Abstract

The thermal stability of channel optical waveguide devices fabricated by electron beam irradiation of plasma-enhanced chemical vapor deposition (PECVD) silica-on-silicon is investigated. The degree of stability is dependent on the starting material and on the use of thermal annealing prior to irradiation. High-temperature postprocessing is shown to reduce modal confinement, increasing losses in waveguide bends and the coupling coefficient in directional couplers. A low-temperature cladding process based on a thick MgF2 layer is described, and low-loss thermooptic Mach-Zehnder interferometric switches are demonstrated.

[IEEE ]

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription