Abstract

For fluorescence molecular tomography (FMT), image quality could be improved by incorporating a sparsity constraint. The L1 norm regularization method has been proven better than the L2 norm, like Tikhonov regularization. However, the Tikhonov method was found capable of achieving a similar quality at a high iteration cost by adopting a zeroing strategy. By studying the reason, a Tikhonov-regularization-based projecting sparsity pursuit method was proposed that reduces the iterations significantly and achieves good image quality. It was proved in phantom experiments through time-domain FMT that the method could obtain higher accuracy and less oversparsity and is more applicable for heterogeneous-target reconstruction, compared with several regularization methods implemented in this Letter.

© 2019 Chinese Laser Press

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription