Abstract

We research a system of compressed-sensing computational ghost imaging (CSCGI) based on the intensity fluctuation brought by turbulence. In this system, we used the gamma-gamma intensity-fluctuation model, which is commonly used in transmission systems, to simulate the CSCGI system. By setting proper values of the parameters such as transmission distance, refractive-index structure parameter, and sampling rates, the peak signal-to-noise ratio (PSNR) performance and bit-error rate (BER) performance are obtained to evaluate the imaging quality, which provides a theoretical model to further research the ghost-imaging algorithm.

PDF Article

References

  • View by:
  • |

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. SergienkoOptical imaging by means of two-photon quantum entanglementPhys. Rev. A199552R3429(R)
  2. R. E. Meyers and K. S. DeaconQuantum ghost imaging experiments at ARLProc. SPIE781578150I
  3. J. H. ShapiroComputational ghost imagingPhys. Rev. A200878061802(R)
  4. X. Bai, Y. Q. Li, and S. M. ZhaoDifferential compressive correlated imagingActa Phys. Sin.201362044209
  5. F. Ferri, D. Magatti, L. A. Lugiato, and A. GattiDifferential ghost imagingPhys. Rev. Lett.2010104253603
  6. P. Zhang, W. Gong, X. Shen, and S. HanCorrelated imaging through atmospheric turbulencePhys. Rev. A20108233817
  7. R. E. Meyers, K. S. Deacon, and Y. ShihTurbulence-free ghost imagingAppl. Phys. Lett.201198111115
  8. L. Zhang, Y. Hualong, and D. ZhangStudy on the key technology of image transmission mechanism based on channel coding ghost imagingIEEE Photonics J.2018106500913
  9. L. Zhang, Y. Hualong, D. Zhang, and J. ChenStudy on image transmission mechanism of ghost imaging based on joint source and channel codingAppl. Phys. B201912557
  10. X. Liu, F. Wang, M. Zhang, and Y. CaiEffects of atmospheric turbulence on lensless ghost imaging with partially coherent lightAppl. Sci.201881479
  11. J. ChengGhost imaging through turbulent atmosphereOpt. Express20091779167921
  12. N. D. Hardy and J. H. ShapiroReflective ghost imaging through turbulencePhys. Rev. A201184063824
  13. J. Parikh and V. K. JainStudy on statistical models of atmospheric channel for FSO communication linkProc. Nirma University International Conference on EngineeringAhmedabad, India2011Dec.17
  14. S. ArnonEffects of atmospheric turbulence and building sway on optical wireless-communication systemsOpt. Lett.200328129131
  15. J. Dai, X. G. Bai, and H. ShuCoordination of multi-leaders and multi-followers in supply chain of value-added telecom servicesChin. Commun.20118157164
  16. W. O. Popoola, Z. Ghassemlooy, and V. AhmadiPerformance of sub-carrier modulated free-space optical communication link in negative exponential atmospheric turbulence environmentInt. J. Auton. Adapt. Commun. Syst.20081342355
  17. A. Al-Habash, L. C. Andrews, and R. L. PhillipsMathematical model for the irradiance probability density function of a laser beam propagating through turbulent mediaOpt. Eng.20014015541563
  18. B. I. Erkmen and J. H. ShapiroUnified theory of ghost imaging with gaussian-state lightPhys. Rev. A200877043809
  19. Y. Bromberg, O. Katz, and Y. SilberbergGhost imaging with a single detectorPhys. Rev. A200979053840
  20. T.-Y. Mao, Q. Chen, W.-J. He, J.-Y. Zhuang, Y.-H. Zou, H.-D. Dai, and G.-H. GuOptical communication in turbid and turbulent atmosphereActa Phys. Sin.201665084207
  21. Z. Liu, S. Tan, J. Wu, E. Li, X. Shen, and S. HanSpectral camera based on ghost imaging via sparsity constraintsSci. Rep.2016625718
  22. Z. Ghassemlooy, W. Popoola, and S. RajbhandariOptical Wireless Communications System and Channel Modelling with MATLABCRC PressNew York, USA2012
  23. ITU-R, P.618: Propagation data and prediction methods required for the design of Earth-space telecommunication systemsInternationnal Telecommunication Union2017https://www.itu.int/rec/R-REC-P.618-13-201712-I/en

Other (23)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. SergienkoOptical imaging by means of two-photon quantum entanglementPhys. Rev. A199552R3429(R)

R. E. Meyers and K. S. DeaconQuantum ghost imaging experiments at ARLProc. SPIE781578150I

J. H. ShapiroComputational ghost imagingPhys. Rev. A200878061802(R)

X. Bai, Y. Q. Li, and S. M. ZhaoDifferential compressive correlated imagingActa Phys. Sin.201362044209

F. Ferri, D. Magatti, L. A. Lugiato, and A. GattiDifferential ghost imagingPhys. Rev. Lett.2010104253603

P. Zhang, W. Gong, X. Shen, and S. HanCorrelated imaging through atmospheric turbulencePhys. Rev. A20108233817

R. E. Meyers, K. S. Deacon, and Y. ShihTurbulence-free ghost imagingAppl. Phys. Lett.201198111115

L. Zhang, Y. Hualong, and D. ZhangStudy on the key technology of image transmission mechanism based on channel coding ghost imagingIEEE Photonics J.2018106500913

L. Zhang, Y. Hualong, D. Zhang, and J. ChenStudy on image transmission mechanism of ghost imaging based on joint source and channel codingAppl. Phys. B201912557

X. Liu, F. Wang, M. Zhang, and Y. CaiEffects of atmospheric turbulence on lensless ghost imaging with partially coherent lightAppl. Sci.201881479

J. ChengGhost imaging through turbulent atmosphereOpt. Express20091779167921

N. D. Hardy and J. H. ShapiroReflective ghost imaging through turbulencePhys. Rev. A201184063824

J. Parikh and V. K. JainStudy on statistical models of atmospheric channel for FSO communication linkProc. Nirma University International Conference on EngineeringAhmedabad, India2011Dec.17

S. ArnonEffects of atmospheric turbulence and building sway on optical wireless-communication systemsOpt. Lett.200328129131

J. Dai, X. G. Bai, and H. ShuCoordination of multi-leaders and multi-followers in supply chain of value-added telecom servicesChin. Commun.20118157164

W. O. Popoola, Z. Ghassemlooy, and V. AhmadiPerformance of sub-carrier modulated free-space optical communication link in negative exponential atmospheric turbulence environmentInt. J. Auton. Adapt. Commun. Syst.20081342355

A. Al-Habash, L. C. Andrews, and R. L. PhillipsMathematical model for the irradiance probability density function of a laser beam propagating through turbulent mediaOpt. Eng.20014015541563

B. I. Erkmen and J. H. ShapiroUnified theory of ghost imaging with gaussian-state lightPhys. Rev. A200877043809

Y. Bromberg, O. Katz, and Y. SilberbergGhost imaging with a single detectorPhys. Rev. A200979053840

T.-Y. Mao, Q. Chen, W.-J. He, J.-Y. Zhuang, Y.-H. Zou, H.-D. Dai, and G.-H. GuOptical communication in turbid and turbulent atmosphereActa Phys. Sin.201665084207

Z. Liu, S. Tan, J. Wu, E. Li, X. Shen, and S. HanSpectral camera based on ghost imaging via sparsity constraintsSci. Rep.2016625718

Z. Ghassemlooy, W. Popoola, and S. RajbhandariOptical Wireless Communications System and Channel Modelling with MATLABCRC PressNew York, USA2012

ITU-R, P.618: Propagation data and prediction methods required for the design of Earth-space telecommunication systemsInternationnal Telecommunication Union2017https://www.itu.int/rec/R-REC-P.618-13-201712-I/en

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.