Abstract

This study numerically investigates the effect of using a new electron blocking layer (EBL) for blue InGaN light-emitting diodes (LEDs) to improve hole injection efficiency and electron confinement. Simulation results suggest that the carrier transportation behavior of the EBL can be appropriately modified by adept control of the graded AlGaN layer. Furthermore, when compared with the conventional LED structure, the redesigned LED with graded AlGaN layer shows a slight improvement in forward voltage ${\rm V}_{\rm f}$ and a significant enhancement in light output power. The redesigned LED can achieve an exceptional increment of 106.6% in light output power at 100 mA when compared with conventional LED. The observed improvement in the photoelectric performance of blue LEDs is primarily due to the reduced polarization effect at the last-barrier/EBL interface, as a result of the graded Al composition in EBL.

© 2014 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription