Abstract

We report on a simple and direct method of measuring localized chromatic dispersion (CD) profiles of structured nanowaveguide devices using white-light interferometry. Phase change in the interference fringe of a white-light interferometer (WLI) caused by introducing a sample-under-test into one of the interferometer arms was used to determine a spectral profile of its accurate CD coefficients. This method was tested by measuring the spectral CD profiles of a localized silicon nanowaveguide and of a nonmembrane-type photonic crystal waveguide (PhCW) excluding their optical coupling sections. The measured local CD values of a 500-nm-wide single-line-defect (W1) PhCW with a lattice period of 460 nm and the hole radius of 165 nm formed on 220-nm-thick silicon layer of a silicon-on-insulator (SOI) wafer varied from 0.38 to 0.22 ps/(nm·cm) for a wavelength range from 1530 to 1570 nm. This method will be very useful in determining the accurate CD profiles of nanophotonic waveguide devices.

© 2011 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription