Abstract

With a Nd:ScYSiO5 crystal, a high peak power electro-optically Q-switched 1.0 μm laser and tri-wavelength laser operations at the 1.3 μm band are both investigated. With a rubidium titanyle phosphate (RTP) electro-optical switcher and a polarization beam splitter, a high signal-to-noise ratio 1.0 μm laser is obtained, generating a shortest pulse width of 30 ns, a highest pulse energy of 0.765 mJ, and a maximum peak power of 25.5 kW, respectively. The laser mode at the highest laser energy level is the TEM00 mode with the M2 value in the X and Y directions to be Mx2 = 1.52 and My2 = 1.54. A tri-wavelength Nd:ScYSiO5 crystal laser at 1.3 μm is also investigated. A maximum tri-wavelength output power is 1.03 W under the absorbed pump power of 7 W, corresponding to a slope efficiency of 14.8%. The properties of the output wavelength are fully studied under different absorbed pump power.

© 2019 Chinese Laser Press

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription