Abstract

In this paper, the power consumption of a white-red-green-blue (WRGB) active-matrix organic light-emitting device (OLED) display and the resulting temperature distribution across the display are analyzed as a function of the applied image and the luminance of the emitted light. It has been shown previously that temperature directly impacts the picture quality of an OLED display. Luminance, spectral radiance, power and temperature measurements are performed on a 55-in WRGB OLED display with a resolution of 1920 $\times$ 1080. A power model is presented that allows calculating the display’s power consumption for a given applied image. This involves the dependency of the efficiency of the white OLED on the current density, the wavelength dependent transmission of the color filters and the contribution of each of the subpixels in producing the display’s nominal white. The output of the power model is used as input for a basic thermal model that simulates the temperature distribution across the display. The thermal model is based on 3D computational fluid dynamics analysis framework (FloEFD). A good agreement between the simulations and measurements on the sample WRGB OLED display is obtained.

© 2015 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription