Monte Carlo simulations were performed for a three-dimensional tissue model with and without an embedded large vessel, to understand how varying vessel geometry affects surface light distribution. Vessel radius was varied from 1 to 5 mm, and vessel depth from 2 to 10 mm. A larger difference in surface fluence rate was observed when the vessel’s radius increased. For vessel depth, the largest difference was seen at a depth of approximately 4 mm, corresponding to human wrist region. When the vessel was placed at depths greater than 8 mm, very little difference was observed. We also tested the feasibility of using two source-detector pairs, comprising two detectors distinctly spaced from a common source, to noninvasively measure blood-scattering changes in a large vessel. High sensitivity to blood-scattering changes was achieved by placing the near detector closer to the source and moving the far detector away from the source. However, at longer distances, increasing noise levels limited the sensitivity of the two-detector approach. Our results indicate that the approach using two source-detector pairs may have potential for quantitative measurement of scattering changes in the blood while targeting large vessels near the human wrist region.

© 2019 Optical Society of Korea

PDF Article


  • View by:
  • |
  • |
  • |

  1. [Crossref]

  2. [Crossref]

  3. [Crossref]

  4. [Crossref]

  5. [Crossref]

  6. [Crossref]

  7. [Crossref]

  8. [Crossref]

  9. [Crossref]

  10. [Crossref]

  11. [Crossref]

  12. [Crossref]

  13. [Crossref]

  14. [Crossref]

  15. [Crossref]

  16. [Crossref]

  17. [Crossref]

  18. [Crossref]

  19. [Crossref]

  20. [Crossref]

  21. [Crossref]

  22. [Crossref]

  23. [Crossref]

  24. [Crossref]

  25. [Crossref]

2016 (1)

2015 (1)

2013 (2)

2012 (1)

2011 (1)

2010 (2)

2009 (1)

2007 (2)

2006 (2)

2005 (2)

2004 (1)

2002 (1)

2000 (1)

1998 (1)

1997 (2)

1996 (2)

1995 (1)

1994 (1)

1992 (2)

1989 (1)

1983 (1)

1980 (1)

Aalders, M. C.

Adam, G.

Anderson, K. L.

Arif, J.

Arridge, S. R.

Ashraf, T.

Au, A. K.

Autiero, M.

Bashkatov, A. N.

Boas, D.

Boas, D. A.

Carmeliet, P.

Chiba, H.

Cope, M.

Culver, J.

de Boer, J. F.

Dean, A. J.

Delpy, D. T.

Ding, H. F.

Dunn, A.

Eichmann, A.

Essenpreis, M.

Faber, D. J.

Fang, Q.

Fantini, S.

Farrell, T. J.

Fields, J. M.

Firbank, M.

Franceschini, M. A.

Friebel, M.

Genina, E. A.

Gratton, E.

Habib, S.

Helfmann, J.

Hiraoka, M.

Homae, F.

Hooper, B. A.

Hu, X. H.

Iinaga, K.

Intes, X.

Jacques, S.

Jacques, S. L.

Keijzer, M.

Kim, J. U.

Kim, J. Y.

Kochubey, V. I.

Kohl, M.

Kragel, P. J.

Ku, B. S.

Le Noble, F.

Lee, J.

Lee, Y. J.

Leproult, R.

Li, Z.

Lu, J. Q.

Lucassen, G. W.

Maier, J. S.

Meinke, M.

Memon, M. A.

Mik, E. G.

Milner, T. E.

Muller, G.

Müller, G.

Namita, T.

Nelson, J. S.

Nilsson, G. E.

Oberg, P. A.

Panebianco, N. L.

Panhwar, Z.

Patterson, M. S.

Pines, J. M.

Prahl, S. A.

Roggan, A.

Sakurai, T.

Scherberg, N.

Shamsi, F.

Shimizu, K.

Simpson, C. R.

Smithies, D. J.

Spiegel, K.

Stott, J.

Strangman, G. E.

Taga, G.

Tasali, E.

Tenland, T.

Todman, R. W.

Tuchin, V. V.

Van Cauter, E.

van der Zee, P.

van Gemert, M. J.

van Leeuwen, T. G.

Verkruysse, W.

Walker, S. A.

Wang, L.

Watanabe, H.

Welch, A. J.

Wilson, B.

Wilson, B. C.

Wooden, W. A.

Yao, R.

Zhang, Q.

Zheng, L.

Am. J. Emerg. Med. (1)

Biomed. Opt. Express (2)

Comput. Methods Programs Biomed. (1)

Curr. Opin. Neurobiol. (1)

Evidence-Based Complementary Altern. Med. (1)

IEEE Trans. Biomed. Eng. (1)

J. Biomed. Opt. (2)

J. Clin. Endocrinol. Metab. (1)

J. Pak. Med. Assoc. (1)

J. Phys. D: Appl. Phys. (1)

Lasers Surg. Med. (2)

Med. Phys. (2)

Neuroimage (1)

Opt. Express (2)

Opt. Lett. (1)

OSA TOPS on Adv. Opt. Imaging Photon Migr. (1)

Phys. Med. Biol. (7)

Phys. Rev. Lett. (1)

PLoS One (1)

Other (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.