Abstract

A Rayleigh Lidar used for wind detection works by transmitting laser pulses to the atmosphere and receiving backscattering signals from molecules. Because of the weak backscattering signals, a lidar usually uses a high sensitivity photomultiplier as detector and photon counting technology for signal collection. The capturing of returned extremely weak backscattering signals requires the lidar to work on dark background with a long time accumulation to get high signal-to-noise ratio (SNR). Because of the strong solar background during the day, the SNR of lidar during daytime is much lower than that during nighttime, the altitude and accuracy of detection are also restricted greatly. Therefore this article describes an ultra-narrow bandwidth filter (UNBF) that has been developed on 354.7 nm wavelength of laser. The UNBF is used for suppressing the strong solar background that degrades the performance of Rayleigh wind lidar during daytime. The optical structure of UNBF consists of an interference filter (IF), a low resolution Fabry-Perot interferometer (FPI) and a high resolution FPI. The parameters of each optical component of the UNBF are presented in this article. The transmission curve of the aligned UNBF is measured with a tunable laser. Contrasting the result of with-UNBF and with-IF shows that the solar background received by a Licel transient recorder decreases by 50~100 times and that the SNR with-UNBF was improved by 3 times in the altitude range (35 km to 40 km) compared to with-IF at 10:26 to 10:38 on August 29, 2018. By the SNR comparison at four different times of one day, the ratio-values are larger than 1 over the altitude range (25~50 km) in general, the results illustrate that the SNR with-UNBF is better than that with-IF for Rayleigh Lidar during daytime and they demonstrate the effective improvements of solar background restriction of UNBF.

PDF Article

References

  • View by:
  • |

  1. D. C. FrittsGravity wave saturation in the middle atmosphere: A review of theory and observationsRev. Geophys.198422275308
  2. G. BaumgartenDoppler Rayleigh/Mie/Raman lidar for wind and temp erature measurements in the middle atmosphere up to 80 kmAtmos. Meas. Tech.2010315091518
  3. D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. ChaxellThe Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial resultsJ. Atmos. Sol. Terr. Phys.19965818271842
  4. B. M. Gentry, H. Chen, and S. X. LiWind measurements with 355-nm molecular Doppler lidarOpt. Lett.20002512311233
  5. C. A. Tepley, S. I. Sargoytchev, and R. RojasThe Doppler Rayleigh lidar system at AreciboIEEE Trans. Geosci. Remote Sens.1993313647
  6. C. L. Korb, B. M. Gentry, and C. Y. WengEdge technique: theory and application to the lidar measurement of atmospheric windAppl. Opt.19923142024213
  7. Z. Liu, B. Liu, S. Wu, Z. Li, and Z. WangHigh spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurementsOpt. Lett.20083314851487
  8. A. K. SmithInteractions between the lower, middle and upper atmosphereSpace Sci. Rev.2012168121
  9. D. Hua and T. KobayashiUltraviolet Rayleigh-Mie lidar by use of a multicavity Fabry-Perot filter for accurate temperature profiling of the troposphereAppl. Opt.20054464746478
  10. Z. Liu, D. Bi, X. Song, J. Xia, R. Li, Z. Wang, and C. Y. SheIodine-filter-basses high spectral resolution lidar for atmospheric temperature measurementsOpt. Lett.20093427122714
  11. H. Xia, X. Dou, D. Sun, X. Xue, Y. Han, D. Hu, Y. Han, and T. ChengMid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control methodOpt. Express2012201528615300
  12. R. Zhao, X. Dou, D. Sun, X. Xue, J. Zheng, Y. Han, T. Chen, G. Wang, and Y. ZhouGravity waves observation of wind field in stratosphere based on a Rayleigh Doppler lidarOpt. Express201624A581A591
  13. H. Xia, X. Dou, M Shangguan, R. Zhao, D. Sun, C Wang, J. Qiu, Z. Shu, X. Xue, and Y. HanStratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidarOpt. Express2014222177521789
  14. F. Zhang, X. Dou, D. Sun, Z. Shu, H. Xia, Y. Gao, D. Hu, and M. ShangguanAnalysis on error of laser frequency locking for fiber optical receiver in direct detection wind lidar based on Fabry-Perot interferometer and improvementsOpt. Eng.201453124102
  15. J. Zheng, D. Sun, T. Chen, X. Dou, R. Zhao, Z. Li, A. Zhou, N. Zhang, J. Guo, and G. WangWind profiling from high troposphere to low stratosphere using a scanning Rayleigh Doppler lidarOpt. Rev.201825720728
  16. Z. Liu, B. Liu, Z. Li, Z. Yan, S. Wu, and Z. SunWind measurement with incoherent Doppler lidar based on iodine filters at night and dayAppl. Phys. B200788327335
  17. Z. Cheng, D. Liu, J. Luo, Y. Yang, L. Su, L. Yang, H. Huang, and Y. ShenEffects of spectral discrimination in high-spectral-resolution lidar on the retrieval errors for atmospheric aerosol optical propertiesAppl. Opt.20145343864397
  18. F. Shen, C. Xie, C. Qiu, and B. WangFabry-Perot etalon-based ultraviolet trifrequency high-spectral-resolution lidar for wind, temperature, and aerosol measurements from 0.2 to 35 km altitudeAppl. Opt.20185793289340
  19. S. Wu, X. Song, and B. LiuFraunhofer lidar prototype in the green spectral region for atmospheric boundary layer observationRemote Sens.2013560796095
  20. D. P. Donovan, J. A. Whiteway, and A. I. CarswellCorrection for nonlinear photon-counting effects in lidar systemsAppl. Opt.19933267426753
  21. F. Shen, H. Cha, J. Dong, D. Kim, D. Sun, and S. O. KwonDesign and performance simulation of a molecular Doppler wind lidarChin. Opt. Lett.20097593597
  22. J. Hair, L. Caldwell, D. Crueger, and C. SheHigh-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profilesAppl. Opt.20014052805294
  23. J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, and P. J. TryonHigh spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: calibration and data analysisAppl. Opt.19832237253732
  24. Y. Han, X. Dou, D. Sun, H. Xia, and Z. ShuAnalysis on wind retrieval methods for Rayleigh Doppler lidarOpt. Eng.201453061607
  25. R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. AhmedSimple approach to predict APD/PMT lidar detector performance under sky background using dimensionless parametrizationOpt. Laser Eng.200644779796

Other (25)

D. C. FrittsGravity wave saturation in the middle atmosphere: A review of theory and observationsRev. Geophys.198422275308

G. BaumgartenDoppler Rayleigh/Mie/Raman lidar for wind and temp erature measurements in the middle atmosphere up to 80 kmAtmos. Meas. Tech.2010315091518

D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. ChaxellThe Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial resultsJ. Atmos. Sol. Terr. Phys.19965818271842

B. M. Gentry, H. Chen, and S. X. LiWind measurements with 355-nm molecular Doppler lidarOpt. Lett.20002512311233

C. A. Tepley, S. I. Sargoytchev, and R. RojasThe Doppler Rayleigh lidar system at AreciboIEEE Trans. Geosci. Remote Sens.1993313647

C. L. Korb, B. M. Gentry, and C. Y. WengEdge technique: theory and application to the lidar measurement of atmospheric windAppl. Opt.19923142024213

Z. Liu, B. Liu, S. Wu, Z. Li, and Z. WangHigh spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurementsOpt. Lett.20083314851487

A. K. SmithInteractions between the lower, middle and upper atmosphereSpace Sci. Rev.2012168121

D. Hua and T. KobayashiUltraviolet Rayleigh-Mie lidar by use of a multicavity Fabry-Perot filter for accurate temperature profiling of the troposphereAppl. Opt.20054464746478

Z. Liu, D. Bi, X. Song, J. Xia, R. Li, Z. Wang, and C. Y. SheIodine-filter-basses high spectral resolution lidar for atmospheric temperature measurementsOpt. Lett.20093427122714

H. Xia, X. Dou, D. Sun, X. Xue, Y. Han, D. Hu, Y. Han, and T. ChengMid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control methodOpt. Express2012201528615300

R. Zhao, X. Dou, D. Sun, X. Xue, J. Zheng, Y. Han, T. Chen, G. Wang, and Y. ZhouGravity waves observation of wind field in stratosphere based on a Rayleigh Doppler lidarOpt. Express201624A581A591

H. Xia, X. Dou, M Shangguan, R. Zhao, D. Sun, C Wang, J. Qiu, Z. Shu, X. Xue, and Y. HanStratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidarOpt. Express2014222177521789

F. Zhang, X. Dou, D. Sun, Z. Shu, H. Xia, Y. Gao, D. Hu, and M. ShangguanAnalysis on error of laser frequency locking for fiber optical receiver in direct detection wind lidar based on Fabry-Perot interferometer and improvementsOpt. Eng.201453124102

J. Zheng, D. Sun, T. Chen, X. Dou, R. Zhao, Z. Li, A. Zhou, N. Zhang, J. Guo, and G. WangWind profiling from high troposphere to low stratosphere using a scanning Rayleigh Doppler lidarOpt. Rev.201825720728

Z. Liu, B. Liu, Z. Li, Z. Yan, S. Wu, and Z. SunWind measurement with incoherent Doppler lidar based on iodine filters at night and dayAppl. Phys. B200788327335

Z. Cheng, D. Liu, J. Luo, Y. Yang, L. Su, L. Yang, H. Huang, and Y. ShenEffects of spectral discrimination in high-spectral-resolution lidar on the retrieval errors for atmospheric aerosol optical propertiesAppl. Opt.20145343864397

F. Shen, C. Xie, C. Qiu, and B. WangFabry-Perot etalon-based ultraviolet trifrequency high-spectral-resolution lidar for wind, temperature, and aerosol measurements from 0.2 to 35 km altitudeAppl. Opt.20185793289340

S. Wu, X. Song, and B. LiuFraunhofer lidar prototype in the green spectral region for atmospheric boundary layer observationRemote Sens.2013560796095

D. P. Donovan, J. A. Whiteway, and A. I. CarswellCorrection for nonlinear photon-counting effects in lidar systemsAppl. Opt.19933267426753

F. Shen, H. Cha, J. Dong, D. Kim, D. Sun, and S. O. KwonDesign and performance simulation of a molecular Doppler wind lidarChin. Opt. Lett.20097593597

J. Hair, L. Caldwell, D. Crueger, and C. SheHigh-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profilesAppl. Opt.20014052805294

J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, and P. J. TryonHigh spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: calibration and data analysisAppl. Opt.19832237253732

Y. Han, X. Dou, D. Sun, H. Xia, and Z. ShuAnalysis on wind retrieval methods for Rayleigh Doppler lidarOpt. Eng.201453061607

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. AhmedSimple approach to predict APD/PMT lidar detector performance under sky background using dimensionless parametrizationOpt. Laser Eng.200644779796

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.