Abstract

InGaZnO thin-film transistors (TFT) with ZrLaO as gate dielectric are investigated by varying the Zr/La ratio. The TFTs are prepared by in-situ sputtering at room temperature without any thermal treatment. As demonstrated by X-ray diffraction, the Zr incorporated in La2O3 can effectively suppress the crystallization of the La2O3 film, thus reducing the traps along its grain boundaries and improving its surface roughness. However, excessive Zr in the ZrLaO film degrades the TFT performance due to the formation of an interfacial layer and a remarkable reduction of carriers at the ZrLaO/IGZO interface, as confirmed by X-ray photoelectron spectroscopy. The TFT with appropriate Zr content (La/Zr = 6.9) shows the best performance with lowest threshold voltage (2.59 V), highest field-effect mobility (up to 67.2 cm2/V·s), largest on-current (504 μA), highest on-off current ratio (4.80 × 106), and smallest subthreshold swing (240 mV/dec).

© 2016 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription