Abstract

The use of red light or near-infrared radiation as a luminescent probe for in vivo bio imaging is crucial in order to restrict the strong absorption of short-wavelength light below 600 nm in tissue. It is demonstrated that the emission color of Yb/Ho codoped NaYF4 nanoparticles can be tuned from green to red by incorporating Ce3+ ions. However, compared with that of the NaYF4:Yb/Ho nanoparticles, the photoluminescence intensity of the Ce3+-tridoped NaYF4:Yb/Ho nanoparticles is drastically reduced. In this work, Ce3+-incorporated core/shell NaYF4:Yb3+50%@NaYF4:Ho3+0.5% nanoparticles are prepared. A strong red emission and a high-intensity ratio between the red emission and green emission are obtained in these upconversion nanoparticles. The emission intensity increases by a factor higher than 120 when compared with that of the NaYF4:Yb/Ho/Ce nanoparticles. This result indicates that the Ce3+ incorporation into the NaYF4:Yb/Ho nanoparticles promotes a strong quenching effect and reduces the emission intensity; however, the quenching effect can be significantly reduced by incorporating the Ce3+ ions into the core/shell NaYF4:Yb3+50%@NaYF4:Ho3+0.5% nanoparticles. A theoretical model is proposed to explain the presence of the quenching effect in the NaYF4:Yb/Ho/Ce nanoparticles, demonstrating that the quenching is mainly related to the interaction between the Yb3+ and Ce3+ ions.

© 2016 Chinese Laser Press

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription