Abstract

We demonstrate a proposal for making an ultrastable laser referenced to a multi-cavity, enabling a lower thermal noise limit due to the averaging effect. In comparison with a single-cavity system, relative frequency instability of the synthesized laser can be improved by a factor of the square root of the cavity number. We perform an experiment to simulate a two-cavity system with two independent ultrastable lasers. Experimental results show that the relative frequency instability (Allan deviation) of the synthesized laser is 5 × 10−16, improved by a factor of √2 from a single-cavity-stabilized laser.

© 2018 Chinese Laser Press

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription