Abstract

A simple wavelength-independent scale factor model is established for a closed-loop interferometer fiber optic gyroscope (IFOG) and a method to keep the scale factor radiation tolerant and temperature stable in a high performance IFOG for space application is proposed. The half-wave voltage (Vπ) of the multifunction gyro chip at different wavelengths and temperatures is measured and the radiation-independent inherent parameter of the modulator is picked out and found be proportional to the temperature and slightly wavelength dependent. An experimental IFOG is developed and the scale factor is measured at different temperatures and under Co60 irradiation, respectively. Less than a 10 ppm scale factor instability is achieved within the −40°C to +60°C temperature range and more than 100 krad(Si) total radiation dose.

© 2016 Chinese Laser Press

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription