Abstract

A resource-efficient provisioning framework (RPF) is proposed in this paper for optical networks providing dedicated path protection (DPP) and shared path protection (SPP) services. The framework reduces resource consumption by considering spare capacity reservation of DPP and SPP cooperatively while provides 100% survivability guarantee and maintains the recovery time for both protection types against the predominant single link failures. To tackle the service provisioning problem under the framework, an integer linear programming (ILP) formulation is presented to find the optimal routing solution for a given set of traffic demands. The objective is to minimize total capacities consumed by working and backup paths of all demands. Then, heuristics are developed for on-line routing under dynamic change of traffic. Numerical results show that compared with traditional provisioning framework (TPF), the RPF has the following advantages: 1) Over 10% capacity savings are achieved for static service provisioning; 2) blocking probability of both protection types is greatly reduced; 3) lower resource overbuild is achieved; and 4) average backup-path hop distance of shared-path-protected flows is reduced. Finally, network survivability in face of double link failures is discussed under the framework.

© 2008 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription