Abstract

The touch prediction and window sensing (TPWS) strategy is an effective approach to realize low-cost and low-power multitouch screen systems, especially for large-sized touch screen panels. The structures of traditional touch controller using charge integrating amplifier is not suitable for the TPWS touch screen systems. This paper presents a new touch controller, which is designed for the TPWS touch screen systems and is emphasized to improve the SNR and reporting rate of system. The differential measurement scheme with a full driving method is proposed to eliminate the influences on the SNR and the reporting rate of system caused by the LCD noise, the charger noise and the signal transmission delay on Indium-Tin Oxide (ITO) electrodes. The designed touch controller is realized in a 0.13 µm 1.8 V/5 V embedded flash CMOS process with the chip size of 2.5 × 2.8 mm2. The test results demonstrate that this touch controller supports the TPWS strategy very well and its performances are improved significantly. Comparing with the previous design, the SNR is improved from 25 to 36 dB, and the reporting rate is increased from 83 to 120 Hz.

© 2016 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription