Abstract

Lithium-based medications are used successfully to treat many mental disorders, including bipolar disorder and Alzheimer’s disease. However, the therapeutic mechanisms are not well characterized due to limitations in detecting lithium in organs and cells. This limits the ability to improve lithium-based treatments. To address this need, laser-induced breakdown spectroscopy (LIBS) is developed for the rapid and in situ detection of lithium in biological tissues. Pronounced lithium emissions are observed at 670.7nm from the rat thyroid, salivary, and mammary glands when lithium is administered orally. Calcium, carbon, magnesium, sodium, potassium, and iodine emissions are also observed. The lithium emission intensity is positively correlated with tissue lithium concentration, which is ~1ppm. The limit of detection for lithium is determined to be ~0.1ppm. Thyroid lithium intensity increases while iodine intensity decreases. The reduced intrathyroidal iodine following treatment likely impairs hormone production. Further, the presence of lithium in the salivary and mammary glands makes these glands the likely conduits for lithium to enter the saliva and breast milk, respectively. LIBS is well suited for characterizing the distribution of lithium, and other elements, across the body. This optical method can potentially be adapted for use in vivo and in humans.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Elemental analysis of the thyroid by laser induced breakdown spectroscopy

Irfan Ahmed, Rafay Ahmed, Jingwei Yang, Alan Wing Lun Law, Yanpeng Zhang, and Condon Lau
Biomed. Opt. Express 8(11) 4865-4871 (2017)

Detection of trace elements in nondegradable organic spent clay waste using optimized dual-pulsed laser induced breakdown spectrometer

Ahmed Asaad I. Khalil, Mohammed A. Gondal, and Mohamed A. Dastageer
Appl. Opt. 53(8) 1709-1717 (2014)

Lithium ion detection in liquid with low detection limit by laser-induced breakdown spectroscopy

Yage He, Xianshuang Wang, Shuai Guo, Angze Li, Xiangjun Xu, Nasrullah Wazir, Chunjie Ding, Tianqi Lu, Lingling Xie, Min Zhang, Yan Hao, Wei Guo, and Ruibin Liu
Appl. Opt. 58(2) 422-427 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. L. Murray, “The Global Burden of Disease: A comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020,” Harvard University Press on behalf of the World Health Organization, Harvard School of Public Health, and World Bank (Harvard, 1996).
  2. M. W. Jann, “Diagnosis and treatment of bipolar disorders in adults: a review of the evidence on pharmacologic treatments,” Am. Health Drug Benefits 7(9), 489–499 (2014).
    [PubMed]
  3. R. W. Kupka, W. A. Nolen, R. M. Post, S. L. McElroy, L. L. Altshuler, K. D. Denicoff, M. A. Frye, P. E. Keck, G. S. Leverich, A. J. Rush, T. Suppes, C. Pollio, and H. A. Drexhage, “High rate of autoimmune thyroiditis in bipolar disorder: lack of association with lithium exposure,” Biol. Psychiatry 51(4), 305–311 (2002).
    [Crossref] [PubMed]
  4. C. J. Phiel, C. A. Wilson, V. M.-Y. Lee, and P. S. Klein, “GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides,” Nature 423(6938), 435–439 (2003).
    [Crossref] [PubMed]
  5. M. Hong, D. C. Chen, P. S. Klein, and V. M. Lee, “Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3,” J. Biol. Chem. 272(40), 25326–25332 (1997).
    [Crossref] [PubMed]
  6. S. Rej, K. Shulman, and N. Herrmann, “Long-term effects of lithium on renal function,” Lancet 386(10007), 1943–1944 (2015).
    [Crossref] [PubMed]
  7. T. K. Creson, P. J. Monaco, E. M. Rasch, A. H. Hagardorn, and K. E. Ferslew, “Capillary ion analysis of lithium concentrations in biological fluids and tissues of Poecilia (teleost),” Electrophoresis 19(16-17), 3018–3021 (1998).
    [Crossref] [PubMed]
  8. J. Lichtinger, R. Gernhäuser, A. Bauer, M. Bendel, L. Canella, M. Graw, R. Krücken, P. Kudejova, E. Mützel, S. Ring, D. Seiler, S. Winkler, K. Zeitelhack, and J. Schöpfer, “Position sensitive measurement of lithium traces in brain tissue with neutrons,” Med. Phys. 40(2), 023501 (2013).
    [Crossref] [PubMed]
  9. G. Zanni, W. Michno, E. Di Martino, A. Tjärnlund-Wolf, J. Pettersson, C. E. Mason, G. Hellspong, K. Blomgren, and J. Hanrieder, “Lithium Accumulates in Neurogenic Brain Regions as Revealed by High Resolution Ion Imaging,” Sci. Rep. 7(1), 40726 (2017).
    [Crossref] [PubMed]
  10. S. Natarajan and H. C. Bajaj, “Recovered materials from spent lithium-ion batteries (LIBs) as adsorbents for dye removal: Equilibrium, kinetics and mechanism,” J. Environ. Chem. Eng. 4(4), 4631–4643 (2016).
    [Crossref]
  11. J. Kaiser, K. Novotny, M. Z. Martin, A. Hrdlica, R. Malina, M. Hartl, V. Adam, and W. H. Weinberg, “Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications,” Surf. Sci. Rep. 67(11-12), 233–243 (2012).
    [Crossref]
  12. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), Part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
    [Crossref] [PubMed]
  13. V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5(04), P04005 (2010).
    [Crossref]
  14. X.-Y. Liu and W.-J. Zhang, “Recent developments in biomedicine fields for laser induced breakdown spectroscopy,” J. Biomed. Sci. Eng. 1(03), 147–151 (2008).
    [Crossref]
  15. S. H. C. Manno, F. A. M. Manno, I. Ahmed, R. Ahmed, L. Shu, L. Li, S. Xu, F. Xie, V. W. Li, J. Ho, S. H. Cheng, and C. Lau, “Spectroscopic examination of enamel staining by coffee indicates dentin erosion by sequestration of elements,” Talanta 189, 550–559 (2018).
    [Crossref] [PubMed]
  16. C. Fabre, M.-C. Boiron, J. Dubessy, A. Chabiron, B. Charoy, and T. Martin Crespo, “Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: an exploratory study,” Geochim. Cosmochim. Acta 66(8), 1401–1407 (2002).
    [Crossref]
  17. D. A. Cremers, A. Beddingfield, R. Smithwick, R. C. Chinni, C. R. Jones, B. Beardsley, and L. Karch, “Monitoring Uranium, Hydrogen, and Lithium and Their Isotopes Using a Compact Laser-Induced Breakdown Spectroscopy (LIBS) Probe and High-Resolution Spectrometer,” Appl. Spectrosc. 66(3), 250–261 (2012).
    [Crossref] [PubMed]
  18. A. M. Leung and L. E. Braverman, “Consequences of excess iodine,” Nat. Rev. Endocrinol. 10(3), 136–142 (2014).
    [Crossref] [PubMed]
  19. G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109(4), 413–420 (2009).
    [Crossref] [PubMed]
  20. W. V. Welshons, K. S. Engler, J. A. Taylor, L. H. Grady, and E. M. Curran, “Lithium-stimulated proliferation and alteration of phosphoinositide metabolites in MCF-7 human breast cancer cells,” J. Cell. Physiol. 165(1), 134–144 (1995).
    [Crossref] [PubMed]
  21. R. A. Merendino, G. Mancuso, F. Tomasello, D. Gazzara, V. Cusumano, S. Chillemi, P. Spadaro, and M. Mesiti, “Effects of lithium carbonate on cytokine production in patients affected by breast cancer,” J. Biol. Regul. Homeost. Agents 8(3), 88–91 (1994).
    [PubMed]
  22. D. L. Bogen, D. Sit, A. Genovese, and K. L. Wisner, “Three cases of lithium exposure and exclusive breastfeeding,” Arch. Women Ment. Health 15(1), 69–72 (2012).
    [Crossref] [PubMed]
  23. W. C. Baha Zantour and W. Chebbi, “Lithium Treatment and Thyroid Disorders,” Journal of Thyroid Disorders & Therapy 03, 143 (2014).
    [Crossref]
  24. C. Paton, T. R. Barnes, A. Shingleton-Smith, R. H. McAllister-Williams, J. Kirkbride, P. B. Jones, S. McIntyre, and POMH-UK project team, “Lithium in bipolar and other affective disorders: prescribing practice in the UK,” J. Psychopharmacol. (Oxford) 24(12), 1739–1746 (2010).
    [Crossref] [PubMed]
  25. I. Ahmed, R. Ahmed, J. Yang, A. W. L. Law, Y. Zhang, and C. Lau, “Elemental analysis of the thyroid by laser induced breakdown spectroscopy,” Biomed. Opt. Express 8(11), 4865–4871 (2017).
    [Crossref] [PubMed]
  26. A. W. L. Law, R. Ahmed, T. W. Cheung, C. Y. Mak, and C. Lau, “In situ cellular level Raman spectroscopy of the thyroid,” Biomed. Opt. Express 8(2), 670–678 (2017).
    [Crossref] [PubMed]
  27. N. Serdarević, F. Kozjek, and I. Malesic, “Saliva and serum lithium monitoring in hospitalized patients and possibility to replace serum to saliva,” Bosn. J. Basic Med. Sci. 6(4), 32–35 (2008).
    [Crossref] [PubMed]

2018 (1)

S. H. C. Manno, F. A. M. Manno, I. Ahmed, R. Ahmed, L. Shu, L. Li, S. Xu, F. Xie, V. W. Li, J. Ho, S. H. Cheng, and C. Lau, “Spectroscopic examination of enamel staining by coffee indicates dentin erosion by sequestration of elements,” Talanta 189, 550–559 (2018).
[Crossref] [PubMed]

2017 (3)

2016 (1)

S. Natarajan and H. C. Bajaj, “Recovered materials from spent lithium-ion batteries (LIBs) as adsorbents for dye removal: Equilibrium, kinetics and mechanism,” J. Environ. Chem. Eng. 4(4), 4631–4643 (2016).
[Crossref]

2015 (1)

S. Rej, K. Shulman, and N. Herrmann, “Long-term effects of lithium on renal function,” Lancet 386(10007), 1943–1944 (2015).
[Crossref] [PubMed]

2014 (2)

A. M. Leung and L. E. Braverman, “Consequences of excess iodine,” Nat. Rev. Endocrinol. 10(3), 136–142 (2014).
[Crossref] [PubMed]

M. W. Jann, “Diagnosis and treatment of bipolar disorders in adults: a review of the evidence on pharmacologic treatments,” Am. Health Drug Benefits 7(9), 489–499 (2014).
[PubMed]

2013 (1)

J. Lichtinger, R. Gernhäuser, A. Bauer, M. Bendel, L. Canella, M. Graw, R. Krücken, P. Kudejova, E. Mützel, S. Ring, D. Seiler, S. Winkler, K. Zeitelhack, and J. Schöpfer, “Position sensitive measurement of lithium traces in brain tissue with neutrons,” Med. Phys. 40(2), 023501 (2013).
[Crossref] [PubMed]

2012 (4)

2010 (2)

V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5(04), P04005 (2010).
[Crossref]

C. Paton, T. R. Barnes, A. Shingleton-Smith, R. H. McAllister-Williams, J. Kirkbride, P. B. Jones, S. McIntyre, and POMH-UK project team, “Lithium in bipolar and other affective disorders: prescribing practice in the UK,” J. Psychopharmacol. (Oxford) 24(12), 1739–1746 (2010).
[Crossref] [PubMed]

2009 (1)

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109(4), 413–420 (2009).
[Crossref] [PubMed]

2008 (2)

X.-Y. Liu and W.-J. Zhang, “Recent developments in biomedicine fields for laser induced breakdown spectroscopy,” J. Biomed. Sci. Eng. 1(03), 147–151 (2008).
[Crossref]

N. Serdarević, F. Kozjek, and I. Malesic, “Saliva and serum lithium monitoring in hospitalized patients and possibility to replace serum to saliva,” Bosn. J. Basic Med. Sci. 6(4), 32–35 (2008).
[Crossref] [PubMed]

2003 (1)

C. J. Phiel, C. A. Wilson, V. M.-Y. Lee, and P. S. Klein, “GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides,” Nature 423(6938), 435–439 (2003).
[Crossref] [PubMed]

2002 (2)

R. W. Kupka, W. A. Nolen, R. M. Post, S. L. McElroy, L. L. Altshuler, K. D. Denicoff, M. A. Frye, P. E. Keck, G. S. Leverich, A. J. Rush, T. Suppes, C. Pollio, and H. A. Drexhage, “High rate of autoimmune thyroiditis in bipolar disorder: lack of association with lithium exposure,” Biol. Psychiatry 51(4), 305–311 (2002).
[Crossref] [PubMed]

C. Fabre, M.-C. Boiron, J. Dubessy, A. Chabiron, B. Charoy, and T. Martin Crespo, “Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: an exploratory study,” Geochim. Cosmochim. Acta 66(8), 1401–1407 (2002).
[Crossref]

1998 (1)

T. K. Creson, P. J. Monaco, E. M. Rasch, A. H. Hagardorn, and K. E. Ferslew, “Capillary ion analysis of lithium concentrations in biological fluids and tissues of Poecilia (teleost),” Electrophoresis 19(16-17), 3018–3021 (1998).
[Crossref] [PubMed]

1997 (1)

M. Hong, D. C. Chen, P. S. Klein, and V. M. Lee, “Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3,” J. Biol. Chem. 272(40), 25326–25332 (1997).
[Crossref] [PubMed]

1995 (1)

W. V. Welshons, K. S. Engler, J. A. Taylor, L. H. Grady, and E. M. Curran, “Lithium-stimulated proliferation and alteration of phosphoinositide metabolites in MCF-7 human breast cancer cells,” J. Cell. Physiol. 165(1), 134–144 (1995).
[Crossref] [PubMed]

1994 (1)

R. A. Merendino, G. Mancuso, F. Tomasello, D. Gazzara, V. Cusumano, S. Chillemi, P. Spadaro, and M. Mesiti, “Effects of lithium carbonate on cytokine production in patients affected by breast cancer,” J. Biol. Regul. Homeost. Agents 8(3), 88–91 (1994).
[PubMed]

Adam, V.

J. Kaiser, K. Novotny, M. Z. Martin, A. Hrdlica, R. Malina, M. Hartl, V. Adam, and W. H. Weinberg, “Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications,” Surf. Sci. Rep. 67(11-12), 233–243 (2012).
[Crossref]

Ahmed, I.

S. H. C. Manno, F. A. M. Manno, I. Ahmed, R. Ahmed, L. Shu, L. Li, S. Xu, F. Xie, V. W. Li, J. Ho, S. H. Cheng, and C. Lau, “Spectroscopic examination of enamel staining by coffee indicates dentin erosion by sequestration of elements,” Talanta 189, 550–559 (2018).
[Crossref] [PubMed]

I. Ahmed, R. Ahmed, J. Yang, A. W. L. Law, Y. Zhang, and C. Lau, “Elemental analysis of the thyroid by laser induced breakdown spectroscopy,” Biomed. Opt. Express 8(11), 4865–4871 (2017).
[Crossref] [PubMed]

Ahmed, R.

Alti, K.

V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5(04), P04005 (2010).
[Crossref]

Altshuler, L. L.

R. W. Kupka, W. A. Nolen, R. M. Post, S. L. McElroy, L. L. Altshuler, K. D. Denicoff, M. A. Frye, P. E. Keck, G. S. Leverich, A. J. Rush, T. Suppes, C. Pollio, and H. A. Drexhage, “High rate of autoimmune thyroiditis in bipolar disorder: lack of association with lithium exposure,” Biol. Psychiatry 51(4), 305–311 (2002).
[Crossref] [PubMed]

Bajaj, H. C.

S. Natarajan and H. C. Bajaj, “Recovered materials from spent lithium-ion batteries (LIBs) as adsorbents for dye removal: Equilibrium, kinetics and mechanism,” J. Environ. Chem. Eng. 4(4), 4631–4643 (2016).
[Crossref]

Barnes, T. R.

C. Paton, T. R. Barnes, A. Shingleton-Smith, R. H. McAllister-Williams, J. Kirkbride, P. B. Jones, S. McIntyre, and POMH-UK project team, “Lithium in bipolar and other affective disorders: prescribing practice in the UK,” J. Psychopharmacol. (Oxford) 24(12), 1739–1746 (2010).
[Crossref] [PubMed]

Bauer, A.

J. Lichtinger, R. Gernhäuser, A. Bauer, M. Bendel, L. Canella, M. Graw, R. Krücken, P. Kudejova, E. Mützel, S. Ring, D. Seiler, S. Winkler, K. Zeitelhack, and J. Schöpfer, “Position sensitive measurement of lithium traces in brain tissue with neutrons,” Med. Phys. 40(2), 023501 (2013).
[Crossref] [PubMed]

Beardsley, B.

Beddingfield, A.

Bendel, M.

J. Lichtinger, R. Gernhäuser, A. Bauer, M. Bendel, L. Canella, M. Graw, R. Krücken, P. Kudejova, E. Mützel, S. Ring, D. Seiler, S. Winkler, K. Zeitelhack, and J. Schöpfer, “Position sensitive measurement of lithium traces in brain tissue with neutrons,” Med. Phys. 40(2), 023501 (2013).
[Crossref] [PubMed]

Bernard, R.

V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5(04), P04005 (2010).
[Crossref]

Blomgren, K.

G. Zanni, W. Michno, E. Di Martino, A. Tjärnlund-Wolf, J. Pettersson, C. E. Mason, G. Hellspong, K. Blomgren, and J. Hanrieder, “Lithium Accumulates in Neurogenic Brain Regions as Revealed by High Resolution Ion Imaging,” Sci. Rep. 7(1), 40726 (2017).
[Crossref] [PubMed]

Bogen, D. L.

D. L. Bogen, D. Sit, A. Genovese, and K. L. Wisner, “Three cases of lithium exposure and exclusive breastfeeding,” Arch. Women Ment. Health 15(1), 69–72 (2012).
[Crossref] [PubMed]

Boiron, M.-C.

C. Fabre, M.-C. Boiron, J. Dubessy, A. Chabiron, B. Charoy, and T. Martin Crespo, “Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: an exploratory study,” Geochim. Cosmochim. Acta 66(8), 1401–1407 (2002).
[Crossref]

Braverman, L. E.

A. M. Leung and L. E. Braverman, “Consequences of excess iodine,” Nat. Rev. Endocrinol. 10(3), 136–142 (2014).
[Crossref] [PubMed]

Canella, L.

J. Lichtinger, R. Gernhäuser, A. Bauer, M. Bendel, L. Canella, M. Graw, R. Krücken, P. Kudejova, E. Mützel, S. Ring, D. Seiler, S. Winkler, K. Zeitelhack, and J. Schöpfer, “Position sensitive measurement of lithium traces in brain tissue with neutrons,” Med. Phys. 40(2), 023501 (2013).
[Crossref] [PubMed]

Capitelli, M.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109(4), 413–420 (2009).
[Crossref] [PubMed]

Chabiron, A.

C. Fabre, M.-C. Boiron, J. Dubessy, A. Chabiron, B. Charoy, and T. Martin Crespo, “Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: an exploratory study,” Geochim. Cosmochim. Acta 66(8), 1401–1407 (2002).
[Crossref]

Charoy, B.

C. Fabre, M.-C. Boiron, J. Dubessy, A. Chabiron, B. Charoy, and T. Martin Crespo, “Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: an exploratory study,” Geochim. Cosmochim. Acta 66(8), 1401–1407 (2002).
[Crossref]

Chen, D. C.

M. Hong, D. C. Chen, P. S. Klein, and V. M. Lee, “Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3,” J. Biol. Chem. 272(40), 25326–25332 (1997).
[Crossref] [PubMed]

Cheng, S. H.

S. H. C. Manno, F. A. M. Manno, I. Ahmed, R. Ahmed, L. Shu, L. Li, S. Xu, F. Xie, V. W. Li, J. Ho, S. H. Cheng, and C. Lau, “Spectroscopic examination of enamel staining by coffee indicates dentin erosion by sequestration of elements,” Talanta 189, 550–559 (2018).
[Crossref] [PubMed]

Cheung, T. W.

Chillemi, S.

R. A. Merendino, G. Mancuso, F. Tomasello, D. Gazzara, V. Cusumano, S. Chillemi, P. Spadaro, and M. Mesiti, “Effects of lithium carbonate on cytokine production in patients affected by breast cancer,” J. Biol. Regul. Homeost. Agents 8(3), 88–91 (1994).
[PubMed]

Chinni, R. C.

Cremers, D. A.

Creson, T. K.

T. K. Creson, P. J. Monaco, E. M. Rasch, A. H. Hagardorn, and K. E. Ferslew, “Capillary ion analysis of lithium concentrations in biological fluids and tissues of Poecilia (teleost),” Electrophoresis 19(16-17), 3018–3021 (1998).
[Crossref] [PubMed]

Curran, E. M.

W. V. Welshons, K. S. Engler, J. A. Taylor, L. H. Grady, and E. M. Curran, “Lithium-stimulated proliferation and alteration of phosphoinositide metabolites in MCF-7 human breast cancer cells,” J. Cell. Physiol. 165(1), 134–144 (1995).
[Crossref] [PubMed]

Cusumano, V.

R. A. Merendino, G. Mancuso, F. Tomasello, D. Gazzara, V. Cusumano, S. Chillemi, P. Spadaro, and M. Mesiti, “Effects of lithium carbonate on cytokine production in patients affected by breast cancer,” J. Biol. Regul. Homeost. Agents 8(3), 88–91 (1994).
[PubMed]

De Giacomo, A.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109(4), 413–420 (2009).
[Crossref] [PubMed]

De Pascale, O.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109(4), 413–420 (2009).
[Crossref] [PubMed]

Dell’Aglio, M.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109(4), 413–420 (2009).
[Crossref] [PubMed]

Denicoff, K. D.

R. W. Kupka, W. A. Nolen, R. M. Post, S. L. McElroy, L. L. Altshuler, K. D. Denicoff, M. A. Frye, P. E. Keck, G. S. Leverich, A. J. Rush, T. Suppes, C. Pollio, and H. A. Drexhage, “High rate of autoimmune thyroiditis in bipolar disorder: lack of association with lithium exposure,” Biol. Psychiatry 51(4), 305–311 (2002).
[Crossref] [PubMed]

Di Martino, E.

G. Zanni, W. Michno, E. Di Martino, A. Tjärnlund-Wolf, J. Pettersson, C. E. Mason, G. Hellspong, K. Blomgren, and J. Hanrieder, “Lithium Accumulates in Neurogenic Brain Regions as Revealed by High Resolution Ion Imaging,” Sci. Rep. 7(1), 40726 (2017).
[Crossref] [PubMed]

Drexhage, H. A.

R. W. Kupka, W. A. Nolen, R. M. Post, S. L. McElroy, L. L. Altshuler, K. D. Denicoff, M. A. Frye, P. E. Keck, G. S. Leverich, A. J. Rush, T. Suppes, C. Pollio, and H. A. Drexhage, “High rate of autoimmune thyroiditis in bipolar disorder: lack of association with lithium exposure,” Biol. Psychiatry 51(4), 305–311 (2002).
[Crossref] [PubMed]

Dubessy, J.

C. Fabre, M.-C. Boiron, J. Dubessy, A. Chabiron, B. Charoy, and T. Martin Crespo, “Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: an exploratory study,” Geochim. Cosmochim. Acta 66(8), 1401–1407 (2002).
[Crossref]

Engler, K. S.

W. V. Welshons, K. S. Engler, J. A. Taylor, L. H. Grady, and E. M. Curran, “Lithium-stimulated proliferation and alteration of phosphoinositide metabolites in MCF-7 human breast cancer cells,” J. Cell. Physiol. 165(1), 134–144 (1995).
[Crossref] [PubMed]

Fabre, C.

C. Fabre, M.-C. Boiron, J. Dubessy, A. Chabiron, B. Charoy, and T. Martin Crespo, “Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: an exploratory study,” Geochim. Cosmochim. Acta 66(8), 1401–1407 (2002).
[Crossref]

Ferslew, K. E.

T. K. Creson, P. J. Monaco, E. M. Rasch, A. H. Hagardorn, and K. E. Ferslew, “Capillary ion analysis of lithium concentrations in biological fluids and tissues of Poecilia (teleost),” Electrophoresis 19(16-17), 3018–3021 (1998).
[Crossref] [PubMed]

Frye, M. A.

R. W. Kupka, W. A. Nolen, R. M. Post, S. L. McElroy, L. L. Altshuler, K. D. Denicoff, M. A. Frye, P. E. Keck, G. S. Leverich, A. J. Rush, T. Suppes, C. Pollio, and H. A. Drexhage, “High rate of autoimmune thyroiditis in bipolar disorder: lack of association with lithium exposure,” Biol. Psychiatry 51(4), 305–311 (2002).
[Crossref] [PubMed]

Gaudiuso, R.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109(4), 413–420 (2009).
[Crossref] [PubMed]

Gazzara, D.

R. A. Merendino, G. Mancuso, F. Tomasello, D. Gazzara, V. Cusumano, S. Chillemi, P. Spadaro, and M. Mesiti, “Effects of lithium carbonate on cytokine production in patients affected by breast cancer,” J. Biol. Regul. Homeost. Agents 8(3), 88–91 (1994).
[PubMed]

Genovese, A.

D. L. Bogen, D. Sit, A. Genovese, and K. L. Wisner, “Three cases of lithium exposure and exclusive breastfeeding,” Arch. Women Ment. Health 15(1), 69–72 (2012).
[Crossref] [PubMed]

Gernhäuser, R.

J. Lichtinger, R. Gernhäuser, A. Bauer, M. Bendel, L. Canella, M. Graw, R. Krücken, P. Kudejova, E. Mützel, S. Ring, D. Seiler, S. Winkler, K. Zeitelhack, and J. Schöpfer, “Position sensitive measurement of lithium traces in brain tissue with neutrons,” Med. Phys. 40(2), 023501 (2013).
[Crossref] [PubMed]

Grady, L. H.

W. V. Welshons, K. S. Engler, J. A. Taylor, L. H. Grady, and E. M. Curran, “Lithium-stimulated proliferation and alteration of phosphoinositide metabolites in MCF-7 human breast cancer cells,” J. Cell. Physiol. 165(1), 134–144 (1995).
[Crossref] [PubMed]

Graw, M.

J. Lichtinger, R. Gernhäuser, A. Bauer, M. Bendel, L. Canella, M. Graw, R. Krücken, P. Kudejova, E. Mützel, S. Ring, D. Seiler, S. Winkler, K. Zeitelhack, and J. Schöpfer, “Position sensitive measurement of lithium traces in brain tissue with neutrons,” Med. Phys. 40(2), 023501 (2013).
[Crossref] [PubMed]

Gupta, G. P.

V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5(04), P04005 (2010).
[Crossref]

Hagardorn, A. H.

T. K. Creson, P. J. Monaco, E. M. Rasch, A. H. Hagardorn, and K. E. Ferslew, “Capillary ion analysis of lithium concentrations in biological fluids and tissues of Poecilia (teleost),” Electrophoresis 19(16-17), 3018–3021 (1998).
[Crossref] [PubMed]

Hahn, D. W.

Hanrieder, J.

G. Zanni, W. Michno, E. Di Martino, A. Tjärnlund-Wolf, J. Pettersson, C. E. Mason, G. Hellspong, K. Blomgren, and J. Hanrieder, “Lithium Accumulates in Neurogenic Brain Regions as Revealed by High Resolution Ion Imaging,” Sci. Rep. 7(1), 40726 (2017).
[Crossref] [PubMed]

Hartl, M.

J. Kaiser, K. Novotny, M. Z. Martin, A. Hrdlica, R. Malina, M. Hartl, V. Adam, and W. H. Weinberg, “Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications,” Surf. Sci. Rep. 67(11-12), 233–243 (2012).
[Crossref]

Hellspong, G.

G. Zanni, W. Michno, E. Di Martino, A. Tjärnlund-Wolf, J. Pettersson, C. E. Mason, G. Hellspong, K. Blomgren, and J. Hanrieder, “Lithium Accumulates in Neurogenic Brain Regions as Revealed by High Resolution Ion Imaging,” Sci. Rep. 7(1), 40726 (2017).
[Crossref] [PubMed]

Herrmann, N.

S. Rej, K. Shulman, and N. Herrmann, “Long-term effects of lithium on renal function,” Lancet 386(10007), 1943–1944 (2015).
[Crossref] [PubMed]

Ho, J.

S. H. C. Manno, F. A. M. Manno, I. Ahmed, R. Ahmed, L. Shu, L. Li, S. Xu, F. Xie, V. W. Li, J. Ho, S. H. Cheng, and C. Lau, “Spectroscopic examination of enamel staining by coffee indicates dentin erosion by sequestration of elements,” Talanta 189, 550–559 (2018).
[Crossref] [PubMed]

Hong, M.

M. Hong, D. C. Chen, P. S. Klein, and V. M. Lee, “Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3,” J. Biol. Chem. 272(40), 25326–25332 (1997).
[Crossref] [PubMed]

Hrdlica, A.

J. Kaiser, K. Novotny, M. Z. Martin, A. Hrdlica, R. Malina, M. Hartl, V. Adam, and W. H. Weinberg, “Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications,” Surf. Sci. Rep. 67(11-12), 233–243 (2012).
[Crossref]

Jann, M. W.

M. W. Jann, “Diagnosis and treatment of bipolar disorders in adults: a review of the evidence on pharmacologic treatments,” Am. Health Drug Benefits 7(9), 489–499 (2014).
[PubMed]

Jones, C. R.

Jones, P. B.

C. Paton, T. R. Barnes, A. Shingleton-Smith, R. H. McAllister-Williams, J. Kirkbride, P. B. Jones, S. McIntyre, and POMH-UK project team, “Lithium in bipolar and other affective disorders: prescribing practice in the UK,” J. Psychopharmacol. (Oxford) 24(12), 1739–1746 (2010).
[Crossref] [PubMed]

Kaiser, J.

J. Kaiser, K. Novotny, M. Z. Martin, A. Hrdlica, R. Malina, M. Hartl, V. Adam, and W. H. Weinberg, “Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications,” Surf. Sci. Rep. 67(11-12), 233–243 (2012).
[Crossref]

Karch, L.

Kartha, V. B.

V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5(04), P04005 (2010).
[Crossref]

Keck, P. E.

R. W. Kupka, W. A. Nolen, R. M. Post, S. L. McElroy, L. L. Altshuler, K. D. Denicoff, M. A. Frye, P. E. Keck, G. S. Leverich, A. J. Rush, T. Suppes, C. Pollio, and H. A. Drexhage, “High rate of autoimmune thyroiditis in bipolar disorder: lack of association with lithium exposure,” Biol. Psychiatry 51(4), 305–311 (2002).
[Crossref] [PubMed]

Khetarpal, N.

V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5(04), P04005 (2010).
[Crossref]

Kirkbride, J.

C. Paton, T. R. Barnes, A. Shingleton-Smith, R. H. McAllister-Williams, J. Kirkbride, P. B. Jones, S. McIntyre, and POMH-UK project team, “Lithium in bipolar and other affective disorders: prescribing practice in the UK,” J. Psychopharmacol. (Oxford) 24(12), 1739–1746 (2010).
[Crossref] [PubMed]

Klein, P. S.

C. J. Phiel, C. A. Wilson, V. M.-Y. Lee, and P. S. Klein, “GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides,” Nature 423(6938), 435–439 (2003).
[Crossref] [PubMed]

M. Hong, D. C. Chen, P. S. Klein, and V. M. Lee, “Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3,” J. Biol. Chem. 272(40), 25326–25332 (1997).
[Crossref] [PubMed]

Kozjek, F.

N. Serdarević, F. Kozjek, and I. Malesic, “Saliva and serum lithium monitoring in hospitalized patients and possibility to replace serum to saliva,” Bosn. J. Basic Med. Sci. 6(4), 32–35 (2008).
[Crossref] [PubMed]

Krücken, R.

J. Lichtinger, R. Gernhäuser, A. Bauer, M. Bendel, L. Canella, M. Graw, R. Krücken, P. Kudejova, E. Mützel, S. Ring, D. Seiler, S. Winkler, K. Zeitelhack, and J. Schöpfer, “Position sensitive measurement of lithium traces in brain tissue with neutrons,” Med. Phys. 40(2), 023501 (2013).
[Crossref] [PubMed]

Kudejova, P.

J. Lichtinger, R. Gernhäuser, A. Bauer, M. Bendel, L. Canella, M. Graw, R. Krücken, P. Kudejova, E. Mützel, S. Ring, D. Seiler, S. Winkler, K. Zeitelhack, and J. Schöpfer, “Position sensitive measurement of lithium traces in brain tissue with neutrons,” Med. Phys. 40(2), 023501 (2013).
[Crossref] [PubMed]

Kupka, R. W.

R. W. Kupka, W. A. Nolen, R. M. Post, S. L. McElroy, L. L. Altshuler, K. D. Denicoff, M. A. Frye, P. E. Keck, G. S. Leverich, A. J. Rush, T. Suppes, C. Pollio, and H. A. Drexhage, “High rate of autoimmune thyroiditis in bipolar disorder: lack of association with lithium exposure,” Biol. Psychiatry 51(4), 305–311 (2002).
[Crossref] [PubMed]

Lau, C.

Law, A. W. L.

Lee, V. M.

M. Hong, D. C. Chen, P. S. Klein, and V. M. Lee, “Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3,” J. Biol. Chem. 272(40), 25326–25332 (1997).
[Crossref] [PubMed]

Lee, V. M.-Y.

C. J. Phiel, C. A. Wilson, V. M.-Y. Lee, and P. S. Klein, “GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides,” Nature 423(6938), 435–439 (2003).
[Crossref] [PubMed]

Leung, A. M.

A. M. Leung and L. E. Braverman, “Consequences of excess iodine,” Nat. Rev. Endocrinol. 10(3), 136–142 (2014).
[Crossref] [PubMed]

Leverich, G. S.

R. W. Kupka, W. A. Nolen, R. M. Post, S. L. McElroy, L. L. Altshuler, K. D. Denicoff, M. A. Frye, P. E. Keck, G. S. Leverich, A. J. Rush, T. Suppes, C. Pollio, and H. A. Drexhage, “High rate of autoimmune thyroiditis in bipolar disorder: lack of association with lithium exposure,” Biol. Psychiatry 51(4), 305–311 (2002).
[Crossref] [PubMed]

Li, L.

S. H. C. Manno, F. A. M. Manno, I. Ahmed, R. Ahmed, L. Shu, L. Li, S. Xu, F. Xie, V. W. Li, J. Ho, S. H. Cheng, and C. Lau, “Spectroscopic examination of enamel staining by coffee indicates dentin erosion by sequestration of elements,” Talanta 189, 550–559 (2018).
[Crossref] [PubMed]

Li, V. W.

S. H. C. Manno, F. A. M. Manno, I. Ahmed, R. Ahmed, L. Shu, L. Li, S. Xu, F. Xie, V. W. Li, J. Ho, S. H. Cheng, and C. Lau, “Spectroscopic examination of enamel staining by coffee indicates dentin erosion by sequestration of elements,” Talanta 189, 550–559 (2018).
[Crossref] [PubMed]

Lichtinger, J.

J. Lichtinger, R. Gernhäuser, A. Bauer, M. Bendel, L. Canella, M. Graw, R. Krücken, P. Kudejova, E. Mützel, S. Ring, D. Seiler, S. Winkler, K. Zeitelhack, and J. Schöpfer, “Position sensitive measurement of lithium traces in brain tissue with neutrons,” Med. Phys. 40(2), 023501 (2013).
[Crossref] [PubMed]

Liu, X.-Y.

X.-Y. Liu and W.-J. Zhang, “Recent developments in biomedicine fields for laser induced breakdown spectroscopy,” J. Biomed. Sci. Eng. 1(03), 147–151 (2008).
[Crossref]

Mak, C. Y.

Malesic, I.

N. Serdarević, F. Kozjek, and I. Malesic, “Saliva and serum lithium monitoring in hospitalized patients and possibility to replace serum to saliva,” Bosn. J. Basic Med. Sci. 6(4), 32–35 (2008).
[Crossref] [PubMed]

Malina, R.

J. Kaiser, K. Novotny, M. Z. Martin, A. Hrdlica, R. Malina, M. Hartl, V. Adam, and W. H. Weinberg, “Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications,” Surf. Sci. Rep. 67(11-12), 233–243 (2012).
[Crossref]

Mancuso, G.

R. A. Merendino, G. Mancuso, F. Tomasello, D. Gazzara, V. Cusumano, S. Chillemi, P. Spadaro, and M. Mesiti, “Effects of lithium carbonate on cytokine production in patients affected by breast cancer,” J. Biol. Regul. Homeost. Agents 8(3), 88–91 (1994).
[PubMed]

Manno, F. A. M.

S. H. C. Manno, F. A. M. Manno, I. Ahmed, R. Ahmed, L. Shu, L. Li, S. Xu, F. Xie, V. W. Li, J. Ho, S. H. Cheng, and C. Lau, “Spectroscopic examination of enamel staining by coffee indicates dentin erosion by sequestration of elements,” Talanta 189, 550–559 (2018).
[Crossref] [PubMed]

Manno, S. H. C.

S. H. C. Manno, F. A. M. Manno, I. Ahmed, R. Ahmed, L. Shu, L. Li, S. Xu, F. Xie, V. W. Li, J. Ho, S. H. Cheng, and C. Lau, “Spectroscopic examination of enamel staining by coffee indicates dentin erosion by sequestration of elements,” Talanta 189, 550–559 (2018).
[Crossref] [PubMed]

Martin, M. Z.

J. Kaiser, K. Novotny, M. Z. Martin, A. Hrdlica, R. Malina, M. Hartl, V. Adam, and W. H. Weinberg, “Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications,” Surf. Sci. Rep. 67(11-12), 233–243 (2012).
[Crossref]

Martin Crespo, T.

C. Fabre, M.-C. Boiron, J. Dubessy, A. Chabiron, B. Charoy, and T. Martin Crespo, “Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: an exploratory study,” Geochim. Cosmochim. Acta 66(8), 1401–1407 (2002).
[Crossref]

Mason, C. E.

G. Zanni, W. Michno, E. Di Martino, A. Tjärnlund-Wolf, J. Pettersson, C. E. Mason, G. Hellspong, K. Blomgren, and J. Hanrieder, “Lithium Accumulates in Neurogenic Brain Regions as Revealed by High Resolution Ion Imaging,” Sci. Rep. 7(1), 40726 (2017).
[Crossref] [PubMed]

McAllister-Williams, R. H.

C. Paton, T. R. Barnes, A. Shingleton-Smith, R. H. McAllister-Williams, J. Kirkbride, P. B. Jones, S. McIntyre, and POMH-UK project team, “Lithium in bipolar and other affective disorders: prescribing practice in the UK,” J. Psychopharmacol. (Oxford) 24(12), 1739–1746 (2010).
[Crossref] [PubMed]

McElroy, S. L.

R. W. Kupka, W. A. Nolen, R. M. Post, S. L. McElroy, L. L. Altshuler, K. D. Denicoff, M. A. Frye, P. E. Keck, G. S. Leverich, A. J. Rush, T. Suppes, C. Pollio, and H. A. Drexhage, “High rate of autoimmune thyroiditis in bipolar disorder: lack of association with lithium exposure,” Biol. Psychiatry 51(4), 305–311 (2002).
[Crossref] [PubMed]

McIntyre, S.

C. Paton, T. R. Barnes, A. Shingleton-Smith, R. H. McAllister-Williams, J. Kirkbride, P. B. Jones, S. McIntyre, and POMH-UK project team, “Lithium in bipolar and other affective disorders: prescribing practice in the UK,” J. Psychopharmacol. (Oxford) 24(12), 1739–1746 (2010).
[Crossref] [PubMed]

Merendino, R. A.

R. A. Merendino, G. Mancuso, F. Tomasello, D. Gazzara, V. Cusumano, S. Chillemi, P. Spadaro, and M. Mesiti, “Effects of lithium carbonate on cytokine production in patients affected by breast cancer,” J. Biol. Regul. Homeost. Agents 8(3), 88–91 (1994).
[PubMed]

Mesiti, M.

R. A. Merendino, G. Mancuso, F. Tomasello, D. Gazzara, V. Cusumano, S. Chillemi, P. Spadaro, and M. Mesiti, “Effects of lithium carbonate on cytokine production in patients affected by breast cancer,” J. Biol. Regul. Homeost. Agents 8(3), 88–91 (1994).
[PubMed]

Miano, T. M.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109(4), 413–420 (2009).
[Crossref] [PubMed]

Michno, W.

G. Zanni, W. Michno, E. Di Martino, A. Tjärnlund-Wolf, J. Pettersson, C. E. Mason, G. Hellspong, K. Blomgren, and J. Hanrieder, “Lithium Accumulates in Neurogenic Brain Regions as Revealed by High Resolution Ion Imaging,” Sci. Rep. 7(1), 40726 (2017).
[Crossref] [PubMed]

Monaco, P. J.

T. K. Creson, P. J. Monaco, E. M. Rasch, A. H. Hagardorn, and K. E. Ferslew, “Capillary ion analysis of lithium concentrations in biological fluids and tissues of Poecilia (teleost),” Electrophoresis 19(16-17), 3018–3021 (1998).
[Crossref] [PubMed]

Mützel, E.

J. Lichtinger, R. Gernhäuser, A. Bauer, M. Bendel, L. Canella, M. Graw, R. Krücken, P. Kudejova, E. Mützel, S. Ring, D. Seiler, S. Winkler, K. Zeitelhack, and J. Schöpfer, “Position sensitive measurement of lithium traces in brain tissue with neutrons,” Med. Phys. 40(2), 023501 (2013).
[Crossref] [PubMed]

Natarajan, S.

S. Natarajan and H. C. Bajaj, “Recovered materials from spent lithium-ion batteries (LIBs) as adsorbents for dye removal: Equilibrium, kinetics and mechanism,” J. Environ. Chem. Eng. 4(4), 4631–4643 (2016).
[Crossref]

Nayak, R.

V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5(04), P04005 (2010).
[Crossref]

Nolen, W. A.

R. W. Kupka, W. A. Nolen, R. M. Post, S. L. McElroy, L. L. Altshuler, K. D. Denicoff, M. A. Frye, P. E. Keck, G. S. Leverich, A. J. Rush, T. Suppes, C. Pollio, and H. A. Drexhage, “High rate of autoimmune thyroiditis in bipolar disorder: lack of association with lithium exposure,” Biol. Psychiatry 51(4), 305–311 (2002).
[Crossref] [PubMed]

Novotny, K.

J. Kaiser, K. Novotny, M. Z. Martin, A. Hrdlica, R. Malina, M. Hartl, V. Adam, and W. H. Weinberg, “Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications,” Surf. Sci. Rep. 67(11-12), 233–243 (2012).
[Crossref]

Omenetto, N.

Paton, C.

C. Paton, T. R. Barnes, A. Shingleton-Smith, R. H. McAllister-Williams, J. Kirkbride, P. B. Jones, S. McIntyre, and POMH-UK project team, “Lithium in bipolar and other affective disorders: prescribing practice in the UK,” J. Psychopharmacol. (Oxford) 24(12), 1739–1746 (2010).
[Crossref] [PubMed]

Pettersson, J.

G. Zanni, W. Michno, E. Di Martino, A. Tjärnlund-Wolf, J. Pettersson, C. E. Mason, G. Hellspong, K. Blomgren, and J. Hanrieder, “Lithium Accumulates in Neurogenic Brain Regions as Revealed by High Resolution Ion Imaging,” Sci. Rep. 7(1), 40726 (2017).
[Crossref] [PubMed]

Phiel, C. J.

C. J. Phiel, C. A. Wilson, V. M.-Y. Lee, and P. S. Klein, “GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides,” Nature 423(6938), 435–439 (2003).
[Crossref] [PubMed]

Pollio, C.

R. W. Kupka, W. A. Nolen, R. M. Post, S. L. McElroy, L. L. Altshuler, K. D. Denicoff, M. A. Frye, P. E. Keck, G. S. Leverich, A. J. Rush, T. Suppes, C. Pollio, and H. A. Drexhage, “High rate of autoimmune thyroiditis in bipolar disorder: lack of association with lithium exposure,” Biol. Psychiatry 51(4), 305–311 (2002).
[Crossref] [PubMed]

Post, R. M.

R. W. Kupka, W. A. Nolen, R. M. Post, S. L. McElroy, L. L. Altshuler, K. D. Denicoff, M. A. Frye, P. E. Keck, G. S. Leverich, A. J. Rush, T. Suppes, C. Pollio, and H. A. Drexhage, “High rate of autoimmune thyroiditis in bipolar disorder: lack of association with lithium exposure,” Biol. Psychiatry 51(4), 305–311 (2002).
[Crossref] [PubMed]

Rasch, E. M.

T. K. Creson, P. J. Monaco, E. M. Rasch, A. H. Hagardorn, and K. E. Ferslew, “Capillary ion analysis of lithium concentrations in biological fluids and tissues of Poecilia (teleost),” Electrophoresis 19(16-17), 3018–3021 (1998).
[Crossref] [PubMed]

Rej, S.

S. Rej, K. Shulman, and N. Herrmann, “Long-term effects of lithium on renal function,” Lancet 386(10007), 1943–1944 (2015).
[Crossref] [PubMed]

Ring, S.

J. Lichtinger, R. Gernhäuser, A. Bauer, M. Bendel, L. Canella, M. Graw, R. Krücken, P. Kudejova, E. Mützel, S. Ring, D. Seiler, S. Winkler, K. Zeitelhack, and J. Schöpfer, “Position sensitive measurement of lithium traces in brain tissue with neutrons,” Med. Phys. 40(2), 023501 (2013).
[Crossref] [PubMed]

Rush, A. J.

R. W. Kupka, W. A. Nolen, R. M. Post, S. L. McElroy, L. L. Altshuler, K. D. Denicoff, M. A. Frye, P. E. Keck, G. S. Leverich, A. J. Rush, T. Suppes, C. Pollio, and H. A. Drexhage, “High rate of autoimmune thyroiditis in bipolar disorder: lack of association with lithium exposure,” Biol. Psychiatry 51(4), 305–311 (2002).
[Crossref] [PubMed]

Santhosh, C.

V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5(04), P04005 (2010).
[Crossref]

Schöpfer, J.

J. Lichtinger, R. Gernhäuser, A. Bauer, M. Bendel, L. Canella, M. Graw, R. Krücken, P. Kudejova, E. Mützel, S. Ring, D. Seiler, S. Winkler, K. Zeitelhack, and J. Schöpfer, “Position sensitive measurement of lithium traces in brain tissue with neutrons,” Med. Phys. 40(2), 023501 (2013).
[Crossref] [PubMed]

Seiler, D.

J. Lichtinger, R. Gernhäuser, A. Bauer, M. Bendel, L. Canella, M. Graw, R. Krücken, P. Kudejova, E. Mützel, S. Ring, D. Seiler, S. Winkler, K. Zeitelhack, and J. Schöpfer, “Position sensitive measurement of lithium traces in brain tissue with neutrons,” Med. Phys. 40(2), 023501 (2013).
[Crossref] [PubMed]

Senesi, G. S.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109(4), 413–420 (2009).
[Crossref] [PubMed]

Serdarevic, N.

N. Serdarević, F. Kozjek, and I. Malesic, “Saliva and serum lithium monitoring in hospitalized patients and possibility to replace serum to saliva,” Bosn. J. Basic Med. Sci. 6(4), 32–35 (2008).
[Crossref] [PubMed]

Shingleton-Smith, A.

C. Paton, T. R. Barnes, A. Shingleton-Smith, R. H. McAllister-Williams, J. Kirkbride, P. B. Jones, S. McIntyre, and POMH-UK project team, “Lithium in bipolar and other affective disorders: prescribing practice in the UK,” J. Psychopharmacol. (Oxford) 24(12), 1739–1746 (2010).
[Crossref] [PubMed]

Shu, L.

S. H. C. Manno, F. A. M. Manno, I. Ahmed, R. Ahmed, L. Shu, L. Li, S. Xu, F. Xie, V. W. Li, J. Ho, S. H. Cheng, and C. Lau, “Spectroscopic examination of enamel staining by coffee indicates dentin erosion by sequestration of elements,” Talanta 189, 550–559 (2018).
[Crossref] [PubMed]

Shulman, K.

S. Rej, K. Shulman, and N. Herrmann, “Long-term effects of lithium on renal function,” Lancet 386(10007), 1943–1944 (2015).
[Crossref] [PubMed]

Sit, D.

D. L. Bogen, D. Sit, A. Genovese, and K. L. Wisner, “Three cases of lithium exposure and exclusive breastfeeding,” Arch. Women Ment. Health 15(1), 69–72 (2012).
[Crossref] [PubMed]

Smithwick, R.

Spadaro, P.

R. A. Merendino, G. Mancuso, F. Tomasello, D. Gazzara, V. Cusumano, S. Chillemi, P. Spadaro, and M. Mesiti, “Effects of lithium carbonate on cytokine production in patients affected by breast cancer,” J. Biol. Regul. Homeost. Agents 8(3), 88–91 (1994).
[PubMed]

Suppes, T.

R. W. Kupka, W. A. Nolen, R. M. Post, S. L. McElroy, L. L. Altshuler, K. D. Denicoff, M. A. Frye, P. E. Keck, G. S. Leverich, A. J. Rush, T. Suppes, C. Pollio, and H. A. Drexhage, “High rate of autoimmune thyroiditis in bipolar disorder: lack of association with lithium exposure,” Biol. Psychiatry 51(4), 305–311 (2002).
[Crossref] [PubMed]

Suri, B. M.

V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5(04), P04005 (2010).
[Crossref]

Taylor, J. A.

W. V. Welshons, K. S. Engler, J. A. Taylor, L. H. Grady, and E. M. Curran, “Lithium-stimulated proliferation and alteration of phosphoinositide metabolites in MCF-7 human breast cancer cells,” J. Cell. Physiol. 165(1), 134–144 (1995).
[Crossref] [PubMed]

Tjärnlund-Wolf, A.

G. Zanni, W. Michno, E. Di Martino, A. Tjärnlund-Wolf, J. Pettersson, C. E. Mason, G. Hellspong, K. Blomgren, and J. Hanrieder, “Lithium Accumulates in Neurogenic Brain Regions as Revealed by High Resolution Ion Imaging,” Sci. Rep. 7(1), 40726 (2017).
[Crossref] [PubMed]

Tomasello, F.

R. A. Merendino, G. Mancuso, F. Tomasello, D. Gazzara, V. Cusumano, S. Chillemi, P. Spadaro, and M. Mesiti, “Effects of lithium carbonate on cytokine production in patients affected by breast cancer,” J. Biol. Regul. Homeost. Agents 8(3), 88–91 (1994).
[PubMed]

Unnikrishnan, V. K.

V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5(04), P04005 (2010).
[Crossref]

Weinberg, W. H.

J. Kaiser, K. Novotny, M. Z. Martin, A. Hrdlica, R. Malina, M. Hartl, V. Adam, and W. H. Weinberg, “Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications,” Surf. Sci. Rep. 67(11-12), 233–243 (2012).
[Crossref]

Welshons, W. V.

W. V. Welshons, K. S. Engler, J. A. Taylor, L. H. Grady, and E. M. Curran, “Lithium-stimulated proliferation and alteration of phosphoinositide metabolites in MCF-7 human breast cancer cells,” J. Cell. Physiol. 165(1), 134–144 (1995).
[Crossref] [PubMed]

Wilson, C. A.

C. J. Phiel, C. A. Wilson, V. M.-Y. Lee, and P. S. Klein, “GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides,” Nature 423(6938), 435–439 (2003).
[Crossref] [PubMed]

Winkler, S.

J. Lichtinger, R. Gernhäuser, A. Bauer, M. Bendel, L. Canella, M. Graw, R. Krücken, P. Kudejova, E. Mützel, S. Ring, D. Seiler, S. Winkler, K. Zeitelhack, and J. Schöpfer, “Position sensitive measurement of lithium traces in brain tissue with neutrons,” Med. Phys. 40(2), 023501 (2013).
[Crossref] [PubMed]

Wisner, K. L.

D. L. Bogen, D. Sit, A. Genovese, and K. L. Wisner, “Three cases of lithium exposure and exclusive breastfeeding,” Arch. Women Ment. Health 15(1), 69–72 (2012).
[Crossref] [PubMed]

Xie, F.

S. H. C. Manno, F. A. M. Manno, I. Ahmed, R. Ahmed, L. Shu, L. Li, S. Xu, F. Xie, V. W. Li, J. Ho, S. H. Cheng, and C. Lau, “Spectroscopic examination of enamel staining by coffee indicates dentin erosion by sequestration of elements,” Talanta 189, 550–559 (2018).
[Crossref] [PubMed]

Xu, S.

S. H. C. Manno, F. A. M. Manno, I. Ahmed, R. Ahmed, L. Shu, L. Li, S. Xu, F. Xie, V. W. Li, J. Ho, S. H. Cheng, and C. Lau, “Spectroscopic examination of enamel staining by coffee indicates dentin erosion by sequestration of elements,” Talanta 189, 550–559 (2018).
[Crossref] [PubMed]

Yang, J.

Zaccone, C.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109(4), 413–420 (2009).
[Crossref] [PubMed]

Zanni, G.

G. Zanni, W. Michno, E. Di Martino, A. Tjärnlund-Wolf, J. Pettersson, C. E. Mason, G. Hellspong, K. Blomgren, and J. Hanrieder, “Lithium Accumulates in Neurogenic Brain Regions as Revealed by High Resolution Ion Imaging,” Sci. Rep. 7(1), 40726 (2017).
[Crossref] [PubMed]

Zeitelhack, K.

J. Lichtinger, R. Gernhäuser, A. Bauer, M. Bendel, L. Canella, M. Graw, R. Krücken, P. Kudejova, E. Mützel, S. Ring, D. Seiler, S. Winkler, K. Zeitelhack, and J. Schöpfer, “Position sensitive measurement of lithium traces in brain tissue with neutrons,” Med. Phys. 40(2), 023501 (2013).
[Crossref] [PubMed]

Zhang, W.-J.

X.-Y. Liu and W.-J. Zhang, “Recent developments in biomedicine fields for laser induced breakdown spectroscopy,” J. Biomed. Sci. Eng. 1(03), 147–151 (2008).
[Crossref]

Zhang, Y.

Am. Health Drug Benefits (1)

M. W. Jann, “Diagnosis and treatment of bipolar disorders in adults: a review of the evidence on pharmacologic treatments,” Am. Health Drug Benefits 7(9), 489–499 (2014).
[PubMed]

Appl. Spectrosc. (2)

Arch. Women Ment. Health (1)

D. L. Bogen, D. Sit, A. Genovese, and K. L. Wisner, “Three cases of lithium exposure and exclusive breastfeeding,” Arch. Women Ment. Health 15(1), 69–72 (2012).
[Crossref] [PubMed]

Biol. Psychiatry (1)

R. W. Kupka, W. A. Nolen, R. M. Post, S. L. McElroy, L. L. Altshuler, K. D. Denicoff, M. A. Frye, P. E. Keck, G. S. Leverich, A. J. Rush, T. Suppes, C. Pollio, and H. A. Drexhage, “High rate of autoimmune thyroiditis in bipolar disorder: lack of association with lithium exposure,” Biol. Psychiatry 51(4), 305–311 (2002).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Bosn. J. Basic Med. Sci. (1)

N. Serdarević, F. Kozjek, and I. Malesic, “Saliva and serum lithium monitoring in hospitalized patients and possibility to replace serum to saliva,” Bosn. J. Basic Med. Sci. 6(4), 32–35 (2008).
[Crossref] [PubMed]

Electrophoresis (1)

T. K. Creson, P. J. Monaco, E. M. Rasch, A. H. Hagardorn, and K. E. Ferslew, “Capillary ion analysis of lithium concentrations in biological fluids and tissues of Poecilia (teleost),” Electrophoresis 19(16-17), 3018–3021 (1998).
[Crossref] [PubMed]

Environ. Res. (1)

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109(4), 413–420 (2009).
[Crossref] [PubMed]

Geochim. Cosmochim. Acta (1)

C. Fabre, M.-C. Boiron, J. Dubessy, A. Chabiron, B. Charoy, and T. Martin Crespo, “Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: an exploratory study,” Geochim. Cosmochim. Acta 66(8), 1401–1407 (2002).
[Crossref]

J. Biol. Chem. (1)

M. Hong, D. C. Chen, P. S. Klein, and V. M. Lee, “Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3,” J. Biol. Chem. 272(40), 25326–25332 (1997).
[Crossref] [PubMed]

J. Biol. Regul. Homeost. Agents (1)

R. A. Merendino, G. Mancuso, F. Tomasello, D. Gazzara, V. Cusumano, S. Chillemi, P. Spadaro, and M. Mesiti, “Effects of lithium carbonate on cytokine production in patients affected by breast cancer,” J. Biol. Regul. Homeost. Agents 8(3), 88–91 (1994).
[PubMed]

J. Biomed. Sci. Eng. (1)

X.-Y. Liu and W.-J. Zhang, “Recent developments in biomedicine fields for laser induced breakdown spectroscopy,” J. Biomed. Sci. Eng. 1(03), 147–151 (2008).
[Crossref]

J. Cell. Physiol. (1)

W. V. Welshons, K. S. Engler, J. A. Taylor, L. H. Grady, and E. M. Curran, “Lithium-stimulated proliferation and alteration of phosphoinositide metabolites in MCF-7 human breast cancer cells,” J. Cell. Physiol. 165(1), 134–144 (1995).
[Crossref] [PubMed]

J. Environ. Chem. Eng. (1)

S. Natarajan and H. C. Bajaj, “Recovered materials from spent lithium-ion batteries (LIBs) as adsorbents for dye removal: Equilibrium, kinetics and mechanism,” J. Environ. Chem. Eng. 4(4), 4631–4643 (2016).
[Crossref]

J. Instrum. (1)

V. K. Unnikrishnan, K. Alti, R. Nayak, R. Bernard, N. Khetarpal, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Optimized LIBS setup with echelle spectrograph-ICCD system for multi-elemental analysis,” J. Instrum. 5(04), P04005 (2010).
[Crossref]

J. Psychopharmacol. (Oxford) (1)

C. Paton, T. R. Barnes, A. Shingleton-Smith, R. H. McAllister-Williams, J. Kirkbride, P. B. Jones, S. McIntyre, and POMH-UK project team, “Lithium in bipolar and other affective disorders: prescribing practice in the UK,” J. Psychopharmacol. (Oxford) 24(12), 1739–1746 (2010).
[Crossref] [PubMed]

Lancet (1)

S. Rej, K. Shulman, and N. Herrmann, “Long-term effects of lithium on renal function,” Lancet 386(10007), 1943–1944 (2015).
[Crossref] [PubMed]

Med. Phys. (1)

J. Lichtinger, R. Gernhäuser, A. Bauer, M. Bendel, L. Canella, M. Graw, R. Krücken, P. Kudejova, E. Mützel, S. Ring, D. Seiler, S. Winkler, K. Zeitelhack, and J. Schöpfer, “Position sensitive measurement of lithium traces in brain tissue with neutrons,” Med. Phys. 40(2), 023501 (2013).
[Crossref] [PubMed]

Nat. Rev. Endocrinol. (1)

A. M. Leung and L. E. Braverman, “Consequences of excess iodine,” Nat. Rev. Endocrinol. 10(3), 136–142 (2014).
[Crossref] [PubMed]

Nature (1)

C. J. Phiel, C. A. Wilson, V. M.-Y. Lee, and P. S. Klein, “GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides,” Nature 423(6938), 435–439 (2003).
[Crossref] [PubMed]

Sci. Rep. (1)

G. Zanni, W. Michno, E. Di Martino, A. Tjärnlund-Wolf, J. Pettersson, C. E. Mason, G. Hellspong, K. Blomgren, and J. Hanrieder, “Lithium Accumulates in Neurogenic Brain Regions as Revealed by High Resolution Ion Imaging,” Sci. Rep. 7(1), 40726 (2017).
[Crossref] [PubMed]

Surf. Sci. Rep. (1)

J. Kaiser, K. Novotny, M. Z. Martin, A. Hrdlica, R. Malina, M. Hartl, V. Adam, and W. H. Weinberg, “Trace elemental analysis by laser-induced breakdown spectroscopy—Biological applications,” Surf. Sci. Rep. 67(11-12), 233–243 (2012).
[Crossref]

Talanta (1)

S. H. C. Manno, F. A. M. Manno, I. Ahmed, R. Ahmed, L. Shu, L. Li, S. Xu, F. Xie, V. W. Li, J. Ho, S. H. Cheng, and C. Lau, “Spectroscopic examination of enamel staining by coffee indicates dentin erosion by sequestration of elements,” Talanta 189, 550–559 (2018).
[Crossref] [PubMed]

Other (2)

C. L. Murray, “The Global Burden of Disease: A comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020,” Harvard University Press on behalf of the World Health Organization, Harvard School of Public Health, and World Bank (Harvard, 1996).

W. C. Baha Zantour and W. Chebbi, “Lithium Treatment and Thyroid Disorders,” Journal of Thyroid Disorders & Therapy 03, 143 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic diagram of the laser-induced breakdown spectroscopy (LIBS) setup. The laser pulse is focused by the lens onto the sample. The ablated portion of the sample emits light, which is collected by the fiber and channeled to the spectrometer. The setup is controlled by a personal computer (PC), which triggers both the laser and the spectrometer and displays the spectrum. (b) The portion of the neck around the trachea where the thyroid is located (circled). (c) The harvested thyroid with two lobes. (d) The same portion of the neck after the thyroid was removed and the upper left and right circles indicate the salivary glands. (e) The harvested left and right salivary glands. (f) The portion of the chest from a female subject showing the embossed nipples. (g) Same portion of the chest showing the nipples after shaving. (h) The harvested left and right cervical mammary glands. (i) The anatomical illustration of the thyroid and salivary glands in humans.
Fig. 2
Fig. 2 (a) LIBS spectra from the thyroids of a control (black) and a 28 days lithium (Li) treated subject (red). (b) Calcium (Ca) emission lines are observed at 393.4, 396.9 and 422.7 nm in all subjects. (c) Sodium (Na) lines are at 589.0 and 589.5 nm. (d) An iodine (I) line is at 746.9 nm. (e) Potassium (K) lines are at 766.4 and 769.9 nm. (f) A Li line is observed in treated subjects only at 670.7 nm.
Fig. 3
Fig. 3 (a) LIBS spectra from the (a) left and (b) right salivary glands of a control subject. Carbon (C), calcium (Ca), sodium (Na), hydrogen (H), iodine (I), and potassium (K) emission lines are observed in both glands of all subjects. (C) Li line is observed in both salivary glands (spectra averaged together) of a 42 days treated subject, but not in the control, at 670.7 nm.
Fig. 4
Fig. 4 (a) LIBS spectra from the mammary glands of a control (black) and a 28 days lithium treated subject (red). (b) Carbon line is observed at 247.6 nm. (c) Magnesium (Mg) lines are observed at 279.6 and 280.3 nm. (d) Calcium lines are observed at 393.4, 396.9, and 422.7 nm. (e) Sodium lines are observed at 589.0 and 589.5 nm. (f) An iodine line is observed at 746.9 nm. (g) Potassium lines are observed at 766.4 and 769.9 nm. (h) A Li line is observed in treated subjects only at 670.7 nm.
Fig. 5
Fig. 5 (a) Normalized group averaged lithium emission lines at 670.7 nm acquired from thyroids immersed in 0 ppm lithium solution (saline only), 0.28, 0.37, 0.55, and 1.10 ppm. N = 5 for each group. Higher lithium concentration in the thyroid leads to higher LIBS intensity. (b) This is supported by linear regression analysis showing strong positive correlation between intensity and concentration (R2 = 0.92).
Fig. 6
Fig. 6 Normalized group averaged LIBS spectra from the thyroids of control, 14, 28, and 42 days lithium treated subjects (N = 5 each). (a) Lithium, (b) iodine, (c) calcium, (d) sodium, and (e) potassium emission lines. The intensities have been normalized by that of the hydrogen line at 656.2 nm. Lithium treatment increases lithium intensity, but a saturation effect is seen by 28 days. In contrast, iodine intensity is decreased after 14 days of treatment and remains steady through to 42 days.
Fig. 7
Fig. 7 Normalized group averaged LIBS spectra from the salivary glands of control, 14, 28, and 42 days lithium treated subjects (N = 5 each). (a) Lithium, (b) carbon, (c) calcium, (d) sodium, (e) iodine, and (f) potassium emission lines. Lithium treatment progressively increases lithium intensity.
Fig. 8
Fig. 8 Normalized and group averaged LIBS spectra from the mammary glands of control subjects (N = 5) and 42 days lithium treated subjects (N = 5). (a-g) Spectra expanded about the Li, C, Mg, Ca, Na, I and K lines, respectively. The concentrations of other elements are also affected by lithium intake.
Fig. 9
Fig. 9 Bar plots showing the mean and standard deviation of emission intensities from the thyroids of control, 14, 28, and 42 days lithium treated subjects. (a) Lithium, (b) iodine, (c) calcium, (d) sodium, and (e) potassium lines. Intensities have been normalized by the 656.2 nm hydrogen line intensity. Statistical analysis across groups was performed with the standard two-tailed t-test with p-value threshold of 0.05 considered statistically significant. * indicates p<0.05 and *** indicates p<0.001. The multiple linear regression analyses between lithium intensity and that of calcium (f), sodium (g), iodine (h) and potassium (i). (j) Illustration of lithium ions entering a thyroid follicular cell and preventing iodine ions from entering.
Fig. 10
Fig. 10 Bar plots showing the mean and standard deviation of emission lines from the salivary glands of control, 14, 28, and 42 days lithium treated subjects. (a) Lithium, (b) iodine, (c) carbon, (d) calcium, (e) sodium, and (f) potassium lines. * indicates p<0.05. The multiple linear regression analyses between lithium intensity and that of calcium (g), sodium (h), iodine (i) and potassium (j).

Tables (2)

Tables Icon

Table 1 Cross correlation coefficients between elemental emission intensities measured from the thyroid.

Tables Icon

Table 2 Cross correlation coefficients between elemental emission intensities measured from the salivary gland.

Metrics