Abstract

A 2D/3D switchable autostereoscopic display with spatial and sequential hybrid control (SSHC) using polymer dispersed liquid crystal (PDLC) films is studied. The light propagation in the SSHC system is simulated with a Monte Carlo ray-tracing method. Relationship between the 2D uniformity and anisotropy factor as well as mean free path is obtained by a series of simulation cases. The uniformity reaches over 85% in simulation. As well, a two-viewpoint prototype is built to give the experimental result. Measurements show that a highly transparent PDLC film can maintain the high-quality 3D performance while a strongly diffusive one can enhance the uniformity in 2D mode. By increasing the driving duty cycle of the backlight units, the issue of luminance attenuation in 2D mode can be addressed. Our technique offers a practical solution for 2D/3D switch in autostereoscopic displays.

© 2016 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. X. Zhao, Q. H. Wang, A. H. Wang, and D. H. Li, “Autostereoscopic display based on two-layer lenticular lenses,” Opt. Lett., vol. 35, no. 24, pp. 4127–4129, 2010.
  2. W. Mphepö, Y. P. Huang, and H. P. D. Shieh, “Enhancing the brightness of parallax barrier based 3D flat panel mobile displays without compromising power consumption,” J. Display Technol., vol. 6, no. 2, pp. 60–64, 2010.
  3. K. W. Chien and H. P. D. Shieh, “Time-multiplexed three-dimensional displays based on directional backlights with fast-switching liquid-crystal displays,” Appl. Opt., vol. 45, no. 13, pp. 3106–3110, 2006.
  4. Y. P. Huang, C. W. Chen, T. C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” 3D Res., vol. 1, no. 1, pp. 39–42, 2010.
  5. S. T. De Zwart, W. L. IJzerman, T. Dekker, “A 20-in. switchable auto-stereoscopic 2D/3D display,” in Proc. Int. Display Workshops, Niigata, Japan, 2004, pp. 1459–1460.
  6. Y. Owaku, T. Miyazawa, and H. Kondo, “Liquid crystal parallax barrier, display device and liquid crystal display device,” U. S. Patent US 20130201427 A1, 12, 2013.
  7. A. Y. G. Fuh and T. H. Lin, “Electrically switchable spatial filter based on polymer-dispersed liquid crystal film,” J. Appl. Phys., vol. 96, no. 10, pp. 5402–5404, 2004.
  8. J. Zhenget al., “H-PDLC based waveform controllable optical choppers for FDMF microscopy,” Opt. Express, vol. 19, no. 3, pp. 2216–2224, 2011.
  9. K. K. Vardanyan, J. Qi, and J. N. Eakin, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett., vol. 81, no. 25, pp. 4736–4738, 2002.
  10. P. G. Lisinetskaya, A. A. Konkolovich, and V. A. Loiko, “Polarization properties of polymer-dispersed liquid-crystal film with small nematic droplets,” Appl. Opt., vol. 48, no. 17, pp. 3144–3153, 2009.
  11. H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett., vol. 83, no. 8, pp.1515–1517, 2003.
  12. H. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun., vol. 247, no. 1, pp. 101–106, 2004.
  13. H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett., vol. 81, no. 19, pp. 3537–3539, 2002.
  14. M. Park, S. Lee, B. T. Lee, and H. J. Choi, “Enhancement of the perceived image quality of a 2D/3D convertible directional-backlight unit system using a double-slit barrier array and an active diffuser,” Appl. Opt., vol. 54, no. 10, pp. 2832–2837, 2015.
  15. K. Wanget al., “Tri-color composite volume H-PDLC grating and its application to 3D color autostereoscopic display,” Opt. Express, vol. 23, no. 24, pp. 31436–31445, 2015.
  16. J. Wanget al., “High-quality autostereoscopic display with spatial and sequential hybrid control,” Appl. Opt., vol. 52, no. 35, pp. 31436–31445, 2013.
  17. H. Fanet al., “Displaying a full high-definition, high-quality 3D image without glasses,” SPIE I. D., 2014. [Online]. Available: http://spie.org/newsroom/technical-articles/5540-displaying-a-full-high-definition-high-quality-3d-image-without-glasses?ArticleID=x109248
  18. H. Fanet al., “Full resolution, low crosstalk, and wide viewing angle auto-stereoscopic display with a hybrid spatial-temporal control using free-form surface backlight unit,” J. Display Technol., vol. 11, no. 7, pp. 620–624, 2015.
  19. H. Lianget al., “Optimizing time-multiplexing auto-stereoscopic displays with a genetic algorithm,” J. Display Technol., vol. 10, no. 8, pp. 685–699, 2014.
  20. E. H. Miller, “A note on reflector arrays,” IEEE Trans. Antennas Propag., to be published.
  21. C. M. Blanca and C. Saloma, “Monte Carlo analysis of two-photon fluorescence imaging through a scattering medium,” Appl. Opt., vol. 37, no. 34, pp. 8092–8102, 1998.
  22. S. Delica and C. Blanca, “Monte carlo model of light scattering in polymer dispersed liquid crystals: Polarization effects and defects,” Mol. Cryst. Liquid Cryst., vol. 412, no. 1, pp. 501–511, 2010.
  23. Y. Zhouet al., “Simulation and control of display uniformity in a backlight illuminated image array,” J. Display Technol., vol. 12, no. 7, pp. 707–714, 2016. doi:.
    [Crossref]
  24. K. C. Huanget al., “Investigation of designated eye position and viewing zone for a two-view autostereoscopic display,” Opt. Express, vol. 22, no. 4, pp. 4751–4767, 2014.
  25. C. O. Spring, “Perception of luminance uniformity: Comparing photometric calculations to subjective perceptions of uniformity,” M. S. thesis, Univ. Colorado, Boulder, CO, USA, 2002.
  26. EBU-TECH3320: User Requirements for Video Monitors in Television Production, European Broadcasting Union, Geneva, Switzerland, 2014. [Online]. Available: https://tech.ebu.ch/docs/tech/tech3320.pdf

2016 (1)

2015 (3)

2014 (3)

H. Fanet al., “Displaying a full high-definition, high-quality 3D image without glasses,” SPIE I. D., 2014. [Online]. Available: http://spie.org/newsroom/technical-articles/5540-displaying-a-full-high-definition-high-quality-3d-image-without-glasses?ArticleID=x109248

H. Lianget al., “Optimizing time-multiplexing auto-stereoscopic displays with a genetic algorithm,” J. Display Technol., vol. 10, no. 8, pp. 685–699, 2014.

K. C. Huanget al., “Investigation of designated eye position and viewing zone for a two-view autostereoscopic display,” Opt. Express, vol. 22, no. 4, pp. 4751–4767, 2014.

2013 (1)

J. Wanget al., “High-quality autostereoscopic display with spatial and sequential hybrid control,” Appl. Opt., vol. 52, no. 35, pp. 31436–31445, 2013.

2011 (1)

2010 (4)

W. Mphepö, Y. P. Huang, and H. P. D. Shieh, “Enhancing the brightness of parallax barrier based 3D flat panel mobile displays without compromising power consumption,” J. Display Technol., vol. 6, no. 2, pp. 60–64, 2010.

W. X. Zhao, Q. H. Wang, A. H. Wang, and D. H. Li, “Autostereoscopic display based on two-layer lenticular lenses,” Opt. Lett., vol. 35, no. 24, pp. 4127–4129, 2010.

S. Delica and C. Blanca, “Monte carlo model of light scattering in polymer dispersed liquid crystals: Polarization effects and defects,” Mol. Cryst. Liquid Cryst., vol. 412, no. 1, pp. 501–511, 2010.

Y. P. Huang, C. W. Chen, T. C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” 3D Res., vol. 1, no. 1, pp. 39–42, 2010.

2009 (1)

2006 (1)

2004 (2)

A. Y. G. Fuh and T. H. Lin, “Electrically switchable spatial filter based on polymer-dispersed liquid crystal film,” J. Appl. Phys., vol. 96, no. 10, pp. 5402–5404, 2004.

H. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun., vol. 247, no. 1, pp. 101–106, 2004.

2003 (1)

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett., vol. 83, no. 8, pp.1515–1517, 2003.

2002 (2)

H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett., vol. 81, no. 19, pp. 3537–3539, 2002.

K. K. Vardanyan, J. Qi, and J. N. Eakin, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett., vol. 81, no. 25, pp. 4736–4738, 2002.

1998 (1)

Blanca, C.

S. Delica and C. Blanca, “Monte carlo model of light scattering in polymer dispersed liquid crystals: Polarization effects and defects,” Mol. Cryst. Liquid Cryst., vol. 412, no. 1, pp. 501–511, 2010.

Blanca, C. M.

Chen, C. W.

Y. P. Huang, C. W. Chen, T. C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” 3D Res., vol. 1, no. 1, pp. 39–42, 2010.

Chien, K. W.

Choi, H. J.

De Zwart, S. T.

S. T. De Zwart, W. L. IJzerman, T. Dekker, “A 20-in. switchable auto-stereoscopic 2D/3D display,” in Proc. Int. Display Workshops, Niigata, Japan, 2004, pp. 1459–1460.

Dekker, T.

S. T. De Zwart, W. L. IJzerman, T. Dekker, “A 20-in. switchable auto-stereoscopic 2D/3D display,” in Proc. Int. Display Workshops, Niigata, Japan, 2004, pp. 1459–1460.

Delica, S.

S. Delica and C. Blanca, “Monte carlo model of light scattering in polymer dispersed liquid crystals: Polarization effects and defects,” Mol. Cryst. Liquid Cryst., vol. 412, no. 1, pp. 501–511, 2010.

Eakin, J. N.

K. K. Vardanyan, J. Qi, and J. N. Eakin, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett., vol. 81, no. 25, pp. 4736–4738, 2002.

Fan, H.

H. Fanet al., “Full resolution, low crosstalk, and wide viewing angle auto-stereoscopic display with a hybrid spatial-temporal control using free-form surface backlight unit,” J. Display Technol., vol. 11, no. 7, pp. 620–624, 2015.

H. Fanet al., “Displaying a full high-definition, high-quality 3D image without glasses,” SPIE I. D., 2014. [Online]. Available: http://spie.org/newsroom/technical-articles/5540-displaying-a-full-high-definition-high-quality-3d-image-without-glasses?ArticleID=x109248

Fan, Y. H.

H. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun., vol. 247, no. 1, pp. 101–106, 2004.

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett., vol. 83, no. 8, pp.1515–1517, 2003.

Fuh, A. Y. G.

A. Y. G. Fuh and T. H. Lin, “Electrically switchable spatial filter based on polymer-dispersed liquid crystal film,” J. Appl. Phys., vol. 96, no. 10, pp. 5402–5404, 2004.

Huang, J.-F.

Y. P. Huang, C. W. Chen, T. C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” 3D Res., vol. 1, no. 1, pp. 39–42, 2010.

Huang, K. C.

Huang, Y. P.

W. Mphepö, Y. P. Huang, and H. P. D. Shieh, “Enhancing the brightness of parallax barrier based 3D flat panel mobile displays without compromising power consumption,” J. Display Technol., vol. 6, no. 2, pp. 60–64, 2010.

Y. P. Huang, C. W. Chen, T. C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” 3D Res., vol. 1, no. 1, pp. 39–42, 2010.

IJzerman, W. L.

S. T. De Zwart, W. L. IJzerman, T. Dekker, “A 20-in. switchable auto-stereoscopic 2D/3D display,” in Proc. Int. Display Workshops, Niigata, Japan, 2004, pp. 1459–1460.

Kondo, H.

Y. Owaku, T. Miyazawa, and H. Kondo, “Liquid crystal parallax barrier, display device and liquid crystal display device,” U. S. Patent US 20130201427 A1, 12, 2013.

Konkolovich, A. A.

Lee, B. T.

Lee, S.

Li, D. H.

Liang, H.

H. Lianget al., “Optimizing time-multiplexing auto-stereoscopic displays with a genetic algorithm,” J. Display Technol., vol. 10, no. 8, pp. 685–699, 2014.

Lin, T. H.

A. Y. G. Fuh and T. H. Lin, “Electrically switchable spatial filter based on polymer-dispersed liquid crystal film,” J. Appl. Phys., vol. 96, no. 10, pp. 5402–5404, 2004.

Lin, Y. H.

H. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun., vol. 247, no. 1, pp. 101–106, 2004.

Lisinetskaya, P. G.

Loiko, V. A.

Miller, E. H.

E. H. Miller, “A note on reflector arrays,” IEEE Trans. Antennas Propag., to be published.

Miyazawa, T.

Y. Owaku, T. Miyazawa, and H. Kondo, “Liquid crystal parallax barrier, display device and liquid crystal display device,” U. S. Patent US 20130201427 A1, 12, 2013.

Mphepö, W.

Owaku, Y.

Y. Owaku, T. Miyazawa, and H. Kondo, “Liquid crystal parallax barrier, display device and liquid crystal display device,” U. S. Patent US 20130201427 A1, 12, 2013.

Park, M.

Qi, J.

K. K. Vardanyan, J. Qi, and J. N. Eakin, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett., vol. 81, no. 25, pp. 4736–4738, 2002.

Ren, H.

H. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun., vol. 247, no. 1, pp. 101–106, 2004.

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett., vol. 83, no. 8, pp.1515–1517, 2003.

H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett., vol. 81, no. 19, pp. 3537–3539, 2002.

Saloma, C.

Shen, T. C.

Y. P. Huang, C. W. Chen, T. C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” 3D Res., vol. 1, no. 1, pp. 39–42, 2010.

Shieh, H. P. D.

Spring, C. O.

C. O. Spring, “Perception of luminance uniformity: Comparing photometric calculations to subjective perceptions of uniformity,” M. S. thesis, Univ. Colorado, Boulder, CO, USA, 2002.

Vardanyan, K. K.

K. K. Vardanyan, J. Qi, and J. N. Eakin, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett., vol. 81, no. 25, pp. 4736–4738, 2002.

Wang, A. H.

Wang, J.

J. Wanget al., “High-quality autostereoscopic display with spatial and sequential hybrid control,” Appl. Opt., vol. 52, no. 35, pp. 31436–31445, 2013.

Wang, K.

Wang, Q. H.

Wu, S. T.

H. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun., vol. 247, no. 1, pp. 101–106, 2004.

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett., vol. 83, no. 8, pp.1515–1517, 2003.

H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett., vol. 81, no. 19, pp. 3537–3539, 2002.

Zhao, W. X.

Zheng, J.

Zhou, Y.

3D Res. (1)

Y. P. Huang, C. W. Chen, T. C. Shen, and J.-F. Huang, “Autostereoscopic 3D display with scanning multi-electrode driven liquid crystal (MeD-LC) lens,” 3D Res., vol. 1, no. 1, pp. 39–42, 2010.

Appl. Opt. (5)

Appl. Phys. Lett. (3)

H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett., vol. 81, no. 19, pp. 3537–3539, 2002.

K. K. Vardanyan, J. Qi, and J. N. Eakin, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett., vol. 81, no. 25, pp. 4736–4738, 2002.

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett., vol. 83, no. 8, pp.1515–1517, 2003.

IEEE Trans. Antennas Propag. (1)

E. H. Miller, “A note on reflector arrays,” IEEE Trans. Antennas Propag., to be published.

J. Appl. Phys. (1)

A. Y. G. Fuh and T. H. Lin, “Electrically switchable spatial filter based on polymer-dispersed liquid crystal film,” J. Appl. Phys., vol. 96, no. 10, pp. 5402–5404, 2004.

J. Display Technol. (4)

Mol. Cryst. Liquid Cryst. (1)

S. Delica and C. Blanca, “Monte carlo model of light scattering in polymer dispersed liquid crystals: Polarization effects and defects,” Mol. Cryst. Liquid Cryst., vol. 412, no. 1, pp. 501–511, 2010.

Opt. Commun. (1)

H. Ren, Y. H. Fan, Y. H. Lin, and S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun., vol. 247, no. 1, pp. 101–106, 2004.

Opt. Express (3)

Opt. Lett. (1)

SPIE I. D. (1)

H. Fanet al., “Displaying a full high-definition, high-quality 3D image without glasses,” SPIE I. D., 2014. [Online]. Available: http://spie.org/newsroom/technical-articles/5540-displaying-a-full-high-definition-high-quality-3d-image-without-glasses?ArticleID=x109248

Other (4)

S. T. De Zwart, W. L. IJzerman, T. Dekker, “A 20-in. switchable auto-stereoscopic 2D/3D display,” in Proc. Int. Display Workshops, Niigata, Japan, 2004, pp. 1459–1460.

Y. Owaku, T. Miyazawa, and H. Kondo, “Liquid crystal parallax barrier, display device and liquid crystal display device,” U. S. Patent US 20130201427 A1, 12, 2013.

C. O. Spring, “Perception of luminance uniformity: Comparing photometric calculations to subjective perceptions of uniformity,” M. S. thesis, Univ. Colorado, Boulder, CO, USA, 2002.

EBU-TECH3320: User Requirements for Video Monitors in Television Production, European Broadcasting Union, Geneva, Switzerland, 2014. [Online]. Available: https://tech.ebu.ch/docs/tech/tech3320.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.