Abstract

An angular spectrum of plane-wave representation is employed to calculate the discrimination between the fundamental and higher order transverse modes in step-index-guided vertical-cavity surface-emitting lasers. The effect of material composition and number of layer pairs in the distributed Bragg reflectors, as well as mode size and structure, are examined with the goal of optimizing the mode discrimination for better mode stability and higher single-mode power. In particular, it is shown that decreasing the width of the distributed Bragg reflector stopband, by means of controlling the material composition, improves significantly the mode discrimination.

© 2004 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription