Abstract

The design, assembly, and performance of a prototype 1 x 8 free-space switch demonstrater using reconfigurable holograms are reported. Central to the switch fabric is a ferroelectric liquid crystal (FLC) on silicon spatial light modulator (SLM) deposited with a 540 x 1 array of highly reflective and planar mirror strips. The input and output ports of the switch are fabricated as a linear array of silica planar waveguides connected to single-mode fibers, and the holographic beam-steerer operates without the need for adjustment or dynamic alignment. The waveguide array and the single Fourier transform lens for the 2f holographic replay system are housed in an opto-mechanical mount to provide stability. The switch operates at 1.55 µ m wavelength and has a designed optical bandwidth of >60 nm. The first measured insertion loss and crosstalk figures are 16.9 dB and -19.1 dB, respectively. Improvements in SLM performance, the use of new addressing schemes and the introduction of better alignment techniques are expected to improve these figures considerably. The preliminary performance of a 3 x 3 optical crossconnect is also presented to show that this technology is scalable to N x N switching fabrics.

© 2000 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription