasagawa, and T. Noda, “Implantable CMOS biomedical devices,” Sensors 9, 9073–9093 (2009).
[Crossref] [PubMed]

H. Takehara, Y. Nakamoto, N. Ikeda, K. Sasagawa, M. Haruta, T. Noda, T. Tokuda, and J. Ohta, “Compact lensless fluorescence counting system for single molecular assay,” submitted (2018).

K. Sasagawa, S. H. Kim, K. Miyazawa, H. Takehara, T. Noda, T. Tokuda, R. Iino, H. Noji, and J. Ohta, “Dual-mode lensless imaging device for digital enzyme linked immunosorbent assay,” in Frontiers in Biological Detection: From Nanosensors to Systems VI, vol. 8933 (International Society for Optics and Photonics, 2014), p. 89330N.

Tseng, D.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

Tseng, D. K.

S. Seo, T.-W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab on a Chip 9, 777–787 (2009).
[Crossref] [PubMed]

Tu, Y.

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802–805 (1994).
[Crossref] [PubMed]

Vanmeerbeeck, G.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab on a Chip 15, 1123–1132 (2015).
[Crossref]

R. Stahl, G. Vanmeerbeeck, G. Lafruit, R. Huys, V. Reumers, A. Lambrechts, C.-K. Liao, C.-C. Hsiao, M. Yashiro, M. Takemoto, T. Nagata, S. Gomi, K. Hatabayashi, Y. Ohshima, S. Ozaki, N. Nishishita, and S. Kawamata, “Lens-free digital in-line holographic imaging for wide field-of-view, high-resolution and real-time monitoring of complex microscopic objects,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII, vol. 8947 (International Society for Optics and Photonics, 2014), p. 89471F.

Vercruysse, D.

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab on a Chip 15, 1123–1132 (2015).
[Crossref]

Wang, S.

U. A. Gurkan, S. Moon, H. Geckil, F. Xu, S. Wang, T. J. Lu, and U. Demirci, “Miniaturized lensless imaging systems for cell and microorganism visualization in point-of-care testing,” Biotechnol. J. 6, 138–149 (2011).
[Crossref]

Ward, W. W.

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802–805 (1994).
[Crossref] [PubMed]

Wong, D.

D. Jin, D. Wong, J. Li, Z. Luo, Y. Guo, B. Liu, Q. Wu, C.-M. Ho, and P. Fei, “Compact wireless microscope for in-situ time course study of large scale cell dynamics within an incubator,” Sci. Rep. 5, 18483 (2015).
[Crossref]

Wood, N.

A. Hassibi, R. Singh, A. Manickam, R. Sinha, B. Kuimelis, S. Bolouki, P. Naraghi-Arani, K. Johnson, M. McDermott, N. Wood, and et al., “4.2 a fully integrated cmos fluorescence biochip for multiplex polymerase chain-reaction (PCR) processes,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), (IEEE, 2017), pp. 68–69.

Wu, Q.

D. Jin, D. Wong, J. Li, Z. Luo, Y. Guo, B. Liu, Q. Wu, C.-M. Ho, and P. Fei, “Compact wireless microscope for in-situ time course study of large scale cell dynamics within an incubator,” Sci. Rep. 5, 18483 (2015).
[Crossref]

Xu, F.

U. A. Gurkan, S. Moon, H. Geckil, F. Xu, S. Wang, T. J. Lu, and U. Demirci, “Miniaturized lensless imaging systems for cell and microorganism visualization in point-of-care testing,” Biotechnol. J. 6, 138–149 (2011).
[Crossref]

Xue, L.

A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9, 889 (2012).
[Crossref] [PubMed]

Yadid-Pecht, O.

L. Blockstein and O. Yadid-Pecht, “Lensless miniature portable fluorometer for measurement of chlorophyll and CDOM in water using fluorescence contact imaging,” IEEE Photonics J. 6, 1–16 (2014).

A. K. Mudraboyina, L. Blockstein, C. C. Luk, N. I. Syed, and O. Yadid-Pecht, “A novel lensless miniature contact imaging system for monitoring calcium changes in live neurons,” IEEE Photonics J. 6, 1–15 (2014).
[Crossref]

L. Blockstein, C. C. Luk, A. K. Mudraboyina, N. I. Syed, and O. Yadid-Pecht, “A pvac-based benzophenone-8 filter as an alternative to commercially available dichroic filters for monitoring calcium activity in live neurons via fura-2 am,” IEEE Photonics J. 4, 1004–1012 (2012).
[Crossref]

Y. Dattner and O. Yadid-Pecht, “Low light cmos contact imager with an integrated poly-acrylic emission filter for fluorescence detection,” Sensors 10, 5014–5027 (2010).
[Crossref] [PubMed]

M. Beiderman, T. Tam, A. Fish, G. A. Jullien, and O. Yadid-Pecht, “A low-light CMOS contact imager with an emission filter for biosensing applications,” IEEE transactions on biomedical circuits systems 2, 193–203 (2008).
[Crossref] [PubMed]

Yamaguchi, T.

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and et al., “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55, 03DF02 (2016).
[Crossref]

Yamaura, H.

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and et al., “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55, 03DF02 (2016).
[Crossref]

Yang, C.

J. Kim, B. M. Henley, C. H. Kim, H. A. Lester, and C. Yang, “Incubator embedded cell culture imaging system (emsight) based on Fourier ptychographic microscopy,” Biomed. optics express 7, 3097–3110 (2016).
[Crossref]

M. Kim, M. Pan, Y. Gai, S. Pang, C. Han, C. Yang, and S. K. Tang, “Optofluidic ultrahigh-throughput detection of fluorescent drops,” Lab on a Chip 15, 1417–1423 (2015).
[Crossref] [PubMed]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. photonics 7, 739 (2013).
[Crossref]

S. Pang, C. Han, J. Erath, A. Rodriguez, and C. Yang, “Wide field-of-view Talbot grid-based microscopy for multicolor fluorescence imaging,” Opt. express 21, 14555–14565 (2013).
[Crossref] [PubMed]

C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem. 85, 2356–2360 (2013).
[Crossref]

S. Pang, C. Han, M. Kato, P. W. Sternberg, and C. Yang, “Wide and scalable field-of-view Talbot-grid-based fluorescence microscopy,” Opt. Lett. 37, 5018–5020 (2012).
[Crossref]

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The epetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (spsm),” Proc. Natl. Acad. Sci. 108, 16889–16894 (2011).
[Crossref] [PubMed]

S. Pang, C. Han, L. M. Lee, and C. Yang, “Fluorescence microscopy imaging with a fresnel zone plate array based optofluidic microscope,” Lab on a Chip 11, 3698–3702 (2011).
[Crossref] [PubMed]

Yashiro, M.

R. Stahl, G. Vanmeerbeeck, G. Lafruit, R. Huys, V. Reumers, A. Lambrechts, C.-K. Liao, C.-C. Hsiao, M. Yashiro, M. Takemoto, T. Nagata, S. Gomi, K. Hatabayashi, Y. Ohshima, S. Ozaki, N. Nishishita, and S. Kawamata, “Lens-free digital in-line holographic imaging for wide field-of-view, high-resolution and real-time monitoring of complex microscopic objects,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII, vol. 8947 (International Society for Optics and Photonics, 2014), p. 89471F.

Yau, P.

R. R. Singh, D. Ho, A. Nilchi, G. Gulak, P. Yau, and R. Genov, “A cmos/thin-film fluorescence contact imaging microsystem for dna analysis,” IEEE Transactions on Circuits Syst. I: Regul. Pap. 57, 1029–1038 (2010).
[Crossref]

Yiu, P.

C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem. 85, 2356–2360 (2013).
[Crossref]

Zangheri, M.

A. Roda, M. Mirasoli, E. Michelini, M. Di Fusco, M. Zangheri, L. Cevenini, B. Roda, and P. Simoni, “Progress in chemical luminescence-based biosensors: a critical review,” Biosens. Bioelectron. 76, 164–179 (2016).
[Crossref]

Zheng, G.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. photonics 7, 739 (2013).
[Crossref]

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The epetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (spsm),” Proc. Natl. Acad. Sci. 108, 16889–16894 (2011).
[Crossref] [PubMed]

AIP Adv. (1)

H. Takehara, O. Kazutaka, M. Haruta, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “On-chip cell analysis platform: Implementation of contact fluorescence microscopy in microfluidic chips,” AIP Adv. 7, 095213 (2017).
[Crossref]

Anal. Bioanalytical Chem. (1)

A. Roda and M. Guardigli, “Analytical chemiluminescence and bioluminescence: latest achievements and new horizons,” Anal. Bioanalytical Chem. 402, 69–76 (2012).
[Crossref]

Anal. Chem. (1)

C. Han, S. Pang, D. V. Bower, P. Yiu, and C. Yang, “Wide field-of-view on-chip talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator,” Anal. Chem. 85, 2356–2360 (2013).
[Crossref]

Analyst (1)

A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip,” Analyst 136, 3512–3518 (2011).
[Crossref] [PubMed]

Annu. Review Biomedical Engineering (1)

A. Ozcan and E. McLeod, “Lensless imaging and sensing,” Annu. Review Biomedical Engineering 18, 77–102 (2016).
[Crossref]

Biomed. optics express (1)

J. Kim, B. M. Henley, C. H. Kim, H. A. Lester, and C. Yang, “Incubator embedded cell culture imaging system (emsight) based on Fourier ptychographic microscopy,” Biomed. optics express 7, 3097–3110 (2016).
[Crossref]

Biosens. Bioelectron. (1)

A. Roda, M. Mirasoli, E. Michelini, M. Di Fusco, M. Zangheri, L. Cevenini, B. Roda, and P. Simoni, “Progress in chemical luminescence-based biosensors: a critical review,” Biosens. Bioelectron. 76, 164–179 (2016).
[Crossref]

Biotechnol. J. (1)

U. A. Gurkan, S. Moon, H. Geckil, F. Xu, S. Wang, T. J. Lu, and U. Demirci, “Miniaturized lensless imaging systems for cell and microorganism visualization in point-of-care testing,” Biotechnol. J. 6, 138–149 (2011).
[Crossref]

IEEE J. Solid-State Circuits (1)

H. Eltoukhy, K. Salama, and A. E. Gamal, “A 0.18-/spl mu/m cmos bioluminescence detection lab-on-chip,” IEEE J. Solid-State Circuits 41, 651–662 (2006).
[Crossref]

IEEE Photonics J. (3)

L. Blockstein, C. C. Luk, A. K. Mudraboyina, N. I. Syed, and O. Yadid-Pecht, “A pvac-based benzophenone-8 filter as an alternative to commercially available dichroic filters for monitoring calcium activity in live neurons via fura-2 am,” IEEE Photonics J. 4, 1004–1012 (2012).
[Crossref]

A. K. Mudraboyina, L. Blockstein, C. C. Luk, N. I. Syed, and O. Yadid-Pecht, “A novel lensless miniature contact imaging system for monitoring calcium changes in live neurons,” IEEE Photonics J. 6, 1–15 (2014).
[Crossref]

L. Blockstein and O. Yadid-Pecht, “Lensless miniature portable fluorometer for measurement of chlorophyll and CDOM in water using fluorescence contact imaging,” IEEE Photonics J. 6, 1–16 (2014).

IEEE Reviews Biomedical Engineering (1)

Z. Göröcs and A. Ozcan, “On-chip biomedical imaging,” IEEE Reviews Biomedical Engineering 6, 29–46 (2013).
[Crossref]

IEEE Transactions on Biomedical Circuits Systems (1)

D. Ho, M. O. Noor, U. J. Krull, G. Gulak, and R. Genov, “Cmos spectrally-multiplexed fret-on-a-chip for dna analysis,” IEEE Transactions on Biomedical Circuits Systems 7, 643–654 (2013).
[Crossref] [PubMed]

M. Beiderman, T. Tam, A. Fish, G. A. Jullien, and O. Yadid-Pecht, “A low-light CMOS contact imager with an emission filter for biosensing applications,” IEEE transactions on biomedical circuits systems 2, 193–203 (2008).
[Crossref] [PubMed]

IEEE Transactions on Circuits Syst. I: Regul. Pap. (1)

R. R. Singh, D. Ho, A. Nilchi, G. Gulak, P. Yau, and R. Genov, “A cmos/thin-film fluorescence contact imaging microsystem for dna analysis,” IEEE Transactions on Circuits Syst. I: Regul. Pap. 57, 1029–1038 (2010).
[Crossref]

Jpn. J. Appl. Phys. (5)

K. Sasagawa, K. Ando, T. Kobayashi, T. Noda, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “Complementary metal–oxide–semiconductor image sensor with microchamber array for fluorescent bead counting,” Jpn. J. Appl. Phys. 51, 02BL01 (2012).
[Crossref]

H. Takehara, K. Miyazawa, T. Noda, K. Sasagawa, T. Tokuda, S. H. Kim, R. Iino, H. Noji, and J. Ohta, “A cmos image sensor with stacked photodiodes for lensless observation system of digital enzyme-linked immunosorbent assay,” Jpn. J. Appl. Phys. 53, 04EL02 (2014).
[Crossref]

H. Takehara, M. Nagasaki, K. Sasagawa, H. Takehara, T. Noda, T. Tokuda, and J. Ohta, “Micro-light-pipe array with an excitation attenuation filter for lensless digital enzyme-linked immunosorbent assay,” Jpn. J. Appl. Phys. 55, 03DF03 (2016).
[Crossref]

M. Haruta, C. Kitsumoto, Y. Sunaga, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “An implantable CMOS device for blood-flow imaging during experiments on freely moving rats,” Jpn. J. Appl. Phys. 53, 04EL05 (2014).
[Crossref]

Y. Sunaga, H. Yamaura, M. Haruta, T. Yamaguchi, M. Motoyama, Y. Ohta, H. Takehara, T. Noda, K. Sasagawa, T. Tokuda, and et al., “Implantable imaging device for brain functional imaging system using flavoprotein fluorescence,” Jpn. J. Appl. Phys. 55, 03DF02 (2016).
[Crossref]

Lab on a Chip (6)

S. H. Kim, S. Iwai, S. Araki, S. Sakakihara, R. Iino, and H. Noji, “Large-scale femtoliter droplet array for digital counting of single biomolecules,” Lab on a Chip 12, 4986–4991 (2012).
[Crossref] [PubMed]

D. Vercruysse, A. Dusa, R. Stahl, G. Vanmeerbeeck, K. de Wijs, C. Liu, D. Prodanov, P. Peumans, and L. Lagae, “Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer,” Lab on a Chip 15, 1123–1132 (2015).
[Crossref]

S. Seo, T.-W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab on a Chip 9, 777–787 (2009).
[Crossref] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417–1428 (2010).
[Crossref] [PubMed]

M. Kim, M. Pan, Y. Gai, S. Pang, C. Han, C. Yang, and S. K. Tang, “Optofluidic ultrahigh-throughput detection of fluorescent drops,” Lab on a Chip 15, 1417–1423 (2015).
[Crossref] [PubMed]

S. Pang, C. Han, L. M. Lee, and C. Yang, “Fluorescence microscopy imaging with a fresnel zone plate array based optofluidic microscope,” Lab on a Chip 11, 3698–3702 (2011).
[Crossref] [PubMed]

Nat. Biotechn. (1)

D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, and et al., “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechn. 28, 595 (2010).
[Crossref]

Nat. Methods (1)

A. Greenbaum, W. Luo, T.-W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9, 889 (2012).
[Crossref] [PubMed]

Nat. photonics (1)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. photonics 7, 739 (2013).
[Crossref]

Opt. express (1)

Opt. Lett. (1)

PloS one (1)

A. F. Coskun, I. Sencan, T.-W. Su, and A. Ozcan, “Lensfree fluorescent on-chip imaging of transgenic caenorhabditis elegans over an ultra-wide field-of-view,” PloS one 6, e15955 (2011).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. (1)

G. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. Yang, “The epetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (spsm),” Proc. Natl. Acad. Sci. 108, 16889–16894 (2011).
[Crossref] [PubMed]

Sci. Rep. (2)

D. Jin, D. Wong, J. Li, Z. Luo, Y. Guo, B. Liu, Q. Wu, C.-M. Ho, and P. Fei, “Compact wireless microscope for in-situ time course study of large scale cell dynamics within an incubator,” Sci. Rep. 5, 18483 (2015).
[Crossref]

I. Sencan, A. F. Coskun, U. Sikora, and A. Ozcan, “Spectral demultiplexing in holographic and fluorescent on-chip microscopy,” Sci. Rep. 4, 3760 (2014).
[Crossref]

Science (1)

M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science 263, 802–805 (1994).
[Crossref] [PubMed]

Sensors (2)

Y. Dattner and O. Yadid-Pecht, “Low light cmos contact imager with an integrated poly-acrylic emission filter for fluorescence detection,” Sensors 10, 5014–5027 (2010).
[Crossref] [PubMed]

J. Ohta, T. Tokuda, K. Sasagawa, and T. Noda, “Implantable CMOS biomedical devices,” Sensors 9, 9073–9093 (2009).
[Crossref] [PubMed]

Other (5)

H. Takehara, Y. Nakamoto, N. Ikeda, K. Sasagawa, M. Haruta, T. Noda, T. Tokuda, and J. Ohta, “Compact lensless fluorescence counting system for single molecular assay,” submitted (2018).

A. Hassibi, R. Singh, A. Manickam, R. Sinha, B. Kuimelis, S. Bolouki, P. Naraghi-Arani, K. Johnson, M. McDermott, N. Wood, and et al., “4.2 a fully integrated cmos fluorescence biochip for multiplex polymerase chain-reaction (PCR) processes,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), (IEEE, 2017), pp. 68–69.

K. Imai, M. Nishigaki, Y. Onozuka, Y. Akimoto, M. Nagai, S. Matsumoto, and S. Kousai, “A lens-free single-shot fluorescent imaging system using CMOS image sensors with dielectric multi-layer filter,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (IEEE, 2017), pp. 139–142.

K. Sasagawa, S. H. Kim, K. Miyazawa, H. Takehara, T. Noda, T. Tokuda, R. Iino, H. Noji, and J. Ohta, “Dual-mode lensless imaging device for digital enzyme linked immunosorbent assay,” in Frontiers in Biological Detection: From Nanosensors to Systems VI, vol. 8933 (International Society for Optics and Photonics, 2014), p. 89330N.

R. Stahl, G. Vanmeerbeeck, G. Lafruit, R. Huys, V. Reumers, A. Lambrechts, C.-K. Liao, C.-C. Hsiao, M. Yashiro, M. Takemoto, T. Nagata, S. Gomi, K. Hatabayashi, Y. Ohshima, S. Ozaki, N. Nishishita, and S. Kawamata, “Lens-free digital in-line holographic imaging for wide field-of-view, high-resolution and real-time monitoring of complex microscopic objects,” in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII, vol. 8947 (International Society for Optics and Photonics, 2014), p. 89471F.

Supplementary Material (2)

NameDescription
» Visualization 1       Movie of yellow microbeads dispersed on the image sensor with a half-absorption and half-hybrid filter. The left half is the area with absorption filter under FOP. The right half is the area with the hybrid filter. Yellow fluorescent beads (FP-4052-2
» Visualization 2       Movie of time-lapse imaging while HEK293 cells partially transfected by green fluorescent cells were cultured on the lens-free imaging device. (Left) Super-resolved bright field. (Center) Fluorescence. (Right) Merged.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Photograph of proposed lens-free fluorescence imaging device with hybrid filter. The image sensor has no micro-lenses on the pixels. (b) Schematic of hybrid filter and image sensor structure. (c) Photograph of the imaging device with multi-LED light chip. An American dime was placed against the device to indicate its size.
Fig. 2
Fig. 2 (a,d) Schematic and photograph of scattered light transmission through an interference filter. Due to a spectrum shift, light incident at an angle is transmitted. Silica beads are used as a diffuser. The laser wavelength in the experiment was 473 nm. The filter was a pass filter 510 nm long. (b,e) Schematic and photograph of an absorption filter. The yellow fluorescence spot in (e) shows how auto-fluorescence from the absorption filter results in effective transmission through it. (c,f) Schematic and photograph of the proposed hybrid filter. The auto-fluorescence of the absorption filter is reduced because the normally incident component is reflected by the interference filter.
Fig. 3
Fig. 3 Fabrication process for imaging device with hybrid filter. (a) A cover glass was coated with CYTOP. (b) The CYTOP layer was coated with a yellow absorption mixture. (c) An FOP with interference filter was glued onto the absorption filter. (d) The FOP was removed, and the absorption filter was transferred. (e) The FOP with hybrid filter was glued onto the image sensor.
Fig. 4
Fig. 4 Photograph of a cell culture chamber with a bottom of 5-µm-thick fluorocarbon film (CYTOP-S). The chamber is upside-down in the image. Scale bar is 10 mm.
Fig. 5
Fig. 5 Bright-field image examples for each image processing step. The HEK293 cells cultured in an ultra-thin film chamber were observed. (a) Raw image. (b) Image with background subtracted. (c) Image with low-frequency spatial components subtracted. (d) Super-resolved image reconstructed from four images obtained with different illumination angles. Scale bar is 300 µm.
Fig. 6
Fig. 6 (a) Comparison of normalized transmittance of emission filters as a function of absorption filter thickness. The curves show transmission in an absorption filter under the FOP (grey line), an absorption filter on the FOP (orange line), and a hybrid filter (red line). The light source was a 450-nm laser diode (PL450B; Osram, Germany). The spontaneous emission component from the laser diode was reduced by a bandpass filter (MF445-45; Thorlabs, USA). The laser spot patterns observed by an image sensor at points (i) and (ii) are shown in (b) and (c), respectively.
Fig. 7
Fig. 7 Fluorescence images of sample green filter pattern obtained by: (a) fluorescence microscope with GFP filter, (b) lens-free device with an interference filter, (c) lens-free device with an absorption filter under the FOP, and (d) lens-free device with hybrid filter. The scale bar is 100 µm.
Fig. 8
Fig. 8 (a) Photograph of a device where one half of the imager had an absorption filter and the other half had a hybrid filter. This device is used to simultaneously compare the performance of these filters. (b) Imaging of yellow fluorescent microbeads by the fabricated lens-free device shown in (a). The left half of the device had an absorption filter under the FOP. The right half had a hybrid filter. Both images were obtained simultaneously. The center is the optical shield region. The diameters of the microbeads were 2.5–4.5 µm. The scale bar is 300 µm. A movie of this image is provided as Visualization 1.
Fig. 9
Fig. 9 (a) Image used for image sensor spatial resolution evaluation where yellow microbeads were dispersed on the image sensor. The image was obtained under dry conditions. Thus, there is no space between the microbeads and filter. (b1)–(b10) Gaussian fitting results of normalized intensity profiles for the fluorescent beads identified by numbers in (a). We chose microbeads that were separated from the others.
Fig. 10
Fig. 10 Time-lapse imaging of HEK293 cells partially transfected by GFP. These images were obtained with the proposed lens-free fluorescence imaging device. The top row presents bright-field images, the middle row presents fluorescence images, and the bottom row merges the images from the top two rows. The bright-field image was composed from four different images with different incident angles of illumination. The frame time was 1 sec for each bright-field image and 2 sec for each fluorescence image. The interval time was 10 min. The scale bar is 300 µm. A movie of these images is provided as Visualization 2.
Fig. 11
Fig. 11 Comparison of magnified fluorescent cell images obtained with (a) a lens-based fluorescence microscope and (b) the proposed device. The scale bar is 100 µm.

Tables (1)

Tables Icon

Table 1 Specifications of image sensor

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = I / I 0 = exp ( α L )

Metrics